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Abstract

Background: Recent studies have shown that alterations in the function of dendritic cells (DCs) are involved in the
pathogenesis of systemic lupus erythematosus (SLE). However, the mechanism of the alteration remains unclear.

Methods: We cultured monocyte-derived DCs (moDCs) in vitro and examined the cytokines and chemokines in the
supernatants of moDCs in negative controls (NC) and SLE patients in active phase. We then profiled microRNAs
(miRNAs) of LPS-stimulated moDCs in SLE patients and used real-time PCR to verify the differentially expressed
miRNAs. A lentiviral construct was used to overexpress the level of miR-142-3p in moDCs of NC. We examined the
cytokines and chemokines in the supernatants of moDCs overexpressing miR-142-3p and used Transwell test, flow
cytometric analysis and cell proliferation to observe the impact on CD4" T cells in moDC-CD4*T cell co-culture.

Results: moDCs in patients with SLE secreted increased level of IL-6, CCL2 and CCL5, with attraction of more CD4"
T cells compared with NC. We found 18 differentially expressed microRNAs in moDCs of SLE patients by microarray,
and target gene prediction showed some target genes of differentially expressed miRNAs were involved in cytokine
regulation. miR-142-3p was verified among the highly expressed miRNAs in the SLE group and overexpressing
miR-142-3p in moDCs of the NC group caused an increase of SLE-related cytokines, such as CCL2, CCL5, CXCLS,
IL-6 and TNF-a. Moreover, moDCs overexpressed with miR-142-3p resulted in attraction of an increased number
of CD4™ T cells and in suppression of the proportion of Tregs in DC-CD4T cell co-culture whereas the proliferation

of CD4™T cells was not altered.

Conclusions: The results demonstrated a role for miR-142-3p in regulating the pro-inflammatory function of moDCs
in the pathogenesis of SLE. These findings suggested that miR-142-3p could serve as a novel therapeutic target for

the treatment of SLE.
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Background

Systemic lupus erythematosus (SLE) is a complicated
autoimmune disease impairing multiple organs. The
disease predominantly affects women aged 15-40 years
[1] with a female to male ratio of 9:1 [2]. Both genetic
and environmental factors contribute to human SLE
pathogenesis [3], but the etiology of SLE is not fully
understood. Impaired clearance of dying cells may repre-
sent a central pathogenic process in human lupus [4]. The

* Correspondence: Liangjun1976@medmail.com.cn; xjhhuashan@126.com
'Department of Dermatology, Huashan Hospital, Fudan University, 12
Wulumugi Zhong Road, Shanghai 200040, People’s Republic of China
Full list of author information is available at the end of the article

( BioMed Central

accumulated dying cells release autoantigens, which are
presented by dendritic cells, further breaking down the
immune tolerance of T and B cells and triggering SLE.
Dendritic cells (DCs) are so far the most potent antigen-
presenting cells (APCs) with important functions in the
immune system. Immunodysregulation in SLE involves
the complex interplay of various immune cells and DCs
are the master regulators for initiation, amplification, and
perpetuation of the disease [5]. DCs could influence SLE
in several ways including: presentation of self-antigens to
autoreactive T cells; oversecretion of pro-inflammatory
cytokines; and suppression of regulatory T cells and pro-
motion of B cell autoantibody production, either directly
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or indirectly [6—8]. However, the mechanisms of the al-
tered function of DCs in SLE are largely unknown.

MicroRNAs (miRNAs) are small noncoding RNAs,
which regulate protein expression at the posttranscrip-
tional level through reduction of mRNA stability or in-
hibition of translation via binding to the 3" un-translated
regions (3'UTR) of target genes. They are involved in
many kinds of diseases including tumors, infections, and
autoimmune diseases. MicroRNAs can regulate DCs at
different stages including differentiation, maturation,
and apoptosis [9-12]. Monocyte-derived DCs (moDCs)
from Blimpl SLE-risk allele carriers exhibited increased
expression of miRNA let-7c, which inhibited Blimp1 and
also blocked lipopolysaccharide (LPS)-induced suppressor
of cytokine signaling-1 (SOCS1) expression, contributing
to the increased expression of pro-inflammatory cytokines
[13]. The results suggested miRNAs in DCs might par-
ticipate in the pathogenesis of SLE.

DC populations are relatively rare in blood. We therefore
utilized the well-accepted model of human DC differen-
tiation from peripheral blood monocytes under inflam-
matory conditions, which is a useful tool to study DC
functions ex vivo [14—16]. Pathogenic inflammation can
trigger SLE disease exacerbations [17, 18], in which Toll-
like receptor 4 (TLR4) and TLR4 responsiveness are
important [19]. We therefore choose LPS-activated
moDC:s as a subtype of DCs generated upon inflammation.

The aim of our study was to find any miRNAs partici-
pating in regulating the function of moDCs in SLE. In
the study, we found moDCs in the SLE group produced
increased levels of pro-inflammatory cytokines. Since all
culture conditions were the same, the discrepancy be-
tween the SLE group and healthy control group was due
to the intrinsic factors. MiRNA microarray analysis was
conducted and the target genes of miRNAs significantly
differentially expressed in patients with SLE were in-
volved in cytokine regulation through target gene predic-
tion. We further proved the expression level of miR-142-
3p might influence the function of moDCs. Thus, we
proposed a regulatory mechanism of miR-142-3p in
moDCs of SLE.

Methods

Subjects

Fifteen female SLE patients whose SLE Disease Activity
Index (SLEDAI) score was moderate to severe were re-
cruited from the inpatient service in Huashan Hospital,
Fudan University. Relevant clinical and laboratory infor-
mation regarding the patients is shown in Table 1. The
diagnostic criteria were in accordance with the 1997
American College of Rheumatology (ACR) revised cri-
teria for the classification of SLE. Fifteen female healthy
controls were also recruited. The study was approved by
the Independent Ethics Committee of Huashan Hospital
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Table 1 Clinical and laboratory characteristics of the patients
with SLE in the study

Characteristics SLE (n=15)

Sex [male/female (n)] 0/15 (15)

Age (years) [median (range)] 33 (17-57)
SLEDAI score [median (range)] 15 (10-30)
Anti-dsDNA (IU/ml) [median (range)] 391.9 (25.9-800)
C3 (g/l) [median (range)] 0.6 (0.22-1.02)
C4 (g/l) [median (range)] 0.07 (0.06-0.15)
Red cell count (*10712/1) [median (range)] 391 (3.16-4.44)
Lymphocyte count (*1079/l) [median (range)] 474 (1.56-19.78)
Platelet count (¥*1079/1) [median (range)] 181 (25-382)
Organ involvement [Y/N (n)] 6/9 (15)
Steroids [Y/N (n)] 9/6 (15)
Immunosuppressant [Y/N (n)] 0/15 (15)

SLE systemic lupus erythematosus, SLEDAI SLE Disease Activity Index, dsDNA
double-stranded DNA

and written informed consent was obtained from all sub-
jects. All the experiments were carried out in accordance
with the relevant guidelines and regulations of Huashan
Hospital.

Cell culture

EDTA blood (25 ml) was collected from each patient
and control subject. Nearly 1-2*1077 peripheral blood
mononuclear cells (PBMCs) were isolated from each
patient’s blood and CD14" monocytes were sorted by
positive selection (purity >90 %) using magnetic beads
(Miltenyi Biotec, Bergisch Gladbach, Germany). CD14"
monocytes were then cultured for 5-7 days in RPMI
1640 containing 10 % fetal bovine serum (FBS), penicil-
lin/streptomycin solution and L-glutamine (Life Tech-
nologies, Carlsbad, CA, USA) supplemented with 1000
U/ml granulocyte-macrophage colony-stimulating factor
(GM-CSF) and 1000 U/ml interleukin-4 (IL-4) every
2 days (PeproTech, Rocky Hill, NJ, USA). For transfec-
tion experiments, immature moDCs were harvested at
day 5. For moDC maturation, 1 pg/ml LPS (Escherichia
coli type 055:B6; Sigma-Aldrich, St. Louis, MO, USA)
was added into the medium at day 6. The following anti-
bodies were used to identify the phenotype of moDCs:
anti-CDl11c, anti-HLA-DR, anti-CD40, anti-CD86, anti-
CD83 and low expression of anti-CD14 (eBioscience,
San Diego, CA, USA).

Lentiviral transfections

A fragment encoding miR-142-3p was amplified by
PCR from human genomic DNA using the primers 5'-
GCCACAAGGAGGGCTGGGGGGC-3" and 5'-GAG
CGCCGAGGAAGATGGTGGC-3". Those fragments
confirmed by sequencing were cloned into the pHBLV
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vector respectively (Hanbio, Shanghai, China). moDCs
transfected with the empty lentiviral vector (designated
as VEC) or RPMI 1640 medium (designated as NC)
were used as controls. After 3 days, the transfected
moDCs were collected.

Microarray analysis and real-time PCR
Total RNA was extracted from moDCs using the miR-
Neasy Mini Kit (Qiagen, Hilden, Germany). miRNA
expression profiling was determined by miRNA micro-
array analysis using the Agilent Human miRNA Array
V19.0 1D:046064 (Agilent Technologies, Santa Clara,
CA, USA) that included 2006 mature human miRNAs.
Differentially expressed miRNAs were identified using
the paired ¢ test with the cutoff criteria of P < 0.05.
Reverse transcription was performed to obtain the
c¢DNA for miRNA using the All-in-One miRNA qRT-
PCR Detection Kit (Genecopoiea, Rockville, MD, USA).
Quantitative real-time PCR was carried out with the
Rotor-Gene Q (Qiagen) using the All-in-One miRNA
qRT-PCR Detection Kit (Genecopoiea). The house-
keeping gene U6 was used as the internal control. The
primers for microRNAs and U6 were purchased from
Genecopoiea directly.

Target gene prediction

The target genes of differentially expressed miRNAs
were predicted by at least two databases of the follow-
ing five usual prediction databases: TargetScan (http://
www.targetscan.org), miRanda (http://www.microrna.org/
microrna/home.do), PicTar (http://pictar.mdc-berlin.de/),
MirTarget2 from miRDB (http://mirdb.org/miRDB/ down
load.html), and PITA (http://genie.weizmann.ac.il). More-
over, the Gene Ontology (GO) functional and pathway en-
richment analysis were conducted for the target genes
using the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) online tools with the cutoff cri-
terion of a false discovery rate (FDR) < 0.05.

moDCs-CD4" T cells co-culture

moDCs in each group were collected and overloaded
with OVA peptide (Sigma-Aldrich) for 2 h, used as
stimulator cells. They were suspended in RPMI 1640
medium to a final concentration of 5 x 10°/ml. Allogen-
eic CD4" T cells were obtained from positive selection
of PBMCs as responding cells. The density of respond-
ing CD4" T cells was adjusted to 5 x 10®/ml. Stimulator
cells and responding cells were added to each well on
the 96-well plates. Each sample was tested in triplicate.
The stimulator and responding cells were cultured to-
gether in an incubator (37 °C, 5 % CO,) for 3 days.
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CD4*CD25"Foxp3™* Tregs analysis

After co-culture for 3 days, cell suspensions were incu-
bated with FITC-conjugated anti-human CD4 and PE-
conjugated anti-human CD25 (Biolegend, San Diego,
CA, USA) for 30 min at 4 °C and washed twice with
2 ml of phosphate-buffered saline (PBS) pH 7.4 con-
taining 1 % bovine serum albumin (BSA). Intracellular
staining for Foxp3 was then performed with APC-
conjugated anti-human Foxp3 (eBioscience, San Diego,
CA, USA) for 60 min and then washed with PBS/BSA.
The supernatants were discarded and cells were resus-
pended in 0.2 ml PBS/BSA. Data were acquired with a
FACSCanto system (Becton Dickinson, Franklin Lakes,
NJ, USA) and analyzed using Flowjo software (Tree
Star, Inc., Ashland, OR, USA). The expression levels of
CD4, CD25 and Foxp3 were evaluated by calculating
the percentage of cells expressing each protein.

CD4* T cells proliferation

CD4" T cells were labeled with 5 uM carboxyfluorescein
diacetate succinimidyl ester (CFSE, Molecular Probes,
Eugene, OR, USA) first and then co-cultured with
moDCs. After 3 days, CFSE dilution was analyzed using
flow cytometric analysis. The proliferation experiment
was evaluated using a division index in Flowjo software
(Tree Star, Inc.).

Chemotaxis assay

CD4" T cells were placed on the upper chamber of a
Transwell plate, 6.5 mm in diameter, with 5-um polycar-
bonate filters (Corning, Corning, NY, USA). The lower
chamber contained either diluted moDC supernatant (1:1
with medium) or control medium. After culture of 3 h at
37 °C, the cells that had migrated to the lower chamber
were harvested and counted under a light microscope.

Chemokine and cytokine assays

Chemokines [C-X-C motif ligand (CXCL)8, C-C motif
ligand (CCL)2 and CCL5] and cytokines [IL-6, tumor
necrosis factor alpha (TNF-a), IL-10 and IL-17] in
supernatants of moDCs or supernatants of CD4" T
cells-moDCs co-culture were simultaneously quantified
using the Cytometric Bead Array (CBA) reagent kits
(BD Biosciences Pharmingen, San Diego, CA, USA).

Statistics

Continuous variables were expressed as mean (SD) and
categorical variables as frequencies (%). The Student ¢ test
or one-way analysis of variance was used to compare
continuous variables. All P values were estimated in a
two-tailed fashion. Differences were considered to be
statistically significant at P <0.05. Data were analyzed
using SPSS 13.0 (SPSS Inc., Chicago, IL, USA).
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Results

Pro-inflammatory function of moDCs in SLE

Since cytokine production was one of the major functions
of DCs with great biological importance, we first investi-
gated whether the secreted concentration of some cyto-
kines and chemokines in the supernatants of moDCs was
different between SLE patients and healthy controls. The
result showed mature moDCs from patients with SLE pro-
duced significantly higher levels of IL-6, CCL2 and CCL5
compared with mature moDCs from healthy controls
(Fig. la—c). We also measured levels of TNF-a and
CXCL8 in cell culture supernatants between the two
groups without finding significant differences (Fig. 1d and
e). In addition, infiltration of T lymphocytes and other
leukocytes into the sites of inflammation is important in
SLE. We then found that supernatants of moDCs in the
SLE group attracted significantly more allogeneic CD4" T
cells than the control group and culture medium group
though a Transwell assay (Fig. 1f).

miRNA profiling in LPS-activated moDCs of patients with SLE
miRNAs were able to regulate the function of DCs and we
therefore investigated whether these noncoding RNAs
would impact the function of moDCs in patients with SLE.
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We first performed miRNA microarrays to identify the
expression levels of matured miRNAs purified from 24-h
LPS-activated moDCs from five SLE patients who were in
the active phase of the disease and five negative controls.
Microarrays identified 18 miRNAs that were differentially
regulated in SLE (Fig. 2). Table 2 showed the fold change
and P value of the differentially regulated miRNAs. In all,
the expression of eight miRNAs (miR-142-3p, miR-551b-
3p, miR-3127-5p, miR-671-5p, miR-630, miR-5703, miR-
6125, and miR-574-5p) was significantly increased in the
patients with SLE, whereas the expression of ten miRNAs
(miR-338-5p, let-7i-3p, miR-181b-5p, miR-1260b, miR-
125a-5p, miR-1260a, miR-15b-5p, miR-25-3p, miR-26a-5p,
and miR-564) was significantly decreased.

Next, we performed functional and pathway enrich-
ment analysis for target genes of all the differentially
expressed miRNAs. The top ten functional and pathway
enrichment analysis results are indicated in Additional
files 1 and 2 respectively.

Validation of differentially expressed miRNAs in the

SLE group

Seven differentially expressed miRNAs (miR-142-3p, miR-
630, miR-671-5p, miR-15b-5p, miR-181b-5p, miR-125a-
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Fig. 1 Pro-inflammatory function of moDCs in SLE. The supernatants derived from culture medium of moDCs from negative controls (n=5) and
patients with SLE (n=5) in the presence of LPS (1 ug/ml) for 24 hours was assessed using cytometric bead array including CCL2 (a, *P < 0.001),
CCL5 (b, *P=0.002), IL-6 (c, *P=0.002), CXCL8 (d, no significant difference) and TNF-a (e, no significant difference). Percentage of CD4™ T cells
attracted by supernatants of culture medium, supernatants of moDCs in NC, and supernatants of moDCs in SLE group (f, “P < 0.05 versus supernatants
of culture medium and supernatants of moDCs in NC, *P < 0.05 versus supernatants of culture medium). Data were shown as mean + SD. CCL C-C
motif ligand, CXCL C-X-C motif ligand, /L interleukin, moDCs monocyte-derived DCs, NC negative controls, SLE systemic lupus erythematosus, TNF-a
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Fig. 2 miRNA profiling in LPS-activated moDCs of patients with SLE.
The expression levels of mature miRNAs purified from 24-h LPS-
activated moDCs were analyzed using miRNA microarrays and
hierarchical clustering of statistically significant differential miRNAs

with analysis of variance (P < 0.05). N=10. N1-N5 represented negative
controls. S1-S5 represented the patients with SLE

N1 N2 N3 N4 N5 S1 82 S3 S4 S5

miR-1260a
miR-1260b
miR-26a-5p
miR-6125
miR-142-3p
miR-630
miR-574-5p
miR-5703
miR-25-3p
miR-15b-5p
miR-125a-5p
miR-181b-5p
miR-564
miR-671-5p
miR-3127-5p
miR-551b-3p
let-7i-3p
miR-338-5p

Table 2 Fold change and P values of differentially expressed

miRNAs with P < 0.05

Expression miRNA in patients of SLE Fold change P value

Increased
hsa-miR-551b-3p 55.1 <0.001
hsa-miR-3127-5p 33 0.044
hsa-miR-671-5p 2.7 0.024
hsa-miR-630 22 0.010
hsa-miR-5703 2.1 0.023
hsa-miR-6125 1.5 0.047
hsa-miR-142-3p 15 0.021
hsa-miR-574-5p 14 0.048

Decreased
hsa-miR-338-5p 0.1 0.014
hsa-let-7i-3p 0.2 0.036
hsa-miR-181b-5p 04 0.003
hsa-miR-1260b 06 0.042
hsa-miR-125a-5p 06 0.017
hsa-miR-1260a 0.6 0.042
hsa-miR-15b-5p 0.7 0.028
hsa-miR-25-3p 0.8 0.020
hsa-miR-26a-5p 08 0.042
hsa-miR-564 09 0.030

miRNA microRNA, SLE systemic lupus erythematosus
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5p, and miR-5703) whose target genes were significantly
enriched in important functions and pathways were se-
lected for further validation. We used quantitative real-
time PCR (qRT-PCR) to validate the microarray findings
among 15 patients and 15 healthy controls including those
five patients and five healthy controls used in the micro-
array analysis (Fig. 3). The result of qRT-PCR revealed that
six miRNAs (miR-142-3p, miR-630, miR-15b-5p, miR-
181b-5p, miR-125a-5p, and miR-5703) showed the same
change patterns as shown in the microarray analysis.
However, the expression level of miR-671-5p was signifi-
cantly decreased to 0.81-fold of NC (P = 0.021), which was
opposite to the microarray analysis (Fig. 3h). This discrep-
ancy might be due to technical limitations of the micro-
array, such as cross-hybridization, signal saturation, and
limited dynamic range.

Among all the differentially expressed miRNAs, miR-
142-3p attracted our attention. miR-142-3p was demon-
strated to be essential for the specification of the heman-
gioblastic precursors of the blood stem cell lineage and
might facilitate hematopoietic stem cells formation [20].
It was reported that miR-142"" mice developed abnor-
mal hematopoietic lineages [21], and displayed an im-
pairment of CD4" DC homeostasis both in vitro and
in vivo, leading to a severe and specific defect in the
priming of CD4" T cells [22]. On the other hand, the en-
hanced expression of miR-142-3p reduced the immuno-
suppressive activity of bone marrow myeloid-derived
suppressor cells, restored CD8" T cell proliferation and
was able to change the ratio of macrophage: DC to favor
the DC expansion [23]. In our study, we found miR-142-
3p in moDCs was upregulated 2.33-fold in SLE patients
(P <0.001) (Fig. 3a), and moDCs of SLE patients secreted
increased pro-inflammatory cytokines together with
attracting more CD4" T cells. Our functional enrichment
analysis also indicated that target genes of miR-142-3p
were involved in cytokine and chemokine regulation. As
a result, we hypothesized that overexpression of miR-
142-3p in moDCs might impact the function of moDCs
and then lead to overactive immune reaction in the
pathogenesis of SLE. We thus selected miR-142-3p for
further study.

Overexpression of miR-142-3p promoted pro-inflammatory
function of moDCs

We investigated the potential role of miR-142-3p in
moDCs through regulating the basal expression level of
miR-142-3p. Transfection efficiency was determined by
observing the fluorescent cells (Fig. 4a) and expression
level of miR-142-3p in moDCs by qRT-PCR. The expres-
sion of miR-142-3p increased 4.79-fold in the miR-142-3p
lentivirus (LV) group compared with the empty lentiviral
vector (VEC) group while no significance was found
between the VEC and NC group (Fig. 4b).
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Fig. 3 Validation of selected miRNAs by gRT-PCR. The levels of miR-142-3p (*P < 0.001), miR-630 (*P=0.072), miR-671-5p (*P=0.021), miR-15b-5p
(*P=0.005), miR-181b-5p (*P < 0.001), miR-125a-5p (*P < 0.001), and miR-5703 (*P < 0.001) were determined in LPS-activated moDCs of 15 negative
controls (NCs) and 15 patients with SLE (a—g). Data were shown as mean =+ SD. The change patterns between microarray analysis and gRT-PCR
were shown in (h). NC negative controls, PCR polymerase chain reaction, SLE systemic lupus erythematosus

Then, we investigated whether the expression level of
miR-142-3p impacted the production of cytokines and
chemokines secreted by moDCs since these soluble
factors were expected to modulate CD4" T cells-moDCs
interaction. We examined the supernatants of moDCs in
the VEC and LV group. We found the level of exocrine
secretion of IL-6 (1187.65 + 174.91 pg/ml, P =0.03) and
TNF-a (262.99 +25.33 pg/ml, P=0.013) were signifi-
cantly increased in the supernatants of moDC-
overexpressed miR-142-3p compared with the VEC
group (Fig. 5a and b). As shown in Fig. 5¢c—e, the level of
exocrine secretion of CXCL8 (24171.17 + 1294.77 pg/ml,
P=0.004), CCL2 (412.20 +27.61 pg/ml, P=0.014) and
CCL5 (126.46 +4.25 pg/ml, P<0.001) was also signifi-
cantly increased in LV group compared with VEC group.

Elevated expression level of miR-142-3p affected
moDCs-CD4* T cells interaction

DC-induced T cell priming results in a robust immune
response and is vital in SLE pathogenesis [24]. To assess a
possible effect of miR-142-3p on the function of moDCs
reacting on CD4" T cells, we first used a Transwell assay
to characterize the allogeneic CD4" T cells attracted by
supernatant of moDCs. As presented in Fig. 6a, superna-
tants in the miR-142-3p overexpression group attracted
significantly more CD4 T* cell migration to the lower
chamber compared with the NC and VEC group. Next,
moDCs were pulsed with ovalbumin (OVA) for 2 hours
and were subsequently co-cultured with allogeneic CD4*
T cells. As a functional test, we compared CD4" T cells
stimulatory capacities between moDCs transfected with

A

VEC

miR-142-3p LV

i

Fold change
n

Fig. 4 Transfection efficiency of overexpressing miR-142-3p in moDCs. a Morphology and GFP fluorescence of moDCs transfected with empty
lentivirus vector (VEC) and miR-142-3p overexpressing lentivirus (LV). Scale bar =10 um. b The level of miR-142-3p expressed in moDCs of negative
controls (NC), VEC or LV group was assessed by quantitative real-time PCR. Data were expressed as mean + SD. Each experiment was conducted at
least three times. *P < 0.005 versus NC and VEC
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Fig. 5 Overexpression of miR-142-3p promoted pro-inflammatory function of moDCs. The level of exocrine secretion of TNF-a (a, *P=0.013), IL-6
(b, *P=0.03), CCL2 (¢, *P=0.014), CCL5 (d, *P < 0.001) and CXCL8 (e, *P=10.004) in the supernatant derived from moDCs in miR-142-3p lentivirus
(LV) group compared with empty lentivirus vector (VEC). N =3 in each group. Data were shown as means + SD. CCL C-C motif ligand, CXCL C-X-C
motif ligand, /L interleukin, TNF-a tumor necrosis factor alpha

miR-142-3p overexpression lentivirus, or with empty
vector, or with RPMI 1640 in an allogeneic moDCs-
CD4" T cells co-culture. The division index of CD4" T
cells in each group was 4.60+0.19 (NC), 4.52 +0.31
(VEC), 4.73 £ 0.06 (LV) respectively. No significant dif-
ferences were found among the ability of moDCs in
NC, VEC or LV group to activate CD4" T cells prolifer-
ation, indicating that miR-142-3p might not be able to
enhance CD4" T cells proliferation. However, the pro-
portion of CD4"CD25"Foxp3* Tregs among CD4" T
cells was significantly lower when CD4" T cells were
co-cultured with moDCs of LV group (1.09+0.59 %)
compared with NC (4.96 £ 0.57 %, P=0.001) or VEC
group (2.86 £ 1.03 %, P =0.029) (Fig. 6b and c). We fur-
ther examined the supernatants of co-culture medium
and found the level of IL-17 was significantly higher in
the LV group and the level of IL-10 was significantly
decreased (Fig. 6d and e).

Discussion

SLE is an autoimmune disease characterized by auto-
reactive B and T cells [25]. There is growing evidence
indicating that alterations in the function of DCs,
which are APCs capable of inducing activation of naive

T cells, is related to the pathogenesis of SLE [25-27].
Given the challenges of tissue acquisition in humans,
studies of DC subsets are carried out typically on DC
generated in vitro from precursors. As a result, we use
monocytes-derived DCs, which is a classic method to
obtain enough DCs in vitro and has been successfully
used as DCs according to its morphology, phenotype
and function [15, 28, 29].

In the current work, we found moDCs in patients with
SLE in their active phase secreted higher level of IL-6,
CCL2, and CCL5 as well as attracting more CD4" T
cells. We then performed microarray and found miR-
142-3p was highly expressed in human moDCs among
the aberrant miRNAs in the SLE group. The function of
moDCs was affected by altering the expression of miR-
142-3p. We further found that the pro-inflammatory
cytokine IL-6, TNF-a and chemokine CCL2, CCLS5,
CXCLB8 were elevated in the miR-142-3p lentivirus group.
Moreover, enforced miR-142-3p in moDCs could affect
moDC-CD4" T cell interaction through inhibiting the
proliferation of CD4*CD25 Foxp3"™ Tregs and attracting
more CD4" T cells. Thus, we concluded miR-142-3p pro-
moted pro-inflammatory function of moDCs and possibly
contributing to the pathogenesis of SLE.
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Fig. 6 Elevated expression level of miR-142-3p affected moDCs-CD4™ T cells interaction. a Percentage of CD4™ T cells attracted by supernatants of
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were shown as means = SD of three independent experiments. *P < 0.05 versus NC and VEC. d and e The level of exocrine secretion of IL-17
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N =3 in each group. Data were shown as means + SD. IL interleukin

It is known from animal lupus models and from stud-
ies in patients with lupus nephritis that inflammatory
chemokines, especially CCL2 and CCL5, were readily
detectable in the kidney tissue and urine [30, 31]. IL-6 is
significantly elevated in the body fluids of SLE patients,
including serum, plasma, and cerebrospinal fluid [32-35].
Therefore, the pathogenesis of SLE involves altered
cytokine production. Similarly, we have found moDCs
of patients with SLE in active phase could produce
higher levels of IL-6, CCL2, and CLL5, which might
contribute to explain the dynamic role of these cells in
disease pathogenesis. Since moDCs in our study were
differentiated under the same conditions, the discrep-
ancy between the SLE group and healthy control group
was due to the intrinsic factors. It was reported mono-
cytes in patients with SLE produced higher IL-6 and
TNF-a [36], and presented an increase of CCL2,
CXCL9, and CXCL10 mRNA expression when com-
pared with control group [37]. Therefore, both monocyte-
derived DCs and their parental monocytes in SLE dis-
played pro-inflammatory function.

miR-142 is exclusively expressed in hematopoietic cells
under homeostatic conditions and has been shown to

play a critical role in immune responses, such as regu-
lating HMGB1 in THP-1 cells [38], SOCS1 in human
macrophages [39], and cAMP in mice Treg cells [40].
We found miR-142-3p increased in monocyte-derived
DCs from patients with SLE, which is consistent with
the upregulation of miR-142-3p in B cells [41], PBMCs
[42], and plasma [43] from SLE patients. In our study,
functional enrichment analysis indicated that target
genes of miR-142-3p (IL6ST, SPRED1, BCL2L1, STAM,
IL7R, LIFR, PRLR) and (ITGBS8, ITGAV, CRK, ROCK2,
COL24A1, RAC1) were significantly enriched in the
Jak-STAT signaling pathway and focal adhesion pathway
respectively, which were important pathways for cyto-
kines and chemokines. It has been reported these two
pathways are both associated with SLE [44, 45]. There-
fore, it could be speculated that miR-142-3p might play
important roles in SLE by regulating their target genes
that participate in these important signaling pathways.
Leukocyte migration is mediated by the interaction of
a number of chemokines and their receptors [46]. These
small molecules have well-defined roles in directing cell
movements necessary for the initiation of T cell immune
response, attraction of appropriate effector cells to sites



Wang et al. Arthritis Research & Therapy (2016) 18:263

of inflammation, and regulation of differential recruit-
ment of T helper lymphocytes. Matured DCs could se-
crete an abundant source of both inflammatory and
lymphoid chemokines, sustaining interaction of naive
and activated T cells with antigen-presenting mature
DCs. In our experiments, we found the level of CXCLS,
CCL2, and CCL5 increased in the supernatants of
moDCs with enforced expression of miR-142-3p. The
three chemokines have also been reported in biological
fluids from SLE [31, 47], so they might act synergistic-
ally on the chemotactic activity inducing CD4" T cell
migration. Since miR-142-3p is elevated in moDCs
from SLE patients, it suggests that the upregulation of
miR-142-3p in moDCs of SLE patients might be attrib-
uted to attracting more CD4" T cells, probably involved
in the pathogenesis of disease.

We also found the overexpression of miR-142-3p
cause the elevation of IL-6 and TNF-a, leading to a de-
crease of CD4"CD25"Foxp3™ Tregs which are anti-
inflammatory, and an imbalance of IL-17 and IL-10.
Treg deficiency in the periphery is sufficient to evoke
chronic T cell-mediated autoimmunity and immunopa-
thology, which has been associated with SLE [48]. The
mechanisms of Treg-mediated suppression including
secretion of immunosuppressive cytokines, cell contact-
dependent suppression, and functional modification or
killing of APC [48]. It has been demonstrated in lupus-
prone mice that IL-6 produced by DCs inhibits Tregs
[49], because Foxp3" Treg cells lose Foxp3 expression
and undergo conversion into Th1l7 cells under the
effect of IL-6 [50]. Therefore, IL-6 triggered an immune
disorder by breaking the balance between Th1l7 and
Treg. Our results indicate that the increase of miR-142-
3p in moDCs of SLE made the cells producing in-
creased IL-6 and could induce CD4" T cells to secrete
more [L-17 and less IL-10, thus leading to an imbalance
of the immune response. Therefore, overexpression of
miR-142-3p in moDCs suppressed the increase in Tregs,
which correlated with a reduced capacity to suppress
responder T cell proliferation and might thereby con-
tribute to the development of SLE. Similarly, mouse
dendritic cells matured by ingestion of apoptotic blebs
could stimulate allogeneic T cells which produced IFN
and especially high levels of IL-17, representing an im-
portant driving force in SLE [51].

We have suggested that elevated expression of miR-
142-3p is related to the pro-inflammatory function of
moDCs in SLE. However, the limitation of our study
is that we have not investigated the effect of decreas-
ing the level of miR-142-3p in moDCs of SLE. Future
study would focus on the exact target genes of miR-
142-3p in moDCs and whether downregulating miR-
142-3p could improve the overactive inflammation
phase of SLE.
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Conclusion

Taken together, our findings suggested a pro-inflammatory
function of moDCs in SLE patients partially mediated by
miR-142-3p: (1) microRNAs were differentially expressed
and miR-142-3p was increased in moDCs of SLE patients.
(2) moDCs in patients with SLE produced higher levels of
some pro-inflammatory cytokines and chemokines than
healthy controls. (3) Overexpressing miR-142-3p in moDCs
of healthy controls promoted cytokine and chemokine
production to attract more CD4" T cells and decrease
Treg expansion. These findings suggested that miR-142-
3p might be meaningful in the pathogenesis of SLE and
could serve as a novel therapeutic target for treatment.
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