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Selective inhibition of tropomyosin-
receptor-kinase A (TrkA) reduces pain and
joint damage in two rat models of
inflammatory arthritis
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Abstract

Background: Inflammation is an essential component of arthritis pain. Nerve growth factor (NGF) plays a key role
in acute and chronic pain states especially those associated with inflammation. NGF acts through tropomyosin-
receptor-kinase A (TrkA). NGF blockade has reduced arthritis pain in clinical trials. We explored the mechanisms
within the joint which may contribute to the analgesic effects of NGF by selectively inhibiting TrkA in carrageenan-
induced or collagen-induced joint pain behaviour. The goal of the current study was to elucidate whether
inflammation is central to the efficacy for NGF blockade.

Methods: Rats were injected in their left knees with 2 % carrageenan or saline. Collagen-induced arthritis (CIA) was
induced by intradermal injections of a mixture of bovine type II collagen (0.2 mg) and incomplete Freund’s adjuvant
(0.2 mg). Oral doses (30 mg/kg) of AR786 or vehicle control were given twice daily after arthritis induction. Ibuprofen-
treated (35 mg/kg, orally, once daily) rats with CIA were used as positive analgesic controls. Pain behaviour was
measured as hind-limb weight-bearing asymmetry and hind-paw withdrawal thresholds to von Frey hair stimulation
(carrageenan synovitis), or withdrawal to joint compression using a Randall Selitto device (CIA). Inflammation was
measured as increased knee joint diameter and by histopathological analysis.

Results: Intra-articular injections of carrageenan or induction of CIA was each associated with pain behaviour and
synovial inflammation. Systemic administration of the TrkA inhibitor AR786 reduced carrageenan-induced or
CIA-induced pain behaviour to control values, and inhibited joint swelling and histological evidence of synovial
inflammation and joint damage.

Conclusions: By using two models of varying inflammation we demonstrate for the first time that selective inhibition
of TrkA may reduce carrageenan-induced or CIA-induced pain behaviour in rats, in part through potentially inhibiting
synovial inflammation, although direct effects on sensory nerves are also likely. Our observations suggest that
inflammatory arthritis causes pain and the presence of inflammation is fundamental to the beneficial effects (reduction
in pain and pathology) of NGF blockade. Further research should determine whether TrkA inhibition may ameliorate
human inflammatory arthritis.
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Background
Nerve growth factor (NGF) plays a key role in persistent
inflammatory pain, is expressed within the inflamed
synovium and osteochondral junction, and may contrib-
ute to arthritic pain [1–4]. Inflammation, angiogenesis,
nerve growth and pain are all interconnected processes
[5, 6]. NGF sensitises peripheral nerves and may also
stimulate blood vessel and nerve growth into structures
such as the articular cartilage, which are not normally
innervated [7, 8]. Sensory nerves, in turn, might aug-
ment inflammation by releasing neuropeptides [9, 10].
Injection of NGF into rat knees induces pain behavior
and synovitis [11]. Inhibiting NGF signalling might
therefore have particular benefit in patients with inflam-
matory arthritis pain, including those with rheumatoid
arthritis (RA).
NGF binds to tropomyosin-receptor-kinase A (TrkA)

and p75 neurotrophin receptors on sensory nerve termi-
nals. Administration of small doses of NGF can produce
pain and hyperalgesia [12, 13], and cause neuronal
sprouting and elongation [14]. During inflammation or
arthritis, NGF levels rise, and nociceptors consequently
become sensitised [15–17]. A recent study shows that
patients with advanced osteoarthritis (OA) have in-
creased synovial expression of NGF localised predomin-
antly to fibroblasts and macrophages [18]. Macrophages
can express the receptor TrkA [19]. NGF blockade can
be achieved using antibodies or TrkA-Ig fusion protein,
each of which binds NGF and prevents its interaction
with TrkA and p75 receptors. Blocking NGF bioactivity
largely prevents effects of inflammation on sensory
nerve function [20, 21]. An alternative approach is to in-
hibit the tyrosine kinase activity of TrkA, thereby pre-
venting signalling after binding of NGF. Pan-Trk
inhibition reduces ectopic sprouting of sensory nerve fi-
bres, and bone cancer and skeletal pain in mice [22, 23].
It also significantly reduces thermal hyperalgesia and
mechanical allodynia in rats with complete Freund’s ad-
juvant (CFA)-induced paw inflammation [24].
NGF is an attractive target for attenuating chronic

arthritis pain [25–28]. Clinical trials of NGF blockade
have revealed important benefits in OA [26, 29, 30] but
the trials were temporarily halted by the Food and Drug
Administration (FDA) following the recognition of rap-
idly progressive OA in some participants [30]. Although
this adverse event appears to be a class effect of NGF
blockade, its mechanism remains incompletely under-
stood. Inhibition of signalling through p75 and TrkA re-
ceptors may contribute to the effects of NGF blockers,
and TrkB and TrkC may contribute to effects of pan-
Trk inhibitors. Until recently selective inhibition of
TrkA has proved difficult to achieve. AR786 is a novel,
orally available selective small molecule inhibitor of
TrkA kinase activity, effective at low nanomolar

concentrations [31]. We recently demonstrated reduc-
tions in pain behaviour in two rat models of OA (menis-
cal transection and monosodium-iodoacetate-induced),
following the administration of the TrkA inhibitor
AR786 [31]. To our knowledge no study has specifically
looked at whether the inflammatory component in arth-
ritis is essential for the efficacy of NGF blockade via se-
lective TrkA inhibition. Selective TrkA inhibition,
therefore, can be an effective analgesic option in inflam-
matory arthritis.
We hypothesised that the presence of inflammation is

central for the beneficial effects of NGF blockade to
occur. Selectively blocking NGF activity by targeting its
receptor TrkA may reduce pain in part through inhibit-
ing synovial inflammation, although direct effects on
sensory nerves are also likely. We used AR786 to explore
the contributions of TrkA to pain behaviour and syn-
ovial inflammation following intra-articular injection of
carrageenan or induction of collagen-induced arthritis
(CIA). We observed that in these two well-known
models of varying inflammation, selective inhibition of
TrkA can reduce carrageenan-induced or CIA-induced
pain behaviour by inhibiting synovial inflammation and
possibly by direct actions on sensory nerves.

Methods
Animals
In vivo studies were performed on either male Sprague
Dawley rats (n = 8 per group, 200–220 g; Charles River) in
accordance with United Kingdom Home Office regula-
tions and the guidelines of the Committee for Research
and Ethical Issues of IASP, or female Lewis rats (n = 10
per group, 125–150 g; Harlan Laboratories) in accordance
with the Array BioPharma, Inc. IACUC policies. All ani-
mals were housed under standard conditions with food
and water ad libitum and anaesthetised with isoflurane
(2 % in O2) prior to injections. All outcome measurements
were made by observers blinded to treatment group.

Intra-articular carrageenan injection
A single 50-μl intra-articular injection of carrageenan
(2 %) dissolved in sterile 0.9 % (normal) saline (pH 7.4)
or saline control was given on day 0 into the left knee
joints [32–34].

Collagen-induced arthritis
Rats were administered three intradermal injections of
0.1 ml of a mixture of 0.2 mg of bovine type II collagen
(Elastin Products) mixed equally with incomplete
Freund’s adjuvant (Diffco) on days 0 and 6 [35].

Pharmacological interventions
Rats were dosed with the TrkA selective inhibitor
AR786 orally, twice a day at the previously published
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effective dose of 30 mg/kg in 500 μl or vehicle control
(5 % Gelucire) [22, 23, 31]. In the carrageenan model
and controls, rats were dosed 1 h prior to and 8 h after
the intra-articular injection and then twice daily (each
pair of doses separated by 6 h) until the end of the ex-
periment (days 1 or 4). In the CIA experiment, rats were
dosed twice daily beginning on day 0 and continuing
until day 17. Ibuprofen 35 mg/kg orally, once daily in
0.5 % Tween-80 (critical micellar concentration 1 %),
was used as a positive analgesic control.

Pain behaviour
Pain behaviour was assessed before oral dosing as weight-
bearing asymmetry and as punctate allodynia in the hind
paw distal to the injected knee, or by paw withdrawal to
ankle joint compression. Weight-bearing asymmetry was
assessed as the average of five readings from each animal
using an incapacitance meter (Linton Instruments,
Norfolk, UK), measured as the difference in weight borne
between the ipsilateral-treated and contralateral control
limb [36]. Punctate allodynia was measured as paw
withdrawal thresholds at the ipsilateral and contralateral
sides using a series of von Frey monofilaments (Semmes-
Weinstein monofilaments (bending forces of 1, 1.4, 2, 4, 6,
8, 10 and 15 g)) by increasing and decreasing the stimulus
intensity at each observation time point [37]. Paw with-
drawal to ankle joint compression was measured using a
Randall Selitto device on day 17 post collagen challenge.

Inflammation
Joint inflammation was assessed as joint swelling using
digital electronic calipers (Mitutoyo, UK), and by hist-
ology. Knee swelling was measured at the time of pain
behavioural assessments, with values representing differ-
ences in knee diameters between the injected and
contralateral joints. Ankle diameters were measured at
baseline on day 9 after collagen challenge, and then daily
until sacrifice at day 17.
Rats were killed by asphyxiation in carbon dioxide,

and synovia with patellae from each knee were snap fro-
zen in optimum cutting temperature compound (OCT)
over melting isopentane. Hind paws were fixed in 10 %
neutral buffered formalin solution for 7 days, then decal-
cified in 5 % formic acid for 7–10 days and paraffin
embedded.
Knee synovial inflammation grade was assessed on

haematoxylin-and-eosin-stained sections on a scale of 0
(lining cell layers 1–2 cells thick) to 3 (lining cell layer >9
cells thick and/or severe increase in cellularity) [36, 38]. In
the CIA study, paw sections were stained with toluidine
blue and scored by a board-certified veterinary pathologist
for synovitis, pannus, cartilage damage, bone resorption
and periosteal bone formation using a 0–5 scale (0; nor-
mal, 5; severe damage) [39–41].

Macrophage infiltration was identified in 5-μm sec-
tions of knee synovium by immunoreactivity for CD68
using the mouse monoclonal antibody clone ED1 [42]
and the peroxidase-conjugated avidin-biotin-peroxidase
complex (ABC) method [43]. Proliferating cell nuclear
antigen (PCNA)-immunoreactive CD31-positive cells
were taken to identify proliferating endothelial cells
(ECs) as a measure of the extent of angiogenesis [44].
Nuclei were counterstained with 4’-6’-diamidino-2-phe-
nylindole hydrochloride (DAPI) [32, 45].
Image analysis was performed by an observer blinded

to experimental details using a Zeiss Axioscop-50 micro-
scope (Carl Zeiss Ltd, Welwyn Garden City, UK) and
a × 20 objective lens. Transmitted light and fluorescence
images of the same field were captured using a 3-CCD
camera and analysed using a KS300 image analysis sys-
tem (Image Associates, Thame, UK) [34]. Macrophage
fractional area was defined as the percentage of synovial
area that was CD68-positive. EC proliferation index was
defined as the percentage of EC nuclei positive for
PCNA. For computer-assisted image analyses, four fields
per section and one section per case were measured.
These numbers were determined in previous experi-
ments [32] to minimise the coefficient of variation, and
so that the observed mean lies within ± 12.5 % of the
true mean.

Statistical analysis
Data were analysed using Statistical Package for the
Social Sciences v.16 (SPSS inc., Chicago, IL, USA) and
graphically presented using Prism v 4 (GraphPad, San
Diego CA, USA). Area under the curve (AUC) was
expressed in mm/day and calculated for carrageenan-
induced synovitis as the integrated product of increase
over control knee diameter, and for CIA as the inte-
grated product of the average of the two ankle diameters
per rat. Normally distributed data (EC PCNA indices
and macrophage fractional areas (logarithmically trans-
formed), incapacitance, paw withdrawal using the
Randall Selitto device, and joint diameters) were ana-
lysed using one-way analysis of variance (ANOVA).
Univariate comparisons were made using Student’s t test.
Non-normally distributed data were analysed using the
Kruksal-Wallis test followed by the Mann-Whitney test
to compare two groups. Bonferroni corrections were ap-
plied for multiple comparisons. Numerical data are
quoted as mean (95 % confidence interval) or median
(interquartile range (IQR)) in the text, and, for clarity,
graphically as mean ± SEM unless otherwise stated. P <
0.05 was taken to indicate statistical significance.

Reagents
Monoclonal antibody to PCNA (clone PC10) was obtained
from DAKO Ltd. (High Wycombe, UK). Biotinylated
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rat-adsorbed horse anti-mouse antibody and ABC kits
were from Vector Laboratories Ltd. (Peterborough, UK).
Monoclonal antibodies to rat CD31 (clone TLD-3A12)
and to macrophages (CD68, clone ED1) were from Serotec
Ltd. (Oxford, UK). Gelucire vehicle was from Gattefosse
Corporation (Paramus, NJ, USA). AR786 was provided by
Array BioPharma (Boulder, CO, USA). All other chemicals
were obtained from Sigma-Aldrich (Poole, UK).

Results
Effects of intra-articular injection of 2 % carrageenan on
pain behaviour and joint inflammation
Injection of 2 % carrageenan into rat knees induced pain
behaviour as measured by hind limb weight-bearing
asymmetry (50.6 (37.2–64.1) g) at 1 h compared to
saline-injected controls (9.4 (5.6–13.2) g, p < 0.001), and
weight-bearing asymmetry was maintained through day
4 (Fig. 1a). Carrageenan injection was also followed by a
progressive reduction in hind paw withdrawal thresholds
to mechanical punctuate stimulation. Significant reduc-
tions in hind paw withdrawal thresholds were first seen
6 h after carrageenan injection (10.5 (8.1–13.0) g) com-
pared with saline-injected rats (14.4 (13.0–15.9) g, p <
0.05), and paw withdrawal thresholds further decreased
through day 4 (Fig. 1b). One hour after carrageenan in-
jection knee diameter was increased (1.1 (0.9–1.3) mm)
compared to saline controls (0.02 ([0.0–0.04) mm, p <
0.001) and the joints remained swollen through day 4
(Fig. 3a). Synovial macrophage infiltration, synovial

lining grade and synovial EC proliferation were each sig-
nificantly increased 4 days after carrageenan injection
(Fig. 2b, e and h and Fig. 3).

Effects of the selective TrkA inhibitor AR786 on
carrageenan-induced pain behaviour and joint
inflammation
In order to investigate whether carrageenan-induced
pain behaviour and synovitis may be mediated by TrkA
receptors, rats were treated with the selective TrkA in-
hibitor AR786. The inhibitor reduced pain behaviour
24 h after carrageenan injection as measured by hind-
limb weight-bearing asymmetry (33.9 (25.1–42.6) g)
compared to vehicle-treated, carrageenan-injected ani-
mals (53.8 (40.8–66.7) g, p < 0.01) (Fig. 1a). The reduc-
tion in hind-limb weight-bearing asymmetry was
maintained through day 4. Administration of AR786 was
also associated with increased paw withdrawal thresh-
olds 2 days after carrageenan injection (11.9 (9.7–14.0)
g) compared to vehicle-treated, carrageenan-injected an-
imals (8.0 (7.1–8.9) g, p < 0.01), and, by day 4, paw with-
drawal thresholds did not differ significantly between
AR786-treated, carrageenan-injected animals and saline-
injected controls (Fig. 1b).
AR786 partially inhibited carrageenan-induced knee

swelling (Fig. 3a). Synovitis measured as macrophage
infiltration and synovial lining thickness/cellularity was
significantly reduced following treatment with the inhibi-
tor (AR786: macrophage infiltration; 15.1 (10.7–19.5) %,

Fig. 1 Effects of the selective tropomyosin-receptor-kinase A (TrkA) inhibitor AR786 on carrageenan-induced pain behaviour. Rat knees were
injected with either 2 % carrageenan (triangles and diamonds) or saline (circles) on day 0 (dotted line). Twice-daily oral dose of 30 mg/kg AR786
(diamonds) or 5 % Gelucire vehicle (triangles) control was given 1 h prior to and 8 h after the carrageenan injection and then twice daily (each
pair of doses separated by 6 h) through day 4. Vehicle-treated carrageenan-injected animals (triangles) had increased pain behaviour measured as
increased difference in weight-bearing (a) and reduced paw withdrawal thresholds (b) through 4 days after carrageenan injection compared with
saline-injected controls (circles). Administration AR786 was associated with reduced pain behaviour, with reduced weight-bearing asymmetry from
day 1 and increased paw withdrawal thresholds from day 2. Paw withdrawal thresholds were similar in AR786-treated, carrageenan-injected
animals to those in saline-injected (non-synovitic) control levels by day 4. Paw withdrawal threshold was not evoked on the contralateral side.
*p < 0.05, **p < 0.01 and ***P < 0.001 compared with saline-injected controls; +p < 0.05, ++p < 0.01, +++p < 0.001 compared with vehicle-treated,
carrageenan-injected animals
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inflammation grade; median score 2 (IQR 1.5–2))
compared to vehicle-treated, carrageenan-injected ani-
mals (macrophage infiltration: 44.3 (38.0–50.6) %, p <
0.001 and p < 0.001, respectively; inflammation grade;
median score 3 (IQR 2–3), p < 0.05 and p < 0.01, re-
spectively) (Figs. 2a–f and 3b–c). No significant re-
duction in carrageenan-induced synovial angiogenesis
was observed following treatment with the TrkA in-
hibitor (Fig. 2g–i and Fig. 3d).

Effects of collagen-induced arthritis on pain behaviour
and joint pathology
Paw withdrawal to ankle compression occurred at lower
pressures in rats with CIA-induced arthritis than in
naïve animals (Fig. 4a). Immunisation with collagen was
associated with the expected increases in ankle diameter
(Fig. 4b) and histological evidence of synovitis, cartilage
damage, bone resorption, pannus and periosteal bone
formation (Figs. 5 and 6).

Fig. 2 Effects of selective tropomyosin-receptor-kinase A (TrkA) inhibitor AR786 on carrageenan-induced synovial inflammation and angiogenesis.
Saline-treated control animals demonstrate normal synovial lining layer thickness/cellularity (a), macrophage infiltration (d) and endothelial cell
(EC) proliferation (g). Four days after intra-articular injection of 2 % carrageenan there was an increase in synovial lining layer thickness/cellularity
(b), macrophage infiltration (e) and endothelial cell (EC) proliferation (h). Following treatment with AR786 (c, f, i), synovial lining layer thickness/
cellularity (c) and macrophage infiltration (f) were significantly reduced but not to saline control levels (a, d). EC proliferation was not significantly
affected following treatment with AR786 (i). Photomicrographs show synovial lining (black arrows) and cellularity as indicated by haematoxylin
and eosin staining (a–c), macrophages (purple/black) as delineated by immunoreactivity for CD68 (d–f) and EC (red) as delineated by immunoreactivity
for CD31 (blue arrows), proliferating nuclei (black), as delineated by immunoreactivity for proliferating cell nuclear antigen (PCNA) (green arrows), and
proliferating ECs (red arrows), which contain PCNA-immunoreactive nuclei (g–i). Bars= 100 μm
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Effects of the selective TrkA inhibitor AR786 on collagen-
induced pain behaviour, inflammation and joint damage
Treatment with AR786 reduced paw withdrawal to ankle
compression in rats with CIA-induced arthritis (mean
difference −115 (−193 to −36) g, p < 0.01 versus vehicle-
treated group, Fig. 4a). Reductions in pain behaviour
following AR786 were similar to those observed with
ibuprofen (mean difference −144 (−223 to −66) g, p <
0.001 versus vehicle-treated group).
AR786 inhibited ankle diameter increases from day 13

after collagen challenge (Fig. 4b). Overall, AR786 re-
duced the increase in ankle diameter observed in
vehicle-treated rats with CIA by 47 %, an effect of simi-
lar magnitude to that accompanying treatment with ibu-
profen. Treatment with AR786 significantly inhibited all
histological aspects of disease (Figs. 5 and 6). Treatment

with ibuprofen was also associated with reduced histo-
logical scores, although scores after ibuprofen remained
significantly higher than after AR786 for total score (p =
0.03), pannus (p = 0.02), cartilage damage (p = 0.007) and
bone resorption (p = 0.02) (Fig. 6).

Discussion
We have found that the novel TrkA selective inhibitor
AR786 reduced pain behaviour and inflammation associ-
ated with either carrageenan-induced or collagen-
induced synovitis, suggesting it has the effect of reducing
both sensitisation and inflammation. This indicates that
the beneficial effects of TrkA inhibition may thus be
more pronounced during conditions where the presence
of inflammation is fundamental to disease mechanism,
such as in arthritis [31]. Our findings also provide

Fig. 3 Effects of selective tropomyosin-receptor-kinase A (TrkA) inhibitor AR786 on carrageenan-induced joint inflammation. Rat knees were
injected with either 2 % carrageenan (triangles and diamonds) or saline (circles) on day 0 (dotted line). Twice-daily oral doses of 30 mg/kg AR786
(diamonds) or 5 % Gelucire vehicle (triangles) control were given 1 h prior to and 8 h after the carrageenan injection and then twice daily (each
pair of doses separated by 6 h) through day 4. Joint swelling (a) in carrageenan-injected knees was partially but significantly reduced following
treatment with AR786 (diamonds) when compared to the vehicle-treated carrageenan-injected animals (triangles) (increased AUC over saline-
injected, non-inflamed control knees 9.3 (95 % CI 8.4 to 10.1) mm/day versus 15.0 (95 % CI 13.4 to 16.6) mm/day, p < 0.001). Four days after
carrageenan injection, macrophage infiltration (b) and synovial lining layer thickness/cellularity (c) were partially reduced, although synovial
angiogenesis (endothelial cell (EC) proliferation index) (d) was not significantly affected in rats that were treated with AR786 compared with
vehicle-treated, carrageenan-injected controls. **p < 0.01, ***p < 0.001 versus vehicle-treated carrageenan-injected animals; ++p < 0.01, +++p < 0.001
versus saline-injected (non-synovitic) controls. Horizontal bars (c) represent median values
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evidence for the anti-inflammatory potential of TrkA in-
hibition. TrkA inhibition might therefore offer a novel
therapeutic strategy for reducing arthritis pain.
Both intra-articular carrageenan injection and CIA in-

duced pain behaviour in rats. Reduced paw withdrawal
thresholds to von Frey hair stimulation indicated allodynia
at a site distal to the carrageenan-injected knee. Similarly,
reduced pain thresholds in response to mechanical

stimulation have been observed distal to, and remote from
arthritic joints in human arthritis, reflecting abnormal
central processing in nociceptive pathways [46]. Both dir-
ect nociception and neuronal sensitisation might contrib-
ute to weight-bearing asymmetry in the carrageenan
model and to reduced paw withdrawal thresholds to ankle
pressure in the CIA model. Reduced pain behaviour fol-
lowing administration of AR786 is consistent with known
effects of NGF on neuronal sensitisation [47]. NGF block-
ade can lead to a reduction in pain behaviour without
blocking inflammation [25, 27, 28], as demonstrated using
various animal models of inflammatory or non-
inflammatory arthritis and different ways of inhibiting
NGF. Effects of NGF on receptors other than TrkA (e.g.,
p75) are incompletely understood, and the different anti-
inflammatory effects of TrkA inhibition and NGF block-
ade might reflect their different modes of action or the
specific type of inflammation present in the various ani-
mal models. Contribution of the NGF-TrkA pathway to
pain behaviour and joint pathology is also evident in
models of OA where administration of AR786 reduced
the pain and synovitis associated with OA [31]. In this
study, administration of AR786 reduced the synovial in-
flammation grade (measured using haemotoxylin-and-
eosin-stained sections) in the monosodium iodoacetate
(MIA) model of OA but not in the meniscal transection
(MNX) model of OA. These differences may be due to the
differing severity or mechanisms of inflammation for the
two models, and the more pronounced effects of TrkA in-
hibition on synovitis in the current study may be largely
dependent on the degree or mechanisms of inflammation
present. Our current findings extend those previously ob-
served in OA models to indicate that AR786 reduces
macrophage infiltration, a specific component of inflam-
mation. Future studies should explore possible additional
anti-inflammatory mechanisms in CIA, including any ef-
fects on specific immune responses and cytokine release.
Our findings suggest that pain is mediated by TrkA in

these acute and persistent inflammation models. Using
several different behavioural measures in two different
models of varying inflammation we highlight the poten-
tial of TrkA inhibition as a novel analgesic strategy in in-
flammatory arthritis.
Intra-articular carrageenan or CIA injection induced

synovitis, which was characterised by joint swelling and
increased synovial cellularity, macrophage infiltration
and EC proliferation. NGF expression is associated with
inflammatory disease activity in RA [48] and NGF/TrkA
might contribute to neurogenic inflammation in arthritis
[48] by increasing neuronal release of substance P and
calcitonin gene-related peptide [7]. Furthermore, NGF
might act directly on immune cells, and is a survival
and/or activation factor for B cells, eosinophils and
synovial fibroblasts [48–51]. Intra-articular injection of

Fig. 4 Effects of selective tropomyosin-receptor-kinase A (TrkA)
inhibitor AR786 on pain behaviour and ankle swelling following
collagen-induced arthritis (CIA). Rats were sensitised and challenged
to type II bovine collagen in incomplete Freund’s adjuvant. Oral
doses of 30 mg/kg AR786, twice daily or 35 mg/kg ibuprofen once
daily were administered from the day of collagen challenge. a On
day 17 pain was measured in the rats using a Randall Selito device.
CIA was associated with decreased force required to elicit a withdrawal
response. AR786 or ibuprofen each increased the force required to
elicit a response to values that did not differ significantly from non-
arthritic controls. b AR786 (diamonds) or ibuprofen (open squares) each
resulted in significant inhibition of ankle swelling compared to vehicle-
treated rats with CIA (triangles) (each p < 0.005), but the effect did not
reach control levels (circles) (each p < 0.007) (AUC (mm/day) vehicle-
treated non-arthritic control 22.6 (95 % CI 21.5 to 23.6), vehicle-treated
CIA 33.4 (95 % CI, 31.9 to 34.8), AR786-treated CIA 28.0 (95 % CI 26.1 to
30.0), ibuprofen-treated CIA 27.0 (95 % CI, 26.0 to 28.1); analysis of
variance F = 32.3, p < 0.001. *p < 0.05, **p < 0.01, ***p < 0.001 versus
vehicle (5 % Gelucire) controls
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NGF increased synovial EC proliferation [11], consistent
with pro-angiogenic actions of NGF [4, 49], and with
partial inhibition of carrageenan-induced synovial angio-
genesis antagonists of neurokinin-1 receptors for sub-
stance P [52]. However, NGF alone is a weak inflammogen
[50] and TrkA inhibition only partially inhibited synovitis
in the current study, indicating that other factors are also
important, as previously demonstrated for TNFα and
IL-1 [39, 40].
AR786 had disease-modifying effects in the rat CIA

model. These data were not entirely expected because an
anti-NGF antibody was previously shown not to reduce
joint damage in the Freund’s-adjuvant-induced model of
inflammatory arthritis (AIA) [28]. Administration of
AR786 also does not significantly affect osteochondral

pathology in models of OA [31]. Differences between
studies may reflect different mechanisms of inflammation
in OA, AIA [39, 51, 53] and CIA [39, 54], although all of
these models display pain behavior, which is sensitive to
inhibition of the NGF/TrkA pathway. The benefits of
AR786 for histopathological endpoints in the CIA model
are similar to those seen with TNF-alpha blockade, IL-
1RA or methotrexate [39, 40], although further research
would be required to determine the potential of TrkA in-
hibition for RA disease modification.
Our interpretations are subject to several limitations.

AR786 was shown through extensive testing to be highly
selective for TrkA [31], but we cannot completely ex-
clude effects on other molecular pathways. Further re-
search would be required to explore the possible effects

Fig. 5 Histological appearances of ankles from rats with collagen-induced arthritis treated with AR786 or ibuprofen. Untreated control animal
(a) displays normal synovium (S), whereas an ankle from a vehicle-treated arthritic animal (b) displays severe synovitis (S) and moderate cartilage
damage (large arrow) with mild pannus (small arrow) and bone resorption (arrowhead). P identifies very severe periosteal bone formation. c Ankle
from an arthritic animal treated with AR786 has marked synovitis (S) and mild cartilage damage (large arrow) with minimal pannus (small arrow)
and bone resorption. P identifies mild periosteal bone formation. d Ankle from an animal treated with 35 mg/kg ibuprofen has severe inflammation (S)
and moderate cartilage damage (large arrow) with mild pannus (small arrow) and bone resorption (arrowhead). P identifies moderate periosteal bone
formation. Toluidine blue stain
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of AR786 in established CIA or other models of human
inflammatory arthritis, and the precise cellular mecha-
nisms by which AR786 might inhibit inflammation.
However, similarities between reductions in pain behav-
iour in the current study, and findings with agents that
block NGF, both in animal models and in man, support
the selection of the NGF/TrkA pathway as a target for
arthritis pain. Animal models only approximately reflect
mechanisms of human arthritis, and the precise mecha-
nisms of arthritis pain remain uncertain, both in our rat
models, and in RA [52]. However, our findings support

further development of TrkA inhibitors for the treat-
ment of inflammatory arthritis pain. NGF blockade has
been associated with adverse events in clinical trials,
notably, but rarely, accelerated osteoarthritic structural
damage [55]. The underlying mechanisms are currently
unknown and although histological analyses in the
current study suggested beneficial rather than harmful
effects on joint structure, more detailed toxicology stud-
ies are warranted. It remains to be determined whether
inhibition of TrkA will fulfil the promise of early clinical
trials of NGF blockade, whilst avoiding adverse events.

Fig. 6 Effects of selective tropomyosin-receptor-kinase A (TrkA) inhibitor AR786 on ankle pathology following collagen-induced arthritis. Collagen-
induced arthritis was associated with increased total histological score (a), synovial inflammation (b), pannus formation (c), cartilage damage (d),
bone resorption (e) and periosteal bone formation (f). AR786 30 mg/kg orally twice daily from the time of collagen challenge was associated with
reduced total histological score and each of its components after 17 days. Ibuprofen 35 mg/kg orally once daily also significantly reduced total
histological scores, inflammation, pannus, cartilage damage and bone resorption sub-scores. Kruskal-Wallis statistics all >19, p≤ 0.0002. Comparisons
versus vehicle-treated arthritic animals, *p < 0.05, **p < 0.01, ***p < 0.001, and versus naïve controls +p < 0.05, ++p < 0.01, +++p < 0.001. Horizontal bars
represent median values
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Conclusions
In two separate models of varying knee pain, joint path-
ology and inflammation, we have demonstrated that NGF
receptor TrkA inhibition using AR786 can reduce pain
behaviour, joint damage and synovial inflammation. Our
data suggest for the first time that TrkA inhibitors exert
enhanced therapeutic benefit if inflammation is one of the
core mechanisms by which the disease progresses. TrkA
inhibition in our study, therefore, showed therapeutic po-
tential in models of painful knee inflammation.
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