Jiang et al. Arthritis Research & Therapy (2016) 18:157
DOI 10.1186/513075-016-1059-1 Arthrms Research & Therapy

RESEARCH ARTICLE Open Access

Whole blood expression profiling from the @
TREAT trial: insights for the pathogenesis of
polyarticular juvenile idiopathic arthritis

Kaiyu Jiang', Laiping Wong', Ashley D. Sawle?, M. Barton Frank®, Yanmin Chen', Carol A. Wallace™
and James N. Jarvis'*"

Abstract

Background: The Trial of Early Aggressive Therapy in Juvenile Idiopathic Arthritis (TREAT trial) was accompanied by
a once-in-a-generation sample collection for translational research. In this paper, we report the results of whole
blood gene expression analyses and genomic data-mining designed to cast light on the immunopathogenesis of
polyarticular juvenile idiopathic arthritis (JIA).

Methods: TREAT samples and samples from an independent cohort were analyzed on Affymetrix microarrays and
compared to healthy controls. Data from the independent cohort were used to validate the TREAT data. Pathways
analysis was used to characterize gene expression profiles. Furthermore, we correlated differential gene expression
with new information about functional regulatory elements within the genome to develop models of aberrant
gene expression in JIA.

Results: There was a strong concordance in gene expression between TREAT samples and the independent cohort.
In addition, rheumatoid factor (RF)-positive and RF-negative patients showed only small differences on whole blood
expression profiles. Analysis of the combined samples showed 158 genes represented by 176 probes that showed
differential expression between TREAT subjects at baseline and healthy controls. None of the differentially
expressed genes were encoded within linkage disequilibrium blocks containing single nucleotide polymorphisms
known to be associated with risk for JIA. Functional analysis of these genes showed functional associations with
multiple processes associated with innate and adaptive immunity, and appeared to reflect overall suppression of
STAT1-3/interferon response factor-mediated pathways.

Conclusions: Despite their limitations, whole blood expression profiles clearly distinguish children with polyarticular
JIA from healthy controls. Whole blood expression profiles identify several immunologic pathways of biologic relevance
that will need to be pursued in homogeneous cell populations in order to clarify mechanisms of pathogenesis.

Trial registration: ClinicalTrials.gov registry #NCT00443430, originally registered 2 March 2007 and last updated 30 May
2013.
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Background
The Trial of Early Aggressive Therapy in Juvenile Idiopathic
Arthritis (TREAT; Clinical Trials.gov registry #NCT0044:3430)
was an National Institute of Health (NIH) funded clin-
ical trial [1] that compared two therapeutic regimens
for treatment of newly-diagnosed polyarticular juvenile
idiopathic arthritis (JIA). One treatment arm used metho-
trexate (MTX) as an initial therapy, while the other used a
combined regimen of MTX, the tumor necrosis factor
(TNF) inhibitor etanercept (ET), and oral prednisone. As
part of the TREAT trial, whole blood was collected for
RNA expression studies at specific time points during the
course of the first year of therapy. Using whole blood
expression data from the TREAT subjects, we have previ-
ously reported on the feasibility of developing expression-
based prognostic biomarkers for children with the poly-
articular form of JIA [2]. However, the whole blood
gene expression data also provide a window through
which we might also gain valuable insights into both the
pathogenesis of JIA and the underlying biology of treatment
response, both of which are currently poorly understood.
While whole blood (and buffy coat) expression data
are inherently “noisy” (among other things, they reflect
gene expressions in multiple cells and cell subsets), there
are both technical [3, 4] and computational approaches
[5] that can be used to improve the signal-to-noise ratio
in whole blood expression data and derive meaningful
mechanistic insights. Furthermore, projects like the NIH
Encyclopedia of Functional DNA Elements (ENCODE)
and Roadmap Epigenomics have provided investigators
with a wealth of information from which to derive mech-
anistic insights from gene expression data. In this study,
we used whole blood gene expression data derived from
baseline samples from children enrolled in the TREAT
study, coupled with data-mining from public resources, to
identify novel pathways that contribute to JIA disease
pathogenesis.

Methods

Patient samples

We have previously described the TREAT baseline samples
[2]. Patients entered the TREAT trial between October
2007 and November 2009 [1]. All children fit international
criteria for polyarticular-onset JIA [6]. Parents of these
children gave informed written consent to provide samples
for translational uses, and the protocol to use these
specimens was approved by the TREAT study oversight
committee and the University of Oklahoma Institutional
Review Board. The patients included 19 boys and 45 girls,
aged 2—14 years. ANA were detected in 30 of the girls
and 10 of the boys. Approximately 2.5 ml of blood was
collected at the time of enrollment (month 0) prior to
treatment in a PAXgene tube (PreAnalytiX GmbH,
Hilden, Germany). Samples were stored at —80 °C. A
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summary of patient ages and characteristics is shown in
Table 1.

Healthy control samples

Controls consisted of 8 healthy girls and 11 healthy boys
between the ages of 7 and 13 years recruited from the
OU Children’s Physicians General Pediatrics clinic. The
protocol for obtaining these specimens was approved by
the University of Oklahoma IRB (#13205). Anesthesia for
the phlebotomy was provided using topical lidocaine/
prilocaine solution. These samples are hereafter referred
to as healthy children (HC).

Independent cohort
In addition to the above, whole blood PAXgene specimens
were obtained from an independent cohort of children
with newly diagnosed, polyarticular-onset JIA recruited
from the University of Oklahoma Health Sciences Center
pediatric rheumatology clinic. These children ranged in
age from 3 years to 15 years and consisted of 4 boys and 6
girls. All patients in this cohort were rheumatoid factor
(RF)-negative. These samples are hereafter referred to as
the Oklahoma cohort (OK). Table 2 summarizes the char-
acteristics of these patients.

All research procedures were carried out strictly fol-
lowing the IRB-approved protocols.

RNA processing

RNA was purified from whole blood PAXgene speci-
mens using a PAXgene Blood RNA kit (Qiagen, Valencia,
CA, USA) as recommended by the manufacturer, includ-
ing a DNAse (Qiagen) step to remove genomic DNA.
Globin transcripts, which reduce labeling efficiency of
whole blood cell RNA and decrease signal-to-noise ratios
on microarrays [7], were reduced using GLOBINCclear-
Human (Ambion, Austin, TX, USA). Final RNA prepara-
tions were suspended in RNase-free water, quantified
spectrophotometrically, and analyzed for RNA integrity by

Table 1 Phenotypic characteristics of patients at month 0

(baseline)

Arm 1 Arm 2
Female 19 (63.3 %) 26 (76.5 %)
Male 11 (36.7 %) 8(23.5 %)
Aged 2-6 years 7 5
Aged 7-11 years 11 15
Aged 12-16 years 12 14
Age (years), mean £ SD 10.5+45 114+36
RF-positive 9 (30 %) 12 (353 %)
ANA-positive 22 (733 %) 18 (529 %)°

Values are given as n (%) unless otherwise indicated
2One missing value
ANA Antinuclear antibody, RF rheumatoid factor, SD standard deviation
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Table 2 Characteristics of JIA patients from the Oklahoma

cohort

Patient number Age Sex RF status ANA status
1 9 years F Negative Negative
2 12 years F Negative Negative
3 9 years M Negative Negative
4 11 years F Negative Positive
5 7 years F Negative Negative
[§ 3 years F Negative Positive
7 8 years M Negative Negative
8 14 years M Negative Negative
9 15 years F Negative Positive
10 4 years M Negative Negative

ANA Antinuclear antibody, F female, JIA juvenile idiopathic arthritis, M male, RF
rheumatoid factor

capillary gel electrophoresis (Agilent 2100 Bioanalyzer;
Agilent Technologies, Palo Alto, CA, USA).

Microarray analysis

cRNA was produced from reverse transcribed cDNA
using the Illumina® TotalPrep RNA Amplification Kit
(Ambion, Inc., Austin, TX, USA), hybridized to Illumina
WG-6 v3 or Illumina HT-12 v4 human whole genome
microarrays, and stained according to the manufacturer’s
directions. Array hybridizations were undertaken in
three separate batches. The first batch consisted of the
19 healthy controls and 26 baseline samples hybridized
on Illumina WG-6 v3 arrays. The second batch consisted
of the remaining patient samples hybridized to Illumina
HT-12 v4 arrays. The independent cohort of OK samples
were hybridized on Illumina WG-6 v3 slides. Gene micro-
array data have been made available to the scientific public
(GEO Accession Number GSE55319).

Statistical analysis
All statistical analyses were carried out in R (www.r-
project.org). To facilitate statistical analyses relative to
healthy controls, it was necessary to combine data from
different array batches. Due to the difference in the ar-
rays it was necessary to create combined datasets using
only those probes that were present on both array for-
mats. I[llumina probe IDs were used to identify 39,426
common probes. Datasets were variance stabilized and
normalized using robust spline normalization via the
lumi package [8, 9]. Prior to statistical analysis non-
responding probes were filtered out of the datasets using
the detection p value provided by the Illumina quality
control metrics to eliminate probes not responding at
higher than background levels.

Differential gene expression analysis was performed
using the limma package [10, 11]. The false discovery
rate (FDR) was estimated using the method described by
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Benjamini and Hochberg [11]. Statistical significance of
gene expression was determined at FDR <0.05. Gene
lists of interest were exported from R and uploaded to
Ingenuity IPA (Ingenuity Systems, Inc., Redwood City,
USA) for further functional analysis.

Network analyses of differentially expressed genes from
whole blood expression profiles

We used the Ingenuity Pathway Analysis (IPA) software
(Ingenuity Systems’, Redwood City, CA, USA; IPA Summer
Release, June, 2015) for network analysis, with differentially
expressed (DE) genes as input following the default setting
of a maximum 35 genes per network. IPA network gen-
eration transforms the query genes into a set of rele-
vant networks based on its extensive, curated Ingenuity
Pathway Knowledge Base database [12, 13]. IPA utilizes
a multi-stage heuristic algorithm in constructing net-
works through an iterative process that optimizes both
interconnectivity and number of query genes under the
constraint of network size. Briefly, IPA constructs net-
works using gene connectivity with other genes under
the assumption that the gene with the highest number
of connections is the most important and, thus, has the
most influence. These connections represent regulatory
interactions that may be either direct (e.g., the protein
product of gene “A” directly regulates the expression of
gene “B”) or indirect (genes “A” and “B” are regulated
by the same transcription factor). The last step of IPA
network construction is score calculation using the
Fisher Exact test on a hypergeometric distribution. The
Fisher Exact test in IPA defines the null hypothesis as
being a similar proportion of query genes map to a net-
work in the same proportion as the entire reference
gene set map to the network. A network score is de-
rived from a p value (score = —logl0 p value) that indi-
cates the probability of the query genes (defined as
target molecules in IPA) in a network being randomly
associated within a connecting network. It is important
to note that the network score does not infer network
quality; it simply indicates the fitness between a refer-
ence network and the network of query genes.

Linking genetic and expression data

The recent completion of a genome-wide fine mapping
study for JIA [14] extends the list of previously known
disease-associated genetic variants [15] and provided us
with the opportunity to determine whether there is a
genetic linkage to gene expression in JIA. Using the bed-
tools program [16] we intersected DE genes identified in
the comparison between JIA and HC with linkage dis-
equilibrium (LD) blocks of JIA-associated single nucleo-
tide polymorphisms (SNPs) extracted from the JIA fine
mapping study [14] as well as other known regions of
risk as reviewed by Hersh and Prahalad [15]. We
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obtained LD block information from the SNAP data-
base (http://www.broadinstitute.org/mpg/snap) using the
1000 genome project pilotl and HapMap3 with a cutoff of
1 <0.9 and a distance limit of 500 bases.

Results
Correlation of TREAT samples with the Oklahoma cohort
From the TREAT study we analyzed 44 baseline samples
from 28 RF-negative patients and 16 RF-positive patients,
plus 19 control samples from healthy children. In addition,
we analyzed independent samples from 10 RF-negative
patients (the OK cohort). Oklahoma and TREAT data
were first normalized without using the COMBAT algo-
rithm that we previously applied to the TREAT data to fil-
ter out batch effects [2], as there is only one condition
(baseline) in the OK subjects for comparison and, thus,
the algorithm cannot differentiate between biological vari-
ation and technical variation (batch effects). Our assump-
tion was that batch effects would weaken the statistical
correlation relative to the true biological situation, and
any correlation we might find using this approach would
thus be significant.

We first created a scatter plot correlating the OK and
TREAT expression values for all probes (Fig. 1). As
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shown in the figure, there are four distinct groups of
probes: 1) probes that appeared to match well (roughly,
x =y); 2) probes with low expression in the Oklahoma
cohort but demonstrating a range of expression in
TREAT subjects (seen along the bottom of the graph); 3)
probes that showed low expression in the TREAT subjects
but a range of expression values in the Oklahoma patients
(a small number running up the left-hand side of the plot);
and 4) a small scattering of probes in between.

We then asked whether those probes that are low in
one set but high in the other may reflect poor quality in
the arrays, especially for low-expression probes. To in-
vestigate this possibility, we used Illumina array Geno-
meStudio software, which calculates and reports a
detection p value representing the confidence that a given
transcript is expressed above the background defined by
negative control probes. The cut-off we used for trimming
probes from the arrays prior to differential expression
analysis was to only select probes with p<0.01. The
histograms in Fig. 2 show the distribution of the probe
qualities in the two datasets. For each probe we
counted the number of arrays on which it had a detec-
tion p value <0.01. Using this approach, we identified
multiple poor quality probes on the both array sets.

r-squared = 0.136

All probes

n=14473

14

12

OK

10

TREAT

Fig. 1 Correlation between gene expression of probes between Oklahama (OK) and TREAT data. Four observations are shown; first, at x =y,
probes correlate well; second, with y < 8, probes with low expression in the Oklahoma data but a range of expression in the TREAT data; third,
when x < 8, probes with low expression in the TREAT data but a range of expression in the Oklahoma data; and, lastly, random scatters of probes
in between Oklahoma and TREAT data
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Fig. 3 Correlation of probes between TREAT and Oklahoma (OK) for (top left) good probes with good quality in both datasets and (top right) bad
quality probes in both datasets. Bottom left, good probes in TREAT but bad in Oklahoma; bottom right, good probes in Oklahoma but bad in TREAT.
Using probes that are high quality in both datasets improves correlation between the two datasets
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Table 3 Differentially expressed genes in juvenile idiopathic arthritis between RF-positive and RF-negative patients

Probe_ID Symbol Mean expression RF™ (Log2) Mean expression RF* (Log2) Fold change (Log2) FDR

ILMN_1690443 Cl40rf82 8.775 9.284 -0.509 0.046
ILMN_1717594 DKFZp761E198 8.567 9.061 -0.493 0.028
ILMN_1721113 HLA-C 943 10.126 -0.696 0.04

ILMN_1778202 FLJ40722 11.76 12.259 -0.499 0.032
ILMN_1806165 HSPA6 10.943 11429 -0.486 0.036
ILMN_1912662 1138 11.896 -0.516 0.038
ILMN_2243516 Cllorf63 10.335 10.939 -0.604 0.036
ILMN_2285713 TDP1 10.931 11421 -049 0.015

FDR false discovery rate, RF” rheumatoid factor negative, RF* rheumatoid factor positive

Upon splitting the probes into groups based on their  good probes (top left) displayed good quality in both
quality, we discerned that there were technical issues datasets and bad quality probes were bad in both.
creating the two unmatched tails. In the comparison, Selecting only probes that are high quality in both data-
we required that all 10 of the Oklahoma arrays be good  sets significantly improves the r* (0.627 for our two
quality (Fig. 3). Using this approach, we found that datasets).
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Fig. 4 Mechanistic network derived from differential gene expression analysis of upstream regulators of differentially expressed genes using IPA
and comparing untreated to healthy controls. Nodes in orange reflect predicted activation, while those in blue are predicted to be inhibited
based on the patterns of differential gene expression. Upstream regulators CXCL8 (a) and CSF3 (b) show an activation pattern
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We also note that in our biomarker paper [2] we were
able to corroborate gene expression in the TREAT and
Oklahoma cohorts using quantitative polymerase chain
reaction (qPCR) [11]. Having assured ourselves of the re-
producibility of the array results, we proceeded to data
analysis.

Differential gene expression

We first compared RF-positive (7 =16) and RF-negative
(n =28) samples. We found only 7 genes represented on
8 probes that showed differential expression between
these groups; these genes are shown in Table 3. These
results are consistent with our previous observation that
RF-positive and RF-negative samples group together
when analyzed through hierarchical cluster analyses [2].
For this reason, we determined that it would be reasonable
to analyze all 44 samples (RF-positive and RF-negative) as
a group.

There were 158 genes represented by 176 probes that
showed differential expression with at least a 1.4-fold
difference, with an FDR of 0.05, when TREAT study sub-
jects were compared with healthy control children. The
analysis of these genes using the Ingenuity database showed
particular enrichment for genes regulating leukocyte adhe-
sion and extravasation. This pattern is reflected in the
network shown in Fig. 4a, demonstrating a pattern of
interleukin (IL)-8 CXCLS8 activation. IL-8 is produced
by multiple leukocyte subsets, including macrophages
[17, 18], as well as other cell types such as endothelial
cells [19]. IL-8 acts through multiple G protein-coupled
receptors and is a potent chemoattractant for neutrophils.
It is interesting to note that we have recently demonstrated
that G protein-coupled receptor signaling networks
showed extensive re-organization when TREAT study
subjects responded to therapy [5]. Patterns of gene
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expression reflect regulation by CSF3, which, like IL-8,
is a potent activator of neutrophils (Fig. 4b). We have
previously shown that neutrophils in JIA show aberrant
patterns of activation that are linked to the metabolic
pathways through which neutrophils produce myelo-
peroxidase and superoxide ion [20].

The baseline TREAT expression data also reflect activa-
tion of adaptive immune responses through CD3-T-cell
receptor-mediated signaling, as shown in Fig. 5. T cells
have long been accepted as mediators of JIA pathogenesis
[21], and thus this finding was expected.

It is interesting to note that, at the same time, the ex-
pression data simultaneously reflect a pattern that we
have previously identified from RNA sequencing data in
human neutrophils [22]: an apparent suppression of inter-
feron response factor (IRF)-mediated pathways leading to
a suppression of typel and type 2 interferons, as shown in
Fig. 6. This pattern of suppression reflects a broader
suppression of Toll-like receptor (TLR)9 activation, as
shown in Fig. 7. The TREAT expression data suggest a
previously unrecognized role for transforming growth
factor (TGF)BL1 in JIA, although its role in adult rheuma-
toid disease has been long recognized [23], and we have
shown that TGFBLI is overexpressed in children with active
JIA on therapy compared with children who have achieved
clinical remission on medication [24]. These findings sug-
gest aberrant patterns of activation and/or gene regulation
within the adaptive immune system.

Linking genetic and expression data

The search for overlaps between the DE genes identified
in the comparison between healthy controls and baseline
TREAT subjects and LD blocks containing JIA-associated
SNPs yielded no DE genes within any of the observed LD
blocks. We next determined the closest LD blocks to

—~ -
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Fig. 5 Mechanistic network derived from differential gene expression analysis of upstream regulators of differentially expressed genes using IPA
and comparing untreated JIA to healthy controls. Nodes in orange reflect predicted activation, while those in blue are predicted to be inhibited
based on the patterns of differential gene expression. CD3-T-cell receptor (TCR) activation is predicted from the pattern of gene expression
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Fig. 6 Mechanistic network derived from differential gene expression analysis using IPA and comparing untreated JIA to healthy controls. Nodes

in orange reflect predicted activation, while those in blue are predicted to be inhibited based on the patterns of differential gene expression.
Suppression of IRF1 (a) and IRF7 (b) regulated networks is predicted from this analysis
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the DE genes, and identified 75 LD blocks containing
JIA-associated SNPs situated near 38 DE genes, with
distances ranging between 345 and 390 kilobases. Next,
we interrogated the upstream regulators of the DE genes
as identified on Ingenuity analysis, i.e., IRF1, IRF3, IRF5,
STAT1, STAT2, and STAT3. We queried the LD blocks
containing the JIA-associated SNPs using the bedtools
program. We downloaded ENCODE transcription factor
binding site (TFBS) data from UCSC Genome Browser
ENCODE data at http://hgdownload.cse.ucsc.edu/golden
Path/hg19/encodeDCC/wgEncodeRegTfbsClustered/and
extracted TFBSs of the regulators of interest. Intersection
analysis demonstrated that 53 LD blocks containing JIA-
associated SNPs overlapped 232 TF binding sites for the

regulators of interest. We applied Fisher’s Exact test for
enrichment analysis of TF binding sites overlapping with
the LD blocks containing JIA-associated SNPs using all
ENCODE TF binding sites as background. This analysis
showed no statistically significant evidence for enrichment
of IRF1, IRF3, IRF5, STAT1, STAT2, or STAT3 binding
within the LD blocks containing JIA-associated SNPs
(Fisher’s Exact test p value 0.091).

Discussion

In this paper, we analyzed the TREAT whole blood gene
microarray data in an attempt to gather insights into
disease mechanisms in polyarticular JIA. We found that
the whole blood expression profiles reflect complex
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Suppression of TLR9-regulated networks is predicted from this analysis

Fig. 7 Mechanistic network derived from differential gene expression analysis using IPA and comparing untreated JIA to healthy controls. Nodes
in orange reflect predicted activation, while those in blue are predicted to be inhibited based on the patterns of differential gene expression.

interactions between innate and adaptive immunity, a
finding that is consistent with our previous reports that
both peripheral blood mononuclear cell (PBMC) [24]
and neutrophil [25] gene expression profiles are abnormal
in untreated children with JIA. We were not able to an-
swer the question of whether the innate or adaptive im-
mune aberrations are primary. While an increasing body
of data shows that neutrophils are important mediators of
adaptive immune responses [26—-31], it is equally plausible
that the transcriptional aberrations we see in neutrophils
are the result of an altered cytokine milieu generated from
altered T-cell function. In support of the idea that the
neutrophil defect is a primary aspect of the disease is
our finding that neutrophil gene expression profiles in
JIA patients remain distinctly abnormal even after PBMC
profiles begin to resemble those of healthy children in
response to therapy [32].

These findings are also significant for what they do not
tell us. Among the 158 genes that showed differential ex-
pression between baseline TREAT samples and those of
healthy controls, none was located within LD blocks
where there is known genetic risk for JIA [14, 15], nor are
the identified LD blocks enriched for binding sites for the
TFs that the whole blood expression data suggest may be

important regulators of the differentially expressed genes.
This finding corroborates published work demonstrat-
ing that most of the genetic risk for JIA lies within the
non-coding genome [14]. We have recently demonstrated
that most of the regions identified by Hinks et al. [14] are
enriched (above genome background) for H3K4mel/
H3K27ac-marked enhancers that can be identified in
both neutrophils and CD4+ T cells [33]. Thus, if polyar-
ticular JIA, like many complex diseases, can be character-
ized by the presence of so-called expression quantitative
trait loci (eQTL) [34], it seems likely that the loci that
most strongly influence expression will be located in non-
promoter regulatory regions (e.g., enhancers, insulators,
and so forth) and reflect complex layers of transcriptional
control rather than perturbed function of the protein
products of specific genes.

Our findings here suggest potentially useful targets for
therapy in JIA. For example, the broad suppression of
type 1 and type 2 interferon responses in JIA may reflect
overall suppression of TLR9-mediated processes. TLR9
is an intracellular pattern recognition receptor that
detects highly methylated DNA, which is common in
bacterial and viral genomes (and relatively rare in mam-
malian genomes) [35]. In recent years, TLR9 has become
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an attractive therapeutic target for immune modulation in
immune diseases [36, 37], as well as cancer [38—42]. Given
these findings, it is hardly surprising that hydroxychloro-
quine, which suppresses TLR9 pathways [43, 44], has been
shown to be ineffective in JIA. The TREAT whole blood
expression data suggest that strategies to augment TLR9
responses might be more promising.

There are obviously limitations to these data and their
interpretation. The first is the inherent “noisiness” of
whole blood expression profiles. Whole blood expression
profiles represent an amalgam of peripheral blood cells,
including abundant leukocyte subtypes such as neutrophils
and platelets, and less abundant cells such as monocytes,
natural killer (NK) cells, and even circulating CD34+ cells
[45]. Furthermore, while the complete blood counts of the
TREAT baseline subjects did not deviate from the range
typically seen in children of the same age, it is possible that
the differences in expression profiles reflect expansion of
small leukocyte subsets not typically identified on complete
blood counts performed in a standard clinical laboratory.
The noisiness and relative insensitivity of whole blood ex-
pression profiling can be reduced by removing globin
genes before the RNA labeling step [3, 46], as we did here,
but this step reduces only a small portion of the complexity
that limits the utility of whole blood expression data.
Leukocyte subset transcriptomes show a considerable
degree of specificity, reflecting the specific immunologic
functions of each cell type. Thus, while there are consider-
able commonalities in the transcriptomes and regulatory
regions of peripheral blood leukocytes [47-49], it is likely
that there are critical elements of leukocyte function/
dysfunction in polyarticular JIA (e.g., B cells, monocytes,
Th17 cells) that simply cannot be identified on whole
blood expression profiling. Thus, while whole blood or
blood leukocyte expression profiling has been invaluable
in allowing us to develop a mechanistic understanding of
significant pathologic disturbances, such as sepsis or blunt
trauma [50], it seems likely that complex functional gen-
omics approaches of specific leukocyte subsets will be re-
quired to fully elucidate the pathogenesis of more subtle
phenotypes where inflammation is chronic and more in-
dolent, as is the case in polyarticular JIA [22].

Conclusions

Whole genome expression profiling of untreated children
with polyarticular JIA reveals complex transcriptional dif-
ferences when compared with healthy controls. Activation
of leukocyte chemotaxis/extravasation pathways and neu-
trophil activation by CSF3 are reflected in whole blood
transcription analyses. At the same time, suppression of
STAT1-3/IRF pathways, as we have previously reported
in JIA neutrophils [22], is revealed in the whole blood ex-
pression profile. None of the genes that showed differen-
tial expression between children with JIA and healthy
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control children is encoded within LD blocks containing
known JIA-associated SNPs. These findings suggest that
genetic risk loci for JIA either exert their effects before the
disease phenotype emerges or involves more subtle and
complex layers of transcriptional regulation (e.g., by trans-
acting enhancers [33]) than can be discerned from whole
blood expression profiles.
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