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Abstract

Background: IL-17A has recently emerged as a potential target that regulates the extensive inflammation and abnormal
bone formation observed in ankylosing spondylitis (AS). Blocking IL-17A is expected to inhibit bony ankylosis. Here, we

investigated the effects of anti IL-17A agents in AS.

Methods: TNFq, IL-17A, and IL-12/23 p40 levels in serum and synovial fluid from patients with ankylosing spondylitis (AS),
rheumatoid arthritis (RA), osteoarthritis (OA), or healthy controls (HC) were measured by ELISA. Bone tissue samples were
obtained at surgery from the facet joints of ten patients with AS and ten control (Ct) patients with noninflammatory
spinal disease. The functional relevance of IL-17A, biological blockades, Janus kinase 2 (JAK2), and non-receptor tyrosine
kinase was assessed in vitro with primary bone-derived cells (BdCs) and serum from patients with AS.

Results: Basal levels of IL-17A and IL-12/23 p40 in body fluids were elevated in patients with AS. JAK2 was also highly
expressed in bone tissue and primary BdCs from patients with AS. Furthermore, addition of exogenous IL-17A to primary
Ct-BdCs promoted the osteogenic stimulus-induced increase in ALP activity and mineralization. Intriguingly, blocking IL-
17A with serum from patients with AS attenuated ALP activity and mineralization in both Ct and AS-BdCs by inhibiting
JAK2 phosphorylation and downregulating osteoblast-involved genes. Moreover, JAK2 inhibitors effectively reduced JAK2-

driven ALP activity and JAK2-mediated events.

Conclusions: Our findings indicate that IL-17A regulates osteoblast activity and differentiation via JAK2/STAT3 signaling.
They shed light on AS pathogenesis and suggest new rational therapies for clinical AS ankylosis.
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Background

A key feature of ankylosing spondylitis (AS) is chronic
inflammation of the spine, leading to bony ankylosis.
The development of tumor necrosis factor (TNF) block-
ade strategies for inflammatory diseases such as rheuma-
toid arthritis (RA) and AS was a significant treatment
breakthrough [1]. However, effective and safe therapeutic
approaches to AS remain a substantial clinical challenge,
as the suitability of TNF blockade for preventing new
bone formation is yet controversial [2—8]. Thus, it may
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be fruitful to investigate inflammatory cytokines involved
in new bone formation as therapeutic targets.

The interleukin (IL)-23/17 axis has emerged as a key
player in AS pathogenesis and has been suggested to
induce osteoblastogenesis directly, resulting in bony an-
kyloses [9-11]. IL-17 and 23, which exhibit properties of
proinflammatory cytokines, are predominantly produced
by T helper (Th)-17 cells, dendritic cells, and other im-
mune cells [12, 13]. These cytokines are highly expressed
in AS and have been associated with rapid differentiation
toward mature osteoblasts. Notably, anti-IL-17A-target-
ing therapies have been shown to be effective for the
treatment of AS [14, 15]. However, the mechanisms by
which blocking IL-17 in inflammation contributes to the
regulation of new bone formation are not understood.
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Janus kinase (JAK)-mediated signaling transduction
is connected to surface receptors for multiple cyto-
kines and plays an important role in bone develop-
ment and metabolism, as demonstrated by knockout
mice for individual JAKs [16]. Since AS is character-
ized by extensive inflammation and altered osteo-
blastic differentiation, small molecules targeting JAK,
such as tofacitinib, have been used. In this context,
the concept of targeting JAK in AS is now being
tested in clinical trials [17]. Therefore, cytokine-
mediated JAK stimulation is integral to osteoblast ac-
tivation, differentiation and function; suppression of
JAK signaling may ameliorate the microenvironment
of ankylosis.

Understanding the mechanisms that regulate differ-
entiation and hyperactivation of osteoblasts in AS is
critical for developing new therapeutic medications. Al-
though the ability of IL-17A blocking to achieve a cure
has been emphasized in previous studies, the regulatory
mechanism by which IL-17A modulates bony ankylosis
remains unknown. Thus, clarification of the intercellu-
lar mechanisms underlying the negative regulation of
cytokine-induced osteoblastic activity could provide
important clues toward understanding bony ankylosis.

Methods

Human patient serum, synovial fluid, and bone tissue

All patients and healthy serum donors were male. Serum
was collected from 27 patients with AS who met the
modified New York criteria [18]. Eighteen serum sam-
ples from patients with RA who met 2010 RA classifica-
tion criteria [19] were provided through the Korean
Observational Study Network for Arthritis (KORONA)
[20]. Thirty healthy donors were obtained as controls.
Synovial fluid samples were collected from 27 patients
with RA, seven patients with osteoarthritis (OA) who
met the classification of OA of the knee [21], and 24
patients with AS. Bone tissue was obtained from ten pa-
tients with AS and ten patients with non-inflammatory
spinal disease as disease controls. Serum samples that
were used to treat bone tissue were obtained from nine
patients with active AS.

ELISA analysis of human body fluid

Serum was collected in separator tubes and allowed to
clot for 2-4 h at 4 °C before centrifugation for 15 min at
approximately 3000 rpm. For synovial fluid, 10 ml of
fluid was aspirated and incubated with 1.5 mg hyaluroni-
dase (Sigma-Aldrich, St Louis, MO, USA; H3506) for
15 min at 37 °C. After this incubation, the mixture was
spun by centrifugation at 3000 rpm at 4 °C. All body
fluids were immediately divided into aliquots and stored
at — 80 °C. The levels of human TNF-a (Biolegend, San
Diego, CA, USA; 430,204), human IL-17A (Biolegend;
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433,914), and human IL-12/23 p40 (Biolegend; 430,704)
in the body fluid samples were determined using com-
mercial ELISA kits according to the manufacturers’
protocols.

Human primary BdCs

Primary bone-derived cells (BdCs) were isolated and cul-
tured as previously described [22, 23]. All primary BdCs
were used for experiments in the second or fourth pas-
sage. All isolated BdCs were checked for mycoplasma
using a PCR-based method (Takara, Tokyo, Japan 6601)
before experiments were performed and before long-
term storage in liquid nitrogen.

In vitro osteogenic differentiation

Osteogenic differentiation of primary BdCs was per-
formed as previously described [24]. Briefly, the cells
were seeded in growth medium (GM) and then
stimulated with osteogenic conditional medium in-
cluding ascorbic acid, beta-glycerol phosphate, and
dexamethasone. Osteogenic medium (OM) was chan-
ged every 3 days. Alkaline phosphatase (ALP) activity
and staining were assessed at early time points after
stimulation with OM. Alizarin red (ARS) staining was
performed at late time points after stimulation with
OM.

Reagents and biologics

Recombinant human IL-17A (200-17), TNF-« (300-01A)
, and interleukin-12/23 p40 subunit (IL-12/23 p40) (200-
12p40) were purchased from Pepprotech (Rocky Hill,
NJ, USA). Golimumab (Janssen, New Brunswick, NJ,
USA), secukinumab (Novartis, Basel, Switzerland), and
ustekinumab (Janssen) were obtained.

ALP promoter assay

A plasmid with the ALP promoter was a generous gift
from Dr. KwangYoul Lee (College of Pharmacy, Chonnam
National University, Gwangju, Korea) [25]. 293T cells were
co-transfected with the ALP promoter plasmid and the
firefly luciferase gene using Lipofectamine 3000, after
which luciferase activity was assessed according to the
manufacturer’s protocol (Promega, Madison, WI, USA;
E1500). Luciferase activity was measured with a lumin-
ometer (Berthold, Oak Ridge, TN, USA).

Other methods

Quantitative reverse transcriptase-PCR (qRT-PCR), im-
munoblotting, immunofluorescence, immunohistochem-
istry, and measurement of cell vitality and toxicity
procedures are described in detail in the Additional file 1
[22, 24, 26]. The primers and antibodies information
used in the experiments are listed in Additional file 1:
Table S1 and Table S2, respectively.
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Statistical analysis

GraphPad Prism version 6 (GraphPad Software, San
Diego, CA, USA) was used to analyze and present the
reported data. All values are expressed as means *
standard deviations (SDs). The statistical significance of
differences between two groups was assessed using the
nonparametric Mann-Whitney U test; one-way ANOVA
analysis of variance with Bonferroni’s post hoc test was
used for multiple comparisons.

Results

Demographic findings

All serum donors were male. Serum was collected from
27 patients with AS (mean age 37.3+2.6 years), 18
patients with RA (34.4 + 7.0 years), and 30 healthy do-
nors (32.1 + 5.2 years). Synovial fluid samples were col-
lected from 24 patients with AS (20 males and 4
females; 38.4 + 10.2 years), 27 patients with RA (3 males
and 24 females; 53.4 + 16.5 years), and 7 patients with
OA (2 males and 5 females; 61.4 + 6.7 years).

The serum samples that were incubated with BdCs
were obtained from nine patients with active AS. All
patients were male, and the mean age was 30 years.
The mean erythrocyte sedimentation rate (ESR) and
C-reactive protein (CRP) level were 40.33 mm/h and
3.15 mg/dl, respectively. The mean Bath Ankylosing
Spondylitis Disease Activity Index BASDAI was 7.23.
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Elevated IL-17A and IL-12/23 p40 levels in body fluid from
patients with AS

IL-17A and IL-12/23 p40 (but not TNF-a) concentrations
were significantly higher in sera from patients with AS
(hereafter referred to as “AS sera”) compared to sera from
healthy controls (HC) or patients with RA as a disease
control (Fig. 1a). In addition, the IL-17A concentration in
synovial fluid was even higher in patients with AS only.
IL-12/23 p40 and TNF-a concentrations were also higher
in AS sera and RA sera than in OA sera (Fig. 1b). Cumula-
tively, these data indicate that IL-17A concentrations were
higher in body fluids from patients with AS compared to
the corresponding controls.

JAK2 is highly expressed in patients with AS

JAK2 was highly expressed in bone tissue from patients
with AS, as assessed by immunohistochemistry (Fig. 2a,
upper panel) and quantitative RT-PCR (Fig. 2b, left panel),
whereas, signal transducer and activator of transcription 3
(STAT3) mRNA expression did not change statistically in
both bone tissue (Fig. 2b. right panel). IL-17A-positive
cells were observed in the bone marrow but not in bone-
lining cells (Fig. 2a, lower panel). Moreover, high JAK2
expression but not STAT3 was confirmed in primary
bone-derived cells BdCs from patients with AS by im-
munoblotting (Fig. 2¢), quantitative RT-PCR (Fig. 2d), and
immunostaining (Fig. 2e). Thus, JAK2 is expressed more
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Fig. 1 IL-17A and IL-12/23 p40 concentrations are elevated in body fluid from patients with AS. a Serum and (b) synovial fluid levels of TNFa, IL-
17A, and IL-12/23 p40 in patients with ankylosing spondylitis (AS), patients with rheumatoid arthritis (RA), patients with osteoarthritis (OA), and
healthy donors (HC). The Mann-Whitney U test was performed to determine statistical significance. Data are presented as means + SDs. P values
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Fig. 2 JAK2 expression levels are highly upregulated in patients with AS. a JAK2 and IL-17A expression levels were detected by immunohistochemistry (Ct
=3 and AS =7). Representative image are shown. Scale bar, JAK2 and IL-17A images; 50 um and 200 um, respectively. b JAK2 and STAT3 expression in
bone tissue were determined by quantitative RT-PCR (Ct =8 and AS = 8). JAK2 and STAT3 expression levels in BACs were detected by (c) immunoblotting
(Ct-BdCs =2 and AS-BdCs = 2), (d) quantitative RT-PCR (Ct-BdCs =8 and AS-BdCs = 8), and (e) immunostaining. Scale bars of confocal image is 50 um. The
Mann-Whitney U test was performed to determine statistical significance. Data are presented as means + SDs. P values indicate significant differences be-
tween the two groups. NS, not significant; * P < 0.05

highly in bone tissue and BdCs from patients with AS
compared to controls.

IL-17A enhances osteogenic activity and differentiation in
AS

Elevated ALP levels were observed in patients with AS
(Fig. 3a). Moreover, ALP secretion and levels of anchored
ALP were high in AS-BdCs (Fig. 3b and c¢). We addition-
ally assessed three cytokines (TNF-a, IL-17A, and IL-12/
23 p40) to determine the origin of the increased ALP pro-
moter activity. The ALP promoter was not responsive to
TNEF-a, but it did respond to IL-17A. It also responded to
IL-12/23, albeit to a lesser extent (Fig. 3d). Thus, we
stimulated control (Ct)-BdCs with IL-17A in a dose-
dependent manner during osteogenic differentiation. We
observed that IL-17A induced a significant increase in
ALP activity (Fig. 3e) and mineralization as assessed by
ARS staining (Fig. 3f). As seen in Fig. 3g, treatment of Ct-
BdCs with IL-17A also led to increases in phos-JAK2, total
JAK2, phos-STAT3(Y705), phos-CCAAT /enhance-binding

protein beta (C/EBPp), total C/EBPJ, and RUNX2 expres-
sion, despite the fact that these levels decreased upon
non-IL-17A stimulation. These findings indicate that IL-
17A induces expression driven by the ALP promoter and
also promotes osteoblastic differentiation by upregulating
JAK2/STAT3, C/EBPp, and RUNX2 expression.

Blocking IL-17A postpones osteogenic differentiation of
AS-BdCs

We found that the levels of IL-17A and IL-12/23 p40
were higher in AS sera; the level of TNF-a also
tended to be higher, although not significantly so.
Thus, we stimulated primary Ct-BdCs and AS-BdCs
with AS sera, with the rationale that AS serum is a
strong inducer that mimics the inflammatory condi-
tion in AS. We then applied three additional blocking
agents. Interestingly, we found that secukinumab and
ustekinumab treatment both attenuated ALP staining
(Fig. 4a, upper panel), ARS staining (which reflects
mineralization) (Fig. 4a, lower panel), and intracellular
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test and one-way ANOVA were performed to determine statistical significance. Data are presented as means + SDs. P values indicate significant differ-
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ALP activity (Fig. 4b) in both types of BdCs. In con-
trast, golimumab did not have these effects. We also
assessed changes on the molecular level in both Ct-
and AS-BdCs using the same experimental setup. AS-
BdCs were more sensitive to Ct-BdCs, as assessed by
JAK2, STAT3, and smad2/3 levels. In particular, secu-
kinumab treatment (but not ustekinumab treatment)
decreased the levels of phos-JAK2 and phos-C/EBPB
in AS-BdCs (Fig. 4c). This finding indicates that the
serum samples regulated osteoblast differentiation-re-
lated genes (ALB bone morphogenic protein 2 [BMP2],
collagen type 1 alpha 1 chain [COLIAI], collagen type 1
alpha 2 chain [COL1A2], osteocalcin [OCN], and osteo-
pontin [OPN]). Collectively, the data suggest that secuki-
numab effectively suppressed osteoblastic activity and

osteoblast-related genes, whereas ustekinumab inhibited
osteoblastic activity.

Inhibition of JAK2 suppresses the increase in ALP activity
mediated by AS serum

To conclusively demonstrate that JAK2 is the main cyto-
kine responsible for ALP activity, we evaluated the
effects of tyrophostin tyrosine kinase inhibitor (AG490),
a selective JAK2 inhibitor, in concert with six serum
samples from patients with active AS in an ALP
promoter assay. AS sera induced an increase in ALP
promoter activity in a dose-dependent manner (Fig. 5a),
whereas AG490 induced a decrease (Fig. 5b). AG490
treatment resulted in no significant change in viability
and toxicity of both Ct- and AS-BdCs (Additional file 1:
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Figure S6). Moreover, treatment with AG490 reduced
intracellular ALP activity in both Ct- and AS-BdCs and
was also a more effective inhibitor in both cell types at
early time points compared to late time points (Fig. 5¢, d
left and right panels). We also observed that AG490 de-
creased the expression of phos-JAK2 and phosY-STAT3 in
both Ct- and AS-BdCs (Fig. 5e). These results demon-
strate that JAK2 inhibition ameliorates patient serum-
inducible ALP activity and JAK2/STATS3 signaling.

Discussion

In this study, we found that IL-17A and IL-12/23 p40
levels were elevated in AS sera and synovial fluid. Further-
more, the addition of IL-17A under osteoblast stimuli pro-
moted alkaline phosphatase (ALP) activity; mineralization;
and JAK2, RUNX2, and C/EBPP phosphorylation, thereby
promoting osteoblastic activity and differentiation. JAK2
was also highly expressed in bone tissue and primary
bone-derived cells (BACs) from patients with AS. IL-17A

induced osteoblast activity and differentiation in BdCs
through JAK2/STATS3 signaling (Fig. 6). We found that
the blocking of IL-17A or JAK2 by AG490 dramatically
suppressed AS sera-induced hyperactivation of osteo-
blasts. Taken together, these data indicate that active
inflammation in AS leads to elevated proinflammatory
cytokine levels, cytokine-mediated JAK2/STAT3 activa-
tion, and increased osteoblastic activity.

We previously characterized the physiology of bone
tissue-derived BdCs from patients with AS and assessed
IL-23 p19 secretion due to endoplasmic reticulum (ER)
stress in these cells [24]. In this study, we demonstrated
the mechanism by which IL-17-mediated JAK2 activa-
tion leads to osteoblast differentiation and bone forma-
tion; this mechanism may be similar to that of ankylosis
progression. Moreover, specific blockade of IL-17A and
chemical inhibition of JAK2 both inhibited primary Ct-
and AS-BdCs. These findings are of particular interest in
the context of developing novel strategies for inhibiting
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early (left) and late (right) time points. Representative data are shown (n = 3). e The inhibitory effects of AG490 on Ct-BdCs and AS-BdCs were
assessed by stimulating cells for 3 days and then analyzing the levels of the indicated proteins by immunoblotting. Representative data are shown
(n=5). One-way ANOVA analysis was performed to determine statistical significance. Data are presented as means + SDs. *P < 0.05 indicates sig-
nificant differences between the two groups
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bony ankylosis. Thus, our findings suggest that targeting
proinflammatory cytokines in AS sera and modulating
the response to surface molecules are both essential for
stabilizing osteoblast activation induced by the inflam-
matory environment, which is important for inhibiting
bony ankylosis.

In this study, we isolated and cultured primary bone-
derived cells (BdCs) from surgically obtained bone from
patients with AS and disease controls. Using differentiation-
inducing drugs, we then differentiated these cells into osteo-
blasts. Consistent with another report [27], AS-BdCs exhib-
ited dramatically increased ALP activity and mineralization,
which are both features of terminally differentiated osteo-
blasts (Additional file 1: Figure S1) [28—31].

The correlations between IL-17 and disease markers
including ESR, CRP, and BASDAI were varied as shown
in Additional file 1: Figures S2 and S3 (ESR: r = -0.10,
CRP: r =-0.38, and BASDALIL r = -0.06 in AS sera and
ESR: r =0.46, CRP: r = - 0.08, and BASDAI: r =0.43 in
AS synovial fluid). Our data support the notion that IL-
17 contributes to osteogenesis and bone formation [32,
33]. ALP is known to be early marker of osteogenesis
and sustains during osteogenic differentiation. Introduc-
tion of IL-17A and AS patients serum with higher IL-17
concentration accompanied increase in ALP promoter,
activity, and staining with phosphorylation of JAK2 and
STAT3. It has been shown that modulation of JAK2/
STAT3 by IL-17A could play a critical role in osteoblast
differentiation proceed with qPCR result [34]. On the
basis of these results and reported articles, we suggest
that IL-17 drives osteoblast involved genes via phosphor-
ylation of JAK2/STAT3 pathway.

IL-17A concentrations were significantly higher in
body fluid from patients with AS. Exogenous treatment
of Ct-BdCs with IL-17A promoted osteoblastic activity
and differentiation through the JAK2/STAT3 pathway.
Moreover, phosphorylation of JAK and tyrosine phos-
phorylation of STAT3 but not serine by AS sera treat-
ment could be inhibited by IL-17 blockade dose-
dependent manner (Additional file 1: Figure S4). The
determined IL-17 blockade dose obviously suppressed
IL-17A cytokine-induced ALP activity in Ct-BdCs with
osteogenic condition (Additional file 1: Figure S5). In
particular, blocking IL-17A dramatically decreased AS
sera induced-osteoblastic activity in Ct-BdCs, but only
mildly suppressed this effect in AS-BdCs. A potential ex-
planation for this finding is that the osteoblasts in AS-
BdCs were already influenced by chronic inflammation
and were more susceptible to ankylosis. For this reason,
IL-17A had a milder effect on AS-BdCs than on Ct-
BdCs. While it is well established that TNF inhibitors
stabilize inflammation and reduce AS pathogenesis, their
effect on bony ankylosis has been controversial. A few
studies reported that TNF inhibitors have the potential
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to reduce bony ankylosis in early AS, i.e. before the de-
velopment of spinal ankylosis [5, 8, 35]. Taken together,
our results and those of previous studies suggest that ef-
fective patient treatment could consist of stabilizing and
inhibiting proinflammatory cytokines in inflammation at
the early stage of AS, but that this approach may not be
effective in more advanced stages of disease.

The finding that JAK2 expression is high in AS bone
tissue is particularly interesting in the context of devel-
oping alternative strategies for protecting patients with
AS. We designed the experiments such that the specific
JAK2 inhibitor AG490 was added at the time of stimula-
tion. Upon treatment with AG490, the patient serum
response to ALP activity was significantly decreased in
Ct-BdCs (Fig. 5¢). However, this difference was not sig-
nificant in AS-BdCs at later time points (Fig. 5d, right
panel). This finding indicates that the drug did not affect
the tissue after osteoblast calcification occurred. In con-
clusion, AG490 was a more effective inhibitor in the
early stage for AS sera responsive to ALP activity than it
was in the late. Our results with AG490 may serve as a
foundation for future research exploring the efficacy of
AG490 for treatment of patients with AS.

Our study has certain limitations. First, we utilized AS
sera and primary BdCs to mimic ankylosis in an in vitro
system. As shown in Fig. 1, proinflammatory cytokine
levels were higher in synovial fluid than in sera. Although
we treated BdCs with synovial fluid samples, the fluid vis-
cosity disrupted the cellular response and osteoblastic
gene expression and ALP activity could not be analyzed in
BdCs. Also, we collected sera from healthy participants
and treated BdCs, but no cellular response was observed.
Thus, we used AS serum as a strong stimulus for activat-
ing BdCs and conducted this experiment using serum
from patients with active AS. Another limitation was that
all the patients with AS were HLA-B27-positive in this
study, but the patients in the other disease group and the
healthy group were all HLA-B27-negative. It is consider-
ably difficult to obtain sera from HLA-B27-negative pa-
tients with AS and HLA-B27-positive healthy participants.
Furthermore, since HLA-B27 is strongly correlated with
AS, the role of HLA-B27 must be studied further.

Conclusions

In summary, here we provide evidence for crosstalk between
osteoblasts and proinflammatory cytokines during inflam-
mation. We showed that the concentration of IL-17A, the
most abundant cytokine in AS sera and synovial fluid, corre-
lates with osteoblast differentiation. Furthermore, blocking
IL-17A delayed the patient serum response to ALP activity
and mineralization with osteogenic differentiation through
JAK2/STAT3 signaling. We also showed that a specific
JAK2 inhibitor suppressed stimulus-driven ALP activity,
possibly by inhibiting terminal differentiation of BdCs.
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serum-induced phosphorylation status of JAK2/STAT3 in Ct-BdCs. Figure
S5. Secukinumab suppresses IL-17A dose-dependent ALP activation in Ct-
BdCs. Figure S6. Effect of JAK2 inhibitor (AG490) treatment on viability
and toxicity of both Ct- and AS-BdCs. Table S1. Primer Sequences for
gPCR. Table S2. Primary antibodies used in Immunoblotting (IB), Immu-
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