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Abstract

Background: Stem cell therapy is considered as a promising alternative to treat intervertebral disc degeneration
(IDD). Extensive work had been done on identifying and comparing different types of candidate stem cells, both in
vivo and in vitro. However, few studies have shed light on degenerative nucleus pulposus cells (NPCs), especially
their biological behavior under the influence of exogenous stem cells, specifically the gene expression and
regulation pattern. In the present study, we aimed to determine messenger RNAs (mRNAs) and long non-coding
RNAs (lncRNAs), which are differentially expressed during the co-culturing process with adipose-derived
mesenchymal stem cells (ASCs) and to explore the involved signaling pathways and the regulatory networks.

Methods: We compared degenerative NPCs co-cultured with ASCs with those cultured solely using lncRNA-mRNA
microarray analysis. Based on these data, we investigated the significantly regulated signaling pathways based on
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Moreover, 23 micro RNAs (miRNAs),
which were demonstrated to be involved in IDD were chosen; we investigated their theoretic regulatory
importance associated with our microarray data.

Results: We found 632 lncRNAs and 1682 mRNAs were differentially expressed out of a total of 40,716 probes. We
then confirmed the microarray data by real-time PCR. Furthermore, we demonstrated 197 upregulated, and 373
downregulated Gene Ontology terms and 176 significantly enriched pathways, such as the mitogen-activated
protein kinase (MAPK) pathway. Also, a signal-net was constructed to reveal the interplay among differentially
expressed genes. Meanwhile, a mRNA-lncRNA co-expression network was constructed for the significantly changed
mRNAs and lncRNAs. Also, the competing endogenous RNA (ceRNA) network was built.

Conclusion: Our results present the first comprehensive identification of differentially expressed lncRNAs and
mRNAs of degenerative NPCs, altered by co-culturing with ASCs, and outline the gene expression regulation
pattern. These may provide valuable information for better understanding of stem cell therapy and potential
candidate biomarkers for IDD treatment.
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Background
Intervertebral disc degeneration (IDD) due to aging and
other reasons is still a major clinical challenge for spine
surgeons. Numerous strategies have been studied to pre-
vent the deterioration and progressing of IDD, which
will cause various pathologies, such as disc herniation,
spinal stenosis and segmental instability [1]. However,
disc degeneration is difficult to reverse in the natural
course due to the avascular and aneural nature of the
nucleus pulposus (NP). Biochemically, the degeneration
is characterized by the decrease of the extracellular
matrix and loss of water content within the NP, which
are believed to play a crucial role in the progress of IDD.
Recently, stem cell therapy, introducing mesenchy-

mal stem cells (MSCs) or cytokines into target discs,
appears as a promising strategy for the IDD treat-
ment. This emerging modality was proved to be ef-
fective both in vitro [2–4] and in vivo [5, 6].
Co-culturing with nucleus pulposus cells (NPCs),
MSCs could differentiate towards the NP-like cells
with increased expression of the NP marker genes
[7]. In particular, adipose-derived mesenchymal stem
cells (ASCs) co-cultured with NPCs expressed signifi-
cantly upregulated expression of NP-related genes in-
cluding sex determining region Y box 9 (SOX9), type
II collagen (COL2A1), and aggrecan (ACAN) [8].
Interestingly, our previous study demonstrated that
degenerative NPCs could be activated by MSCs in the
co-culture system with significantly upregulated gene
expression of SOX9, COL2A1, and ACAN [4]. It is
notable that degenerative NPCs could be induced to-
wards healthy NPCs by specific cytokines and cellular
factors yielded from MSCs [9]. Also, it underlines that
the gene expression pattern of not only MSCs but
also degenerative NPCs could be altered through the
intracellular cross-talking [10, 11]. However, the
underlying mechanism of these phenomena is still not
fully understood.
Gene microarray technology can simultaneously measure

differences in the expression level of thousands of genes of
predefined groups of samples [12] and allows highly effective
evaluation of genome-wide expression changes [13]. This
novel technology enables researchers to develop a more
comprehensive understanding of the cross-talking between
MSCs and degenerative NPCs, including differentially
expressed genes and long non-coding RNAs (lncRNAs).
Recently, lncRNAs have received critical attention with

their regulatory effect on gene expression [14, 15]. They
have been characterized with the high tissue-specificity
and low sequence-conservation [16, 17] and have been
demonstrated to be involved in various physiological and
pathological processes as regulators, such as imprinting,
X-inactivation, and development [18]. Numerous previ-
ous studies have attempted to map the phenotype of

NPCs [19–22], to the best of our knowledge, yet few
studies have emphasized the function of lncRNAs re-
lated to disc degeneration, particularly their regulatory
roles in the process of degenerative NPCs co-cultured
with MSCs [23].
Similarly, micro RNAs (miRNAs), a group of small

and non-coding RNAs, have been proved to participate
in the expression regulation of coding genes and to in-
fluence various biological processes, including cell differ-
entiation, proliferation, and metabolism [15, 24]. Many
miRNAs have been demonstrated to be involved in nat-
ural disc degeneration [25, 26], and specifically miR-27b
[27] and miR-93 [28] have been shown to promote
matrix degradation within the discs and accelerate the
disc degeneration process. Yet, there was no study focus-
ing on the role of these miRNAs in the cell-cell
cross-talk between MSCs and degenerative NPCs.
The current study aimed to use gene expression micro-

array analysis and bioinformatics methods to investigate
the effect of MSCs on degenerative NPCs in terms of def-
erentially expressed lncRNAs and mRNAs, signaling path-
ways, and gene regulation networks involving mRNAs,
lncRNAs, and miRNAs (Additional file 1).

Methods
All human tissues were obtained and used with in-
formed consent from the patients and under the ap-
proval of the Institutional Review Broad of the Shanghai
General Hospital, Shanghai Jiaotong University.

Isolation and culture of NP cells
The human NP tissue was surgically obtained from the
degenerative discs (grade III–IV according to the Pfirr-
mann grading system [29]) of three patients diagnosed
as having lumbar spondylosis. The isolation and culture
of NPCs was performed as previously reported [4, 30]
(Additional file 2).

Isolation and culture of ASCs
The adipose tissue surgically obtained from the patients’
backs was processed for isolation of ASCs following the
previously standardized protocol [31, 32] (Additional file 2).

Co-culture of ASCs and NPCs
Both NPCs and ASCs at passage 3 were co-cultured
using the non-direct cell-cell contact co-culturing sys-
tem, consisting of six-well plates and polyethylene ter-
ephthalate track-etched tissue culture inserts with
0.4-μm pore size. Briefly, ASCs (6.0 × 104 cells) were
seeded on the base of the six-well plate, and the same
numbers of NPCs were seeded onto the upper surface of
the membrane. Co-cultured cells were maintained for
7 days at 37 °C and 5% CO2 in a humidified atmosphere
with the medium being changed every 2 days.
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Meanwhile, the NPCs (6.0 × 104 cells) at passage 3 were
cultured for 7 days in the same condition as the control.

RNA isolation and quality control
Briefly, the total RNA was isolated from each group of
cells using the Trizol agent (Invitrogen, Carlsbad, USA)
following the manufacture’s protocol. Then the RNA was
purified with an RNase Kit (Bio-Rad, CA, USA), and the
quantity was measured using a spectrophotometer (Nano-
Drop-1000, Thermo Scientific, MA, USA). Agarose-gel
electrophoresis was performed to test the RNA integrity
and DNA contamination (Additional file 3).

Microarray analysis
Generally, NPCs without co-culture (control group) and
with co-culture (experimental group) were used to com-
pare mRNA and lncRNA expression profiles. As shown in
additional file 1, a multiple-step strategy was used to iden-
tify mRNAs and lncRNAs dysregulated between NPCs
with and without co-culturing. To clarify the changes in
the signaling pathways of NPCs during co-culture, we fur-
ther performed Gene Ontology (GO) analysis, pathway
analysis, and signal-net analysis. Microarray analysis was
performed by the GMINIX Informatics Ltd. Co (Shanghai,
China). The quality control of hybridization is shown in
Additional file 4. The data had been uploaded to the NCBI
Gene Expression Omnibus (GEO) and can be accessed
[GEO:GSE112216] (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE112216).
The mRNAs and lncRNAs differently expressed be-

tween NPCs with and without co-culturing were identi-
fied using the random variance model (RVM) t test. The
RVM t test was applied to filter the differentially
expressed RNAs with increased degrees of freedom in
the small sample datasets. With a threshold of P < 0.05
considered significant, differentially expressed RNAs
were selected and false discovery rate (FDR) analysis was

performed. Unsupervised hierarchical clustering was
performed and a cluster map was created.

Real-time PCR
To validate the microarray results, seven mRNAs were se-
lected for the real-time PCR validation. Complementary
DNA (cDNA) was generated by the reverse transcript
using a Taqman Reverse Transcription Kit (Invitrogen,
Carlsbad, USA) according to the manufacturer’s instruc-
tions. Gene expression analysis was conducted by
real-time PCR using the SYBR Green Mastermix (BioRad,
CA, USA) and a CFX96 Touch Real-time PCR Detection
System (BioRad, CA, USA). Homo actin was used as the
internal control to determine the relative expression of
target genes; the relative changes in gene expression were
compared to those of untreated cells using the 2-ΔΔCT

method where CT = threshold cycle. All reactions were
performed in triplicate and the sequences of used primers
are shown in Table 1.

GO analysis
Based on the GO database (http://www.geneontology.org),
the GO analysis was performed to analyze the main func-
tions of the differentially expressed mRNAs using the
two-sided Fisher’s exact test and chi-square test. The dif-
ferentially expressed genes were evaluated independently
and classified to upregulation and downregulation. P
values of all differentially expressed genes were com-
puted in all GO categories, and P < 0.01 was defined
as significant.

Pathway analysis
The significance levels of pathways associated with differ-
entially expressed genes were analyzed based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
(http://www.genome.jp/kegg/). Fisher’s exact test and the
chi-square test were used to select the significant path-
ways according to the significance threshold P < 0.05.

Table 1 Primers used in real-time PCR

Gene name Forward sequence 5′-3′ Reverse sequence 5′-3’

PIK3R3 GGG GAA GTG AAG CAC TGT GT GAC GTT GAG GGA GTC GTT GT

ENPP1 GCC CGA AAT CTT TCT TGC CG TGC CAT GCT TGA ATC CAG GT

MT1F TGC AAG TGC AAA GAG TGC AA CCC TTT GCA AAC ACA GCC C

SPP1 GCC GAG GTG ATA GTG TGG TT AAC GGG GAT GGC CTT GTA TG

EPYC TTC TGG GGC CAC ACA CAA AT GCT CTC GAA GTT GAG GCA GT

CD24 GCT CCT ACC CAC GCA GAT TT GAG ACC ACG AAG AGA CTG GC

C4orf31 TCA TGT CTA CTC CAG GCC CA GTA GTA CTG CGT GTC GGG TT

homo-actin GCT CAG GAG GAG CAA TGA TCT TG GTA CGC CAA CAC AGT GCT GTC

PIK3R3 phosphoinositide-3-kinase, regulatory subunit 3, ENPP1 ectonucleotide pyrophosphatase/ phosphodiesterase 1, MT1F metallothionein 1F,
SPP1 secreted phosphoprotein 1, EPYC epiphycan, C4orf31 chromosome 4 open reading frame 31
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In order to systematically identify the integrations be-
tween the pathways, the Path-net, highlighting the inter-
action net containing the pathways associated with
differentially expressed genes, was generated based on the
interactions among the pathways of the KEGG database.

Signal-net analysis
The significant intersectional genes in both GO ana-
lysis and Pathway analysis were selected to analyze
the gene-gene interaction and construct the network
map. From the differentially expressed gene data, the
gene-gene network map was constructed based on the
KEGG database, allowing the users to build and
analyze the molecular networks. The networks are
stored and presented as graphs, the nodes are genes,
and edges representing relationship types between the
nodes may indicate activation or phosphorylation. The
graph nature of networks allowed further investigation
with the powerful tools implemented in R. The net-
work work of each gene was calculated by counting
the numbers of upstream genes and downstream
genes, which were expressed in the form of in-degree
and out-degree. The betweenness centrality of each
gene was calculated according to its in-degree and
out-degree, and higher betweenness centrality implies
greater importance in the gene-network regulation.

LncRNA-gene-net analysis
Co-expression network analysis of lncRNAs and
mRNAs was performed based on the differentially
expressed lncRNAs and the intersectional mRNAs,
which were significant in both GO analysis and Path-
way analysis.

Competing endogenous RNA (ceRNA) analysis
The miRNAs are a class of ~ 22-nucleotide-long
single-stranded non-coding RNAs that regulate gene
expression by binding to miRNA response elements
(MREs) on the RNAs [33, 34]. The lncRNAs are
non-coding RNAs longer than 200 nucleotides and
also involved in the pathology of many complex hu-
man diseases including cancer [35]. The lncRNAs also
harbor MREs and compete with other RNAs for the
miRNA binding, and lncRNAs can regulate miRNA
abundance by sequestering and binding them [36],
thus functioning to compete with endogenous RNAs
to influence post-transcriptional regulation.
Based on previous studies, 23 miRNAs associated

with disc degeneration (Additional file 5) were se-
lected to investigate their regulatory involvement in
differentially expressed mRNAs and lncRNAs defined
by our study. Then the miRNA-mRNA target predic-
tion according to TargetScan (http://www.targets
can.org/) and the miRanda (http://cbio.mskcc.org/

miRNA2003/miranda.html) was performed for com-
peting endogenous RNA. The ceRNA network was
thereafter constructed based on those negatively regu-
lated intersectional lncRNAs and mRNAs.

Statistical analysis
All data are reported as mean ± standard deviation.
Differences between groups were evaluated by
Student’s t test using SPSS 20.0 software (Chicago IL,
USA.). P < 0.05 was considered statistically significant.

Results
Validation of ASCs
To verify the ASCs, specific surface markers and mul-
tiple differentiation potentials were verified. On flow cy-
tometry, positive expression of CD90, CD105, and
HLA-ABC and negative expression of CD34, CD45, and
HLA-DR was observed (Fig. 1). Also, the multilineage
differentiation potential of ASCs was proved by the
histological staining (Fig. 1).

Identification of deferentially expressed lncRNAs and mRNAs
A total of 2314 probes were identified to be differen-
tially expressed, including 632 lncRNAs and 1682
mRNAs (Fig. 2a). For lncRNAs, the chromosome-3
open reading frame 49 (C3orf49) showed the greatest up-
regulation (fold change = 18.9), followed by the two-pore
channel 3 pseudogene, upregulated (LOC440895) and
testis-specific transcript Y-linked 15, upregulated
(TTTY15). Additionally, the top three deferentially
expressed mRNAs were the secreted phosphoprotein 1
(SPP1), metallothionein 1F (MT1F) and ectonucleotide
pyrophosphatase 1 (ENPP1) with their fold changes were
106, 77, and 34, respectively (Fig. 2b). Furthermore, these
deferentially expressed mRNAs also include NPCs maker
mRNAs such as SOX-9 and COL2A1. More detailed
information is provided in Additional file 6 (top 10 differ-
entially expressed lncRNAs and mRNAs) and
Additional file 7 (full list of differentially expressed
mRNAs and lncRNAs).

Validation of real-time PCR
Furthermore, we demonstrated that the results of the
real-time PCR analysis were consistent with the
microarray data. Seven differentially expressed
mRNAs (PIK3R3, ENPP1, MT1F, SPP1, EPYC, CD24,
and C4orf31) were selected for the real-time PCR
analysis. The gene chip analysis revealed these
mRNAs were upregulated up to 2.70-fold, 34.48-fold,
76.92-fold, 106.38-fold, 34.58-fold, 20.40-fold, and
17.85-fold, respectively. The microarray analysis data
were also verified, and the expression of PIK3R3 (P <
0.05), ENPP1 (P < 0.05), MT1F (P < 0.05), SPP1 (P <
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0.05), EPYC (P < 0.05), CD24 (P < 0.05), C4orf31 (P <
0.05) in the NPCs were significantly increased up to
11.32-fold, 70.92-fold, 192.01-fold, 1896.14-fold,
1132.71-fold, 31.87-fold, and 94.45-fold, respectively
(Fig. 3).

GO analysis
Differentially expressed mRNAs and lncRNAs were used
for the downstream GO analysis and pathway analysis.
There were 197 upregulated and 373 downregulated GO
terms (P < 0.05), including the upregulated cell adhesion

Fig. 2 Cluster heat map shows differentially expressed long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs). The names of the sample
groups are on the x-axis and the different probles are on the y-axis. The red strip indicates high relative expression and the green strip indicates low
relative expression. E, experimental group with nucleus pulposus cells (NPCs) from degenerative discs, which were co-cultured with adipose-derived
mesenchymal stem cells (ASCs); C, control group with NPCs from degenerative discs not co-cultured with ASCs

Fig. 1 Identification of adipose-derived mesenchymal stem cells (ASCs). a-d Multilineage differentiation ability of the ASCs, verified by histological
assays. a Oil Red O staining showed the adipogenic differentiation potential of the ASCs. The red dots (indicated by arrows) stand for the
differentiated adipocytes colored by Oil Red O staining. b Alcian Blue staining for chondrogenic differentiation. The blue deposits were indicative
of functional chondrocytes. The osteogenic differentiation verified by Alizarin Red (c), the calcium deposits were stained red (indicated by arrows)
and the osteoblasts were in dark blue stained by alkaline phosphatase staining (d). e Expression of specific surface markers of ASCs by flow
cytometry. The ASCs positively expressed CD90, CD105 and HLA-ABC and negatively expressed CD34, CD45 and HLA-DR
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(GO:0007155) and the downregulated small molecule
metabolic process (GO:0044281). The top 10 upregulated
and downregulated GO terms are presented in Fig. 4.

Pathway analysis
The pathway analysis identified a total of 176 pathways,
among which 122 pathways were statistically significantly
upregulated and 54 were significantly downregulated. The
most enriched pathways included phosphoinositide
3-kinase (PI3K)-protein kinase PI3K-Akt signaling path-
way (upregulated) and metabolic pathways (downregu-
lated) (Fig. 5).
The interaction network for all significantly enriched

pathways is formulated with the Path-net (Fig. 6;
Additional file 8), representing these pathways directly
and systematically involved in the interaction between
ASCs and NPCs. Also, we discovered that the
mitogen-activated protein kinase (MAPK) signaling path-
way played a canonical role with the highest number of in-
teractions with other pathways (interaction degree, 35)
(Fig. 6). In contrast, the apoptosis pathway (interaction de-
gree, 25) and the Wnt signaling pathway (interaction de-
gree, 18) were downregulated in the co-culture system.

Signal-net
Based on the intersectional genes that were significantly
enriched in both GO analysis and Pathway enrichment
analysis, a gene interaction network was constructed
(Fig. 7; Additional file 9). Signal-net analysis showed that
phosphoinositide-3-kinase, regulatory subunit 3, upregu-
lated (PIK3R3), phosphoinositide-3-kinase, catalytic, beta
polypeptide, downregulated (PIK3CB) and fibroblast
growth factor receptor 2, downregulated (FGFR2) are

critical in the gene regulatory network with their degrees
of connections 19, 18 and 15, respectively.

lncRNA-mRNA co-expression network
A co-expression network was built for 80 lncRNAs and
170 mRNAs selected from the differentially expressed
lncRNAs and mRNAs based on the degree of correlation
(Fig. 8). These 250 RNAs (250 nodes in the co-expression
network) were further combined into 1453 pairs of
co-expression lncRNA-mRNA. Among these RNAs of the
co-expression network, X-inactive specific transcript,
(non-coding, downregulated, degree, 77 (XIST) obtained
the highest number of interactions followed by the
TCONS_l2_00013892-XLOC_l2_007489 (non-coding, up-
regulated, degree, 69) and TCONS_00020478-X-
LOC_009810 (non-coding, upregulated, degree, 66).

Regulatory role of miRNAs
A competing endogenous RNA network was con-
structed from 23 miRNAs, previously proved to be in-
volved in intervertebral disc degeneration, and
displayed their regulatory interplay with differentially
expressed mRNAs and lncRNAs (Fig. 9, Additional file 5).
Evidently, hsa-miR-98-5p (upregulated, interaction degree,
57) was the most important miRNA in this network,
followed by the hsa-miR-27a-3p (upregulated, interaction
degree, 40) and hsa-miR-146a-3p (upregulated, interaction
degree, 23). Additionally, TCONS_l2_00011557-XL
OC-_l2_005806 TCONS_l2_00010454-XLOC_l2_005438,
and TCONS_l2_00023712-XLOC_l2_011987 were the top
three important lncRNAs in this regulatory network; their
interaction degrees were 53, 44, and 35, respectively
(Additional file 6 and Additional file 7).

Fig. 3 Real-time PCR confirmation of gene microarray results. Seven genes (PIK3R3, ENPP1, MT1F, SPP1, EPYC, CD24, C4orf31) were selected for the
real-time PCR validation. Control represents nucleus pulposus cells (NPCs) from degenerative discs not co-cultured with adipose-derived
mesenchymal stem cells (ASCs); experimental represents NPCs after co-culturing with ASCs. *P < 0.05 compared with control group
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Discussion
In the present study, we identified a significant number of
mRNAs and lncRNAs differentially expressed by degen-
erative NPCs co-cultured with ASCs, using the microarray
analysis and in-depth data profiling. We also identified the
signaling pathways that were altered during the co-culture
and outlined the co-expression relationship between
mRNAs and lncRNAs. The disc-degeneration-related
miRNAs, differentially expressed mRNAs, and lncRNAs
were further evaluated to identify the regulatory inter-
action, highlighting the biological pathways and cellular
events of gene expression and regulation during the
stem-cell therapy process. In addition, our research vali-
dates the previous studies about NPC phenotypes [19–22]
and further investigated the regulatory role of lncRNAs.
However, more in-depth understanding of these gene ex-
pression and regulation profiles will provide valuable clues
for gene therapy approaches for disc degeneration.
In the present study, we revealed the altered mRNAs

and lncRNAs between NPCs before and after co-culture
with ASCs. Real-time PCR results of seven randomly se-
lected mRNAs (Fig. 3) were consistent with the micro-
array data, further confirming the high credibility of the
microarray analysis. Furthermore, we identified that the

NP marker gene expression, SOX-9 (fold change = 7, P <
0.001) and COL2A1 (fold change = 6, P < 0.001), was in-
creased in NPCs after the co-culture, indicating the up-
regulated synthesis and secretory activities of NPCs
under the influence of MSCs [37, 38]. These findings
were consistent with the previous studies reporting the
significantly raised expression of SOX-9 and COL2A1 in
NPCs when co-cultured with MSCs [39, 40].
In particular, we demonstrated that SPP1 was the most

significantly altered gene and might be indicated as a
marker of NPC (Additional file 6). SPP1, also known as
osteopontin (OPN), is an extracellular structural protein
secreted by various types of cells. Our data from the
signal-net analysis suggested that SPP1 could activate
the integrin proteins, e.g. integrin alpha (ITGA) 1, 3, 4,
6, 7, 8, and 10, and has close connections with
COL11A1, COL3A1, and COL2A1 (Fig. 7). Since integ-
rins are a class of cell adhesion molecules that regulate
interactions between a cell and its surrounding matrix
[41], activation of ITGA will assist NPCs to interact with
the extracellular matrix, specifically collagen molecules,
and then to potentially restore the intervertebral disc
function. Marfia and colleagues previously reported
greater expression of SPP1/OPN and CD44 in

Fig. 4 Top 10 significantly upregulated and downregulated Gene Ontology (GO) terms. The length of the bars on the x-axis represents the
negative logarithm of the P value (-LgP) of each GO term; higher -LgP values indicate higher significance and lower -LgP value indicate lower
significance. The GO term names are shown on the y-axis
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degenerative IVD comparing to herniated IVD, and
SPP1/OPN was only detected in degenerative IVD tissue
[42]. They therefore assumed that SPP1/OPN might
mark the severity of disc degeneration. However, in dis-
agreement with Marfia’s study, our data revealed that
SPP1/OPN was upregulated with downregulated CD44
when degenerative NPCs were co-cultured with ASCs
(Additional file 7). Such a considerable divergence war-
rants further in-depth investigations into the sophisti-
cated underlying mechanism.
We also demonstrated that CD24 were upregulated

(Additional file 6) and these data were in accord with pre-
vious studies, signifying CD24 as an important marker of
NPCs and notochordal cells [22, 43–48]. Particularly,
Ricardo Rodrigues-Pinto et al. demonstrated that CD24, a
glycosylphosphatidylinositol anchor protein, is one of the
notochord-specific markers during the early development
of human IVD [47]. Similarly, Nobuyuki Fujita et al. [46]
identified CD24 as a surface marker for NPC with its high

expression in the healthy and herniated NP tissue ra-
ther than in the annulus fibrosus. Furthermore, CD24
is proved to be a key marker of the irreversible cellular
hierarchy during the differentiation process of the
NP-progenitor cells towards NP-committed cells in
mice and humans [49]. Therefore, in our study, the up-
regulated expression of CD24 also confirmed the posi-
tive effect of ASCs on NPC regeneration.
Functional annotation of these differentially expressed

mRNAs and lncRNAs was investigated by GO and
KEGG pathway analysis. The GO analysis identified sig-
nificant enrichments in over 197 GO terms, including
cell adhesion (GO:0007155), positive regulation of tran-
scription from RNA polymerase II (Pol II) promoter
(GO:0045944), and extracellular matrix organization
(GO:0030198). These data indicate that the metabolic
activities of NPCs might be enhanced by ASCs. Specific-
ally, the cellular adhesion is crucial for stable connec-
tions between cells and tissue structure maintenance,

Fig. 5 Results of the Kyoto Encylopedia of Genes and Genomes (KEGG) pathway analysis. a Top 10 most significantly upregulated KEGG
pathways. b Top 10 significantly downregulated KEGG pathways. The length of the bars on the x-axis represents the negative logarithm of the
P value (-LgP) of each pathway; higher -LgP values indicate higher significance and lower -LgP values indicate lower significance. The pathway
names are shown on the y-axis. ECM, extracellular matrix; MAPK, mitogen-activated protein kinase
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also involved in diverse signal transduction [50]. The up-
regulated RNA Pol II promoter of co-cultured NPCs in
the present study reflects the increased expression of
protein-encoding genes. The RNA Pol II together with
other factors, mediating the transcription initiation of
protein-encoding genes, is an essential control point for
gene expression in the eukaryotes [51]. Similarly, upreg-
ulated extracellular matrix organization would counter-
act the loss of extracellular matrix and further favor the
regeneration of NP tissue [52].
Additionally, the most important signaling pathways

altered during the co-culture were the MAPK pathway,
the nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-kappa B) signaling pathway, and the
PI3K-Akt signaling pathway (Fig. 5). Specifically, the
NF-kappa B and MAPK signaling pathways, the princi-
pal regulators of inflammation and catabolism [53], are
important in the symptomatic disc-degenerative diseases
[54–56]. The MAPK signaling pathway was generally in-
creased in the aged and degenerative discs [57, 58]. Our
analysis displayed the downregulation of the MAPK sig-
naling pathway, indicating degenerative NPCs could be

stimulated towards normal NPCs by ASCs. In addition,
NF-kappa B targets several pro-inflammatory cytokines
[59–61] that are highly expressed in degenerative discs
rather than normal discs. Therefore, the downregulated
NF-kappa B signaling pathway of co-cultured NPCs in
our study may indicate that ASCs protect NPCs from in-
flammatory response. Furthermore, the PI3K-Akt signal-
ing pathway was identified as the most significantly
upregulated pathway. Activated PI3K-Akt can protect
against the disc degeneration [62, 63] with increased
extracellular matrix synthesis [64], promoted cell prolif-
eration [65], counteraction of cell apoptosis [66], and al-
leviated oxidative damage [67].
Moreover, the signal-net analysis displayed that glyco-

gen synthase kinase 3 beta (GSK3B), which was down-
regulated, plays the most critical role in the network
with the highest betweenness centrality. As a serine/
threonine kinase, GSK3 is involved in the phosphoryl-
ation of numerous substrates, including signaling
proteins, transcription factors and structural proteins
[68, 69]. As a crucial mediator of PI3K-Akt, PKA, PKC,
and Wnt/ß-catenin, GSK3 is proved to play an important

Fig. 6 Path-net analysis of differentially signaling pathways. Nodes represent different pathways; red indicates upregulated, blue indicates
downregulated, and yellow indicates both upregulated and downregulated. The size of each circle is determined by the number of other genes
that interact with this gene, namely the degree of the pathway. ECM, extracellular matrix; MAPK, mitogen-activated protein kinase; VEGF vascular
endothelial growth factor; TGF, transforming growth factor

Han et al. Arthritis Research & Therapy  (2018) 20:182 Page 9 of 14



role in chondrocyte differentiation [70–72]. Miclea et al.
demonstrated that GSK3B could inhibit the chondrocyte
proliferation and increase the cartilage apoptosis via acti-
vating the canonical Wnt signaling pathway in the ex vivo
mouse embryos [73]. Also, Itoh et al. demonstrated that
GSK3 proteins are involved in early stages of chondrocyte
differentiation by driving the differentiation in a
cell-autonomous manner [74]. In the present study, we
also found that after co-culture, the degenerative NPCs
expressed significantly higher SOX9 and COL1A2, con-
firming the restored function of the NPCs.

Regarding the regulatory functions of lncRNAs, in the
present study we investigated the co-expressional connec-
tion between mRNAs and lncRNAs and found that XIST
acquired the greatest number of interactions (degree = 77)
among all RNAs. XIST, a 17–20 kb RNA, binds the X
chromosome [75, 76] to initiate X chromosome inactiva-
tion [77] and is required for whole-chromosome silencing
[78]. Also, XIST provides one of a few tangible readouts
for the stem cell quality [79] and also influences the pluri-
potent stem cell population, as proved in induced pluripo-
tent stem cell treatments in regenerative medicine [80].

Fig. 7 Signal-net analysis of the differentially expressed genes between the control and experimental group. Circles represent genes, red
indicates upregulated and blue indicates downregulated. The size of each circle represents the number of the other genes that interact with this
gene. Lines indicate interactions between genes. The relation between two genes is indicated as a(b), activation (binding/association); a(c)(ind),
activation (compound) (indirect effect); a(ind), activation (indirect effect); a(ind)(inh), activation (indirect effect) (inhibition); a(ind)(p), activation
(indirect effect) (phosphorylation); a(inh), activation(inhibition); a(p), activation (phosphorylation); b, binding / association; b(inh)(u), binding /
association (inhibition) (ubiquitination); c, compound; c(ind), compound (indirect effect); dep(inh), dephosphorylation (inhibition); ex, expression;
ex(ind), expression (indirect effect); ind, indirect effect; ind(inh), indirect effect (inhibition); inh, nhibition; inh(m)(p), inhibition (missing interaction)
(phosphorylation); inh(p), inhibition(phosphorylation); inh(u), inhibition (ubiquitination); p, phosphorylation; rep, repression; u, ubiquitination
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However, such significant roles have not studied in the
context of disc degeneration and further investigations are
warranted.
A competing endogenous RNAs network was con-

structed for the regulatory function of various lncRNAs
and many miRNAs associated with disc degeneration.
miR-98-5p is the most important in the network (inter-
action degree 57) followed by the miR-27a-34 (inter-
action degree, 40) (Fig. 9). miR-98 is significantly
downregulated in the degenerated NP tissue and has
been proved to promote type II collagen expression in
NPCs [81]. Also, Li et al. reported that the downregula-
tion of miRNA-27b would yield loss of type II collagen
and lead to the development of IDD [27]. Therefore, the

upregulation of these two miRNAs, favoring type II col-
lagen synthesis of the NPCs, demonstrated the positive
effect of ASCs on degenerative NPCs and might serve as
potential therapeutic targets in IDD.
This study has some limitations. First, numerous RNA

probes were investigated in the microarray analysis and
this limited the validation of the gene chip results. There-
fore, we only interpreted the results based on previous
studies and our interests. Also, to avoid losing informa-
tion, genes and lncRNAs were not further classified into
specific subsets according to their functions and only the
regulatory roles of differentially expressed RNAs of gen-
eral interest were interpreted, serving as potential targets
of the further in-depth investigation. Nevertheless, the

Fig. 8 The long noncoding RNA (lncRNA)-messenger RNA (mRNA) co-expression network of the 80 lncRNAs and 170 mRNAs. A node without a
yellow ring indicates mRNA, and a node with a yellow ring indicates lncRNA. Upregulated mRNAs and lncRNAs are shown in red and
downregulated mRNAs and lncRNAs are shown in blue. A solid line indicates positive interaction; a dashed line indicates negative interaction

Han et al. Arthritis Research & Therapy  (2018) 20:182 Page 11 of 14



results from our bioinformatics analysis only elucidate
relevant relationships associated with these genes and
lncRNAs; more in vitro or in vivo studies are necessary to
comprehensively understand the specific involvement of
the differentially expressed lncRNAs and mRNAs during
the co-culturing process.

Conclusion
To sum up, co-culturing human ASCs with degenerative
NPCs restored the biological status of the degenerative
NPCs. Our study identified the interplay between ASCs
and degenerative NPCs during the co-culturing and pro-
vided valuable information for the development and ap-
plication of gene therapy for IDD. More studies are
required to explore the functions and mechanisms of the
key RNAs involved in the regeneration of the human
intervertebral disc tissue and further benefit the transla-
tion of gene therapy in IDD from bench to bedside.
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