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Abstract

and the effects of interferon-alpha at renal level.

Introduction: Type | interferons are pivotal in the activation of autoimmune response in systemic lupus
erythematous. However, the pathogenic role of interferon-alpha in patients affected by lupus nephritis remains
uncertain. The aim of our study was to investigate the presence of a specific interferon signature in lupus nephritis

Methods: We performed immunohistochemical analysis for MXA-protein and in situ hybridization to detect
interferon-alpha signature and production in human lupus nephritis. Through microarray studies, we analyzed the
gene expression profile of renal tubular epithelial cells, stimulated with interferon-alpha. We validated microarray
results through real-time polymerase chain reaction, flow cytometry on renal tubular epithelial cells, and through
immunohistochemical analysis and confocal microscopy on renal biopsies.

Results: Type | interferons signature was characterized by MXA-specific staining in renal tubular epithelial cells; in
addition, in situ hybridization showed that renal tubular epithelial cells were the major producers of interferon-alpha,
indicating a potential autocrine effect. Whole-genome expression profile showed interferon-alpha induced
up-regulation of genes involved in innate immunity, protein ubiquitination and switching to immunoproteasome.

In accordance with the in vitro data, class IV lupus nephritis showed up-regulation of the immunoproteasome subunit
LMP7 in tubular epithelial cells associated with type | interferon signature.

Conclusions: Our data indicate that type | interferons might have a pathogenic role in lupus nephritis characterized by
an autocrine effect of interferon-alpha on renal tubular epithelial cells. Therefore we hypothesize that inhibition of type
| interferons might represent a therapeutic target to prevent tubulo-interstitial damage in patients with lupus nephritis.

\ J

Introduction

Systemic lupus erythematous (SLE) is an autoimmune
disease characterized by the involvement of several or-
gans including kidneys, joints, nervous system, heart and
lung [1,2]. Lupus nephritis remains a common complica-
tion and a major determinant of the outcome in SLE pa-
tients [3]. The pathological manifestations of lupus
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nephritis are diverse and involve different renal compart-
ments, including glomeruli, tubules, interstitium and ves-
sels [3,4]. Next to glomerular injury, tubular damage has a
significant impact on prognosis and renal function [5].
Hyperactivation of dendritic cells (DC), in particular of
the plasmacytoid DC subset, plays a pivotal role in the
autoimmune response of SLE [6-9]. The serum of SLE
patients contains immune complexes with DNA or RNA
molecules that can induce the activation of plasmacytoid
DC, resulting in an increased production of interferon-
alpha (IFN-alpha) and migration to inflamed tissues
[10]. Interferons are ubiquitous cytokines and comprise
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three major classes: type I (alpha and beta), type II
(gamma) and type III (lambda), each type with its spe-
cific receptor and signal transduction pathways [11]. In-
terferons have a central role in the pathogenesis of
several autoimmune diseases, such as rheumatoid arth-
ritis, multiple sclerosis and diabetes [7].

Recently, we have demonstrated a tubulo-interstitial
plasmacytoid DC infiltrate in the kidney of patients with
lupus nephritis [12,13]. Tubulo-interstitial injury is con-
sidered to be an important predictor of renal damage in
lupus nephritis [4]. In this context, infiltrating leukocytes
might release inflammatory molecules that, in turn,
regulate nuclear factor-kB (NF-kB) activation, thus con-
tributing to the progression of tissue injury [3,5].

Despite the increasing evidence of a central role for
type I IFN in the pathogenesis of SLE, the role of IFN-
alpha in the development of lupus nephritis remains
uncertain [3,11]. Herein, we investigate the possible
pathogenic role of IFN-alpha in SLE patients affected by
lupus nephritis.

Methods

Immunohistochemistry

Renal tissue samples were obtained from sixteen SLE pa-
tients with lupus nephritis who underwent kidney biopsy
in the period 2005 to 2012 (eight classes I-II, eight class
IV). The study was approved by the Ethical Committee
of Azienda Ospedaliera Universitaria Consorziale Policli-
nico di Bari (study number: RF-1470765) and informed
consent was obtained from patients according to the
Declaration of Helsinki.

Paraffin-embedded sections of biopsies were deparaffi-
nized and underwent epitope unmasking by pressure-
cooking in citrate buffer (0.01 M, pH=6). Then the
slides were incubated with HyO5 (3%), triton (0.05%),
protein block solution (Dako Cytomation, Glostrup,
Denmark) and with the primary anti-LMP7 (1:500, Enzo
Life Sciences, Inc., Farmingdale, NY, USA) and anti-
MXA (1:200, Abcam, Cambridge, UK) antibodies. The
binding of the secondary biotinylated antibodies was de-
tected by the Dako Real EnVision Detection System,
Peroxidase/DAB kit (Dako Cytomation), according to
the manufacturer’s instructions. Visualization of peroxid-
ase was achieved by incubation in 3,3"-diaminobenzidine
(DAB) Chromogen Solution, producing a brown pre-
cipitate. The sections were counterstained with Mayer
hematoxylin (blue) and mounted with glycerol (Dako
Cytomation). Negative controls were obtained by sub-
stituting the primary antibody with a control irrelevant
immunoglobulin G (IgG). Digital images from the ex-
perimental glass slides were obtained using ScanScope
Digital Slide Scanner (Aperio, Vista, CA, USA) at a 20x
magnification and archived on the devoted Spectrum
Server V10.2.2.2315 (Aperio). Quality control of the
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scanned images and all further analyses were performed
using ImageScope V10.2.1.2315 (Aperio). Specific tubu-
lar LMP7 and MXA immunostaining was quantified
using Adobe Photoshop software and expressed as %
marked area/total area.

Hybridization in situ

Hybridization in situ (ISH) mRNA detection was per-
formed on 4 um-thick seriate sections from paraffin-
embedded human renal biopsies. Slides from SLE
patients with lupus nephritis (four classes I-II, four
classes IV) were deparaffinized in xylene and ethanol
solutions at room temperature and then fixed in 4%
paraformaldehyde for 15 minutes in the dark. The
permeabilization step was performed by incubating the
slides with Proteinase K (15 pg/ml) for 10 minutes at
37°C. Slides were dehydrated in new ethanol solutions
and washed in PBS pH 7.4 after each step.IFN-alpha
digoxigenin-labeled LNA™-enhanced detection probe
(Probe_IFNA_1/5DigN/TTTGCTTTCCTTCATGCACT
CT/3Dig_N/ -custom LNA™, Exiqon, Vedbaek, Denmark)
was denatured for 75 seconds at 80°C, then the hy-
bridization step was performed adding the probe diluted
40 nM in the hybridization mix (ISH Buffer, Mercury
LNA micro RNA ISH, Exiqon) in a humidified chamber
for one hour at 50°C. Hybridized slides were then
washed with Saline-sodium citrate buffer (SSC) at 55°C.
Positive and negative controls were obtained by incu-
bating serial sections with 5'-DIG labeled Scramble-
ISH and 5°-DIG labeled f3-actin LNA™ mRNA in situ
hybridization probes, respectively (5 moll, Exiqon).
Signal amplification was obtained with a specific kit (Mer-
cury LNA micro RNA ISH, Exiqon) following the manufac-
turer’s instructions. Hybridized slides were blocked with
blocking buffer for 30 minutes at room temperature and
then treated with sheep anti-DIG-AP (anti-Digoxigenin-AP,
Fab fragments, Roche Diagnostic GmbH, Mannheim,
Germany) diluted 1:800 in dilution buffer for one hour at
room temperature. Finally, slides were incubated with AP
substrate reagent (NBT/BCIP tablets, Roche Diagnostic
GmbH) for two hours at 30°C and then the reaction was
stopped with KTBT buffer. The sections were counter-
stained with Nuclear Fast Red and mounted with glycerol
(Dako Cytomation). Digital images from the experimental
glass slides were obtained using ScanScope Digital Slide
Scanner at a 20x magnification and archived on the de-
voted Spectrum Server V10.2.2.2315.

Confocal laser scanning microscopy

Paraffin-embedded human kidney sections and primary
human renal proximal tubular cells (RPTECs) were
stained or double stained for LMP7, MXA, p65, pNIK
(Santa Cruz Biotechnologies, Santa Cruz, CA, USA) and
BDCA2 (Miltenyi Biotec, Calderara di Reno, Italy). For
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each experiment, 3 x 10° cells were plated on a cover slip
and fixed in 3.7% paraformaldehyde. The slides were in-
cubated with the blocking solution, primary antibodies
(anti-LMP7 1:500; anti-MXA 1:200; anti-p65 1:100, anti-
pNIK 1:100 and anti -BDCA2 1:20) and the appropriate
secondary antibodies (Alexa Flour 488 and 555 goat anti
rabbit; Alexa Flour 555 and 488 anti mouse, Molecular
Probes, Eugene, OR, USA). All sections were counter-
stained with TO-PRO-3 (Molecular Probes). Specific
fluorescence was acquired using the confocal micro-
scope Leica TCS SP2 (Leica, Wetzlar, Germany) using a
63 objective lens.

Quantification of p65 and pNIK nuclear fluorescence
intensity was performed using Leica Software. We out-
lined cellular nuclei and then calculated the fluores-
cence intensity for p65 (green channel) and pNIK (red
channel) within the nuclei. At least 10 cells in three dif-
ferent fields from each slide were measured to obtain
the average quantification of nuclear signal intensity for
p65 and pNIK.

Cell culture

RPTECs were purchased from Lonza (Lonza Group Ltd,
Basel, Switzerland) and maintained in the recommended
medium, REGM (Lonza) containing renal epithelial cell
basal medium supplemented with human epidermal
growth factor (hEGF) 0.1%; hydrocortisone 0.1%; epineph-
rine 0.1%; insulin 0.1%; triiodothyronine 0.1%; transferrin
0.1%; gentamycin/amphotericin-1000 0.1% and fetal bo-
vine serum (FBS) 0.5%. Cells were used between passages
4 and 7 and were plated at a density of 350,000 cells/well
in six-well plates (Corning Life Sciences, Acton, MA,
USA). Human recombinant IFN alpha (14676-20 UG
Sigma-Aldrich, Milan, Italy) was applied to the RPTEC at
100 U/ml for 48 hours in microarray analysis and for
24 hours and 48 hours in real time polymerase chain reac-
tion (RT-PCR) and western blot at 100 U/ml for 48 hours
in flow cytometry analysis and for time-course in im-
munocytochemistry analysis. RPTEC were processed for
p65 and pNIK protein expression by immunofluorescence
and confocal analysis and for LMP7 and HLA protein ex-
pression by flow cytometry analysis. In different sets of ex-
periments RPTEC were lysed for RNA and protein
extraction.

Microarray analysis

Microarray analysis was performed as previously described
[14]. The Ilumina microarray data are MIAME (Minimum
Information About a Microarray Experiment) compliant
and the raw data are available under accession number
GSE48551 at the Gene Expression Omnibus (GEO). Raw
data were imported into the Genome Studio Data Analysis
Software and quality controls were performed. Genes dis-
playing differential expression between IFN-alpha treated
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cells and untreated cells were detected by the false dis-
covery rate (FDR) method of Storey and Tibshirani [15];
gene probe sets were sorted on the basis of the FDR,
(adjusted-P value with multiple testing on 1,000 permu-
tations) and fold-change. Only genes that were signifi-
cantly (adjusted-P value <0.05 and fold-change >2)
modulated were considered for further analysis. The
Gene Set Enrichment Analysis (GSEA) data-mining
technique was used to determine whether there was co-
ordinated differential expression or ‘enrichment’ in a set
of functionally related genes when comparing control
and experimental samples [16]. In the current study, sets
of a priori, user-defined functionally related genes were in-
cluded in the GSEA as well as normalized gene expression
data from IFN-alpha treated RPTEC versus control ana-
lyses. C2 curated gene sets from the Broad Institute, based
on prior biological knowledge, sharing a common function,
were used for the analysis. Significance of differential ex-
pression, as determined by the enrichment analysis, was
recalculated 1,000 times. A corrected P-value was obtained
from the analysis using the FDR g-value correction. On the
basis of this correction, the cutoff for significance was
established at a P-value <0.05. Microarray analysis was per-
formed using Gene Spring GX 11.0 (Agilent Technologies
Inc., Santa Clara CA, US).

RNA extraction and real time PCR analysis

Total RNA was isolated using the RNeasy Mini Kit
(Qiagen, Hilden, Germany) according to the manu-
facturer’s instructions and quantified by NanoDrop
ND-1000 Spectrophotometer (NanoDrop Technologies,
Inc.,, Wilmington, DE, USA). Its quality was assessed by
electrophoresis on agarose gel (1%). Then, 0.5 pg of total
RNA was used in a reverse transcription reaction using the
Quantitect reverse transcription Kit (Qiagen) according to
the manufacturer’s instructions. Quantitative RT-PCR was
performed on an iCycler Thermal Cycler (Bio-Rad Labora-
tories, Hercules, CA, USA) using the Hs_PSMBS8_1_SG,
Hs_DTX3L_1_SG and Hs_FBXO6_1_SG QuantiTect
Primer Assay (QIAGEN) in combination with SYBR
Green dye. The relative amounts of PSMB8, DTX3L
and FBXO6 mRNA were normalized to -actin mRNA
as housekeeping gene.

Immunophenotypic analysis
To analyze surface expression of HLA-I Ag, cells were
washed and resuspended in FACS buffer (phosphate-
buffered saline pH 7.2, 0.2% bovine serum albumin, and
0.02% sodium azide), then incubated with phycoerythrin
(PE)-conjugated-HLA-I (Beckman Coulter) for 15 mi-
nutes at 4°C, and finally washed with the same buffer be-
fore flow cytometry analysis.

For intracellular staining of LMP7, unconjugated mono-
clonal antibody (Enzo Life Sciences) was used. Intracellular
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staining was preceded by fixation and permeabilized with
Intraprep reagents (Beckman Coulter) and incubated for
25 minutes at 4°C with the primary antibody. Cells were
then washed and incubated with the secondary antibody
Alexa Fluor 488 (Molecular Probe) for 25 minutes.

Data were acquired using a FC500 (Beckmann Coulter)
flow cytometer and analyzed using CXP software. The
area of positivity was determined using an isotype-
matched monoclonal antibody, and a total of 10* events
for each sample were acquired.

Western blotting

Aliquots containing 20 pg of proteins from each lysate cells
were subjected to electrophoresis on a pre-cast 4% to 15%
polyacrylamide gel (BioRad, Hercules, CA, USA) and then
transferred to a polyvinylidene difluoride membrane (Trans-
Blot Turbo Midi PVDE, 0.2 uM; Biorad) by the Trans-Blot
Turbo transfer system (Biorad). Membranes were probed
with an anti-LMP7 antibody (1:800, Enzo Life Sciences) and
then incubated with secondary antibody. The same mem-
branes were then stripped and proteins were rehybridized
with anti-B-actin antibody (mouse; Sigma—Aldrich). Immune
complexes were detected by the ECL chemiluminescence
system (Amersham Pharmacia, Little Chalfont, UK), as rec-
ommended by the manufacturer. Images were acquired
using the ChemiDoc imaging system (UVDP, Cambridge, UK)
and quantified by Image ] 1.34 software. The intensity of
bands, corresponding to LMP7 proteins, was normalized to
the beta actin signal.

Statistical analysis

Data were expressed as mean * standard deviation (SD)
or standard error of the mean (SEM). Statistical analysis
was performed using paired, unpaired Student t-test, as
appropriate. Pearson’s correlation test was used to study
the association between two continuous variables. A P
value <0.05 was considered statistically significant. All
analyses were performed using GraphPad Prism 5.0
(GraphPad software, Inc., San Diego, CA, USA).

Results

Detection of IFN-alpha signature in renal biopsies of
patients affected by lupus nephritis

IFN-alpha has a pivotal role in the pathogenesis of auto-
immune response in SLE. Therefore, we analyzed renal
biopsies from SLE patients affected by lupus nephritis
to detect signs of IFN-alpha signaling at the renal level.
We used an antibody directed against MXA, a specific
protein induced by this type of IFN [17]. As expected
(Figure 1A-C), we found that plasmacytoid DC, the
major producer of IFN-alpha, stained positive for MXA
[17], especially in class IV lupus nephritis, as shown by
co-localization of MXA with BDCA2 (Figure 1A-C), a
marker of plasmacytoid DCs.
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When we analyzed patients with type I/II lupus neph-
ritis, MXA was barely detectable (Figure 1D). On the
contrary, we observed a strong expression of MXA at the
tubulo-interstitial level in patients with class IV lupus
nephritis (Figure 1E). In particular, MXA was detectable in
epithelial cells of proximal tubules (Figure 1G), as con-
firmed by Periodic acid—Schiff (PAS) staining that allows
us to distinguish the different structures of the kidney tis-
sue (Figure 1F). MXA was absent in glomeruli, blood ves-
sels and distal tubules (Figure 1E,G).

Detection of IFN-alpha mRNA in renal biopsies of patients
affected by lupus nephritis

To investigate the possible local synthesis of IFN-alpha,
we performed in situ hybridization to detect specific
mRNA expression (Figure 2). We found that IFN-alpha
mRNA was particularly expressed in tubular epithelial
cells at the intracellular level (Figure 2C,D; arrows) but
also on the luminal side of the tubules in the brush
border (Figure 2E; arrows) in patients with class IV
lupus nephritis. On the contrary, IFN-alpha mRNA ex-
pression was absent in class I/II (Figure 2F).

Analysis of gene expression profile of IFN-alpha-activated
RPTEC

Considering the local production of IFN-alpha by RPTEC
associated with the tubular type I IEN signature, we hy-
pothesized a possible autocrine effect of this type of IFN on
RPTEC. Therefore, we stimulated RPTEC with IFN-alpha
in vitro and compared their whole-genome expression pro-
files with control cells. Following stimulation, we observed
108 significantly up-regulated genes and only 7 down-
regulated genes with a fold-change >2 (FDR <0.05). Among
them, 12 genes belonged to the gene family coding for IFN-
inducible proteins, indicating that RPTEC were capable of
responding to IFN-alpha stimulation (Additional file 1).
Interestingly, IFN-alpha induced the expression of pivotal
genes in the innate immune system, such as complement
factor B, which has a critical role in the activation of com-
plement alternative pathway [18], and Toll-like receptor 3
(TLR3) that is primarily involved in the recognition of viral
dsRNA [19].

To determine whether there was a coordinated differen-
tial expression of a set of functionally related genes in IFN-
activated RPTEC, we performed a GSEA, identifying 123
processes differentially regulated by IFN-alpha. As ex-
pected, we identified as highly represented (FDR <0.05) the
genes involved in the IFN response pathway (Additional
file 2). In addition, IFN-alpha induced a coordinated differ-
ential expression of gene sets involved in antigen processing
and presentation, in response to hypoxia, transplant rejec-
tion and, finally, genes associated with SLE pathogenesis
(Table 1 and Additional file 2).
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Figure 1 Detection of IFN-alpha signature in renal biopsies of patients affected by lupus nephritis. (A-C) Infiltrating plasmacytoid DC in
class IV lupus nephritis were characterized with a double staining for MXA (green, A) and BDCA-2 (red,
(C, merge analysis). (D) Type | IFN-induced MXA protein was rarely detectable in class | lupus nephritis; (E) on the contrary, MXA positive tubular
epithelial cells and infiltrating leucocytes were detectable in class IV lupus nephritis. (F) PAS staining on a seriate tissue section of the same
specimen stained for MXA. (G) Immunohistochemistry analysis for MXA was performed on renal biopsies of eight patients for each group, as
described in the Methods section. DC, dendritic cells; PAS, Periodic acid-Schiff.

B), a specific plasmacytoid DC marker

Among over-expressed genes, we focused our atten-
tion on PSMBS, coding for LMP7 protein, a catalytic
subunit of the 20S immune-proteasomes (35i). LMP7 is
involved in antigen processing to generate class I
binding peptides and acts as a major component of IFN-
induced sensitivity. In addition, IFN-alpha induced up-
regulation of enzymes involved in protein ubiquitination
(DTX3L, FBOX6, UBA7 and UBE2L6), suggesting a sig-
nificant activation of antigen presentation pathways in
RPTECs (Additional file 1) and up-regulation of specific
sensors of viral dsSRNA (TLR3 and retinoic acid receptor
responder 3 (RARRES3); Additional file 1). We then per-
formed a pathway analysis (Ingenuity Pathway Analysis
(IPA), Additional file 3) showing that the identified
genes, next to the expected link with IFN-alpha signal-
ing, were also strongly connected with the activation of
NE-kB pathway.

Quantitative analysis of IFN-alpha induced genes involved
in antigen presentation pathways

We next performed, in a separate set of experiments,
RT-PCR to confirm and validate the increased expres-
sion of candidate genes identified by microarray ana-
lysis. PSMB8, DTX3L and FBOX6 genes showed a
significantly increased expression following IFN-alpha
stimulation (P <0.05; Figure 3A-C). We also quantified
intracellular tubular LMP7 by flow cytometer analysis and
western blotting. After 48 hours of activation, the synthesis
of B5i proteasome subunit LMP7 significantly increased
when compared to basal conditions as shown by flow cy-
tometry (Figure 3D) and by western blotting analysis
(Figure 3E). In addition, we performed phenotypic analysis
of HLA I expression on IFN-activated-RPTEC, confirming
the increased surface expression of HLA class I molecules
compared to basal conditions (Figure 3F; P <0.02).
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Figure 2 Identification of IFN-alpha mRNA in renal tubular epithelial cells of patients affected by lupus nephritis. (A) 3-actin and (B)
scramble mRNA expression on seriate sections of patients affected by class IV lupus nephritis, representing the positive and negative controls of
the ISH reaction, respectively. (C,D,E). ISH mRNA detection on renal biopsies showed that IFN-alpha mRNA was highly expressed in epithelial cells
of proximal tubules in patients with class IV lupus nephritis but it was absent in glomeruli, blood vessels and distal tubules. On the contrary, (F)
IFN-alpha mRNA was marginally expressed in class | lupus nephritis. ISH analysis was performed on renal biopsies of four patients for each group,

as described on Methods section. ISH, in situ hydridization.

Immunoproteasome subunit LMP7 induction in tubular
epithelial cells from SLE patients with nephritis

Moreover, we investigated whether the genes and the
relative proteins modulated in vitro by IFN-alpha were
also detectable in patients affected by lupus nephritis.
First, we investigated the presence of LMP7 by immuno-
histochemistry (Figure 4A to D). We observed that
LMP7 was expressed at very low levels in tubules of pa-
tients with class I/II lupus nephritis, without any expres-
sion in glomeruli and blood vessels (Figure 4A and C).
On the contrary, we found high LMP7 expression in
class IV lupus nephritis, mainly localized at the tubulo-
interstitial level (Figure 4B and D). Confocal microscopy
analysis showed that the co-localization of MXA with
LMP7 was present only in patients with class IV lupus
nephritis (Figure 4FI and L). Quantification of LMP7
and MXA protein expression by immunohistochemistry
analysis demonstrated that the difference between the
classes was statistically significant (Figure 4M).

Type | IFN signature is associated with nuclear
translocation of pNIK and p65 in tubular epithelial cells
As indicated in Additional file 3, the pathway analysis sug-
gested a possible role of IFN-alpha in the activation of the
NE-kB pathway in tubular epithelial cells. Therefore, we
tested the activation of canonical and non-canonical NF-
kB pathways in vitro by p65 and pNIK analysis [20]. At
basal conditions, p65 was detectable only in the cytoplasm

with low pNIK activation (Figure 5A). After five minutes
of stimulation with [FN-alpha, p65 and pNIK began to
move from the cytoplasm to the nucleus and completely
transmigrated in to the nucleus at 15 and 30 minutes
(Figure 5A). Interestingly, pNIK presented an intensive
migration to the nucleus upon IFN-alpha stimulation
[21,22] as indicated by confocal microscopy (Figure 5A).
Quantification of specific nuclear fluorescence indicated
that nuclear translocation of p65 and pNIK was statisti-
cally significant (Figure 5B).

Finally, the analysis of patients affected by class IV
lupus nephritis showed that p65 co-localized with MXA
(Figure 5C). Interestingly, both MXA and p65 were
homogeneously distributed within the cytoplasm, but
only p65 was present at the perinuclear and nuclear
level, indicating the translocation of p65 from the cyto-
plasm to the nucleus acting as a transcription factor and
activator of inflammatory signaling (Figure 5C).

Discussion

The major finding of the present study is the demonstra-
tion that patients affected by lupus nephritis showed
local production of IFN-alpha associated with a type I
IEN signature in RPTEC. Therefore, it might be possible
to hypothesize that locally produced type I IFN may act
with an autocrine effect on RPTEC leading to amplifica-
tion of the tubulo-interstitial damage in lupus nephritis.
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Table 1 Most significant processes differentially regulated in IFN-alpha treated RPTEC, identified by GSEA

(q values <0.05)

Gene set Total Genes found g-value [IFN] ES [IFN] NES [IFN]
genes vs [Control] vs [Control] vs [Control]
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 89 88 0.041 0.641 2.293
REACTOME_SIGNALING_IN_IMMUNE_SYSTEM 366 324 0.047 0415 1.815
PELLICCIOTTA_HDAC_IN_ANTIGEN_PRESENTATION_DN 49 49 0.041 0.683 2223
LINDSTEDT_DENDRITIC_CELL_MATURATION_A 54 54 0.041 0.665 2405
ZHANG_RESPONSE_TO_IKK_INHIBITOR_AND_TNF_UP 219 204 0.041 0.575 2153
SANA_TNF_SIGNALING_UP 75 72 0.041 0.829 2.201
DER_IFN_ALPHA_RESPONSE_UP 57 56 0.041 0.873 2.202
RADAEVA_RESPONSE_TO_IFNA1T_UP 32 31 0.047 0931 1.808
DER_IFN_BETA_RESPONSE_UP 82 79 0.041 0.792 2474
SANA_RESPONSE_TO_IFNG_UP 68 67 0.049 0.89%4 1.779
DER_IFN_GAMMA_RESPONSE_UP 58 57 0.041 0.830 2481
KEGG_ALLOGRAFT_REJECTION 38 38 0.041 0.680 2.254
KEGG_GRAFT_VERSUS_HOST_DISEASE 42 41 0.041 0.656 2.045
FLECHNER_BIOPSY_KIDNEY_TRANSPLANT_REJECTED_VS_OK_UP 88 84 0.041 0.645 2119
ICHIBA_GRAFT_VERSUS_HOST_DISEASE_D7_UP 133 91 0.041 0.771 2.359
ICHIBA_GRAFT_VERSUS_HOST_DISEASE_35D_UP 158 118 0.041 0.556 2132
MANALO_HYPOXIA_UP 208 194 0.044 0473 1877
MENSE_HYPOXIA_UP 99 87 0.041 0.642 1.897
ELVIDGE_HYPOXIA_UP 174 160 0.041 0.548 2.055
ELVIDGE_HYPOXIA_BY_DMOG_UP 132 122 0.041 0.581 2017
ELVIDGE_HIF1A_TARGETS_DN 92 83 0.041 0.660 201
ELVIDGE_HIFTA_AND_HIF2A_TARGETS_DN 105 95 0.041 0.598 2.068
KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 140 131 0.045 0.547 1.862
BENNETT_SYSTEMIC_LUPUS_ERYTHEMATOSUS 23 23 0.047 0.961 1.802

The role of IFN-alpha in the pathogenesis of SLE has
been demonstrated both in humans and in various ani-
mal models [7,11,23]. However, little is known about the
pathogenic mechanisms driven by IFN-alpha leading to
the induction and acceleration of lupus nephritis [3].
The pathogenic role of IFN-alpha was first described in
pioneer studies on circulating leukocytes from juvenile
SLE patients [9,24]. Further studies on micro-dissected
glomeruli demonstrated the increased expression of
genes directly regulated by type I IFN [25]. However,
when we stained renal tissues with an anti-MXA anti-
body, we found that the effects of type I IFN were mainly
detectable within the tubulo-interstitium and not at the
glomerular level. These data are in line with our previous
observation indicating that plasmacytoid DC, the major
producers of IFN-alpha, are mainly recruited at the
tubulo-interstitial level [12,13] and rarely detectable within
the glomeruli [13]. Plasmacytoid DC are activated by an
immune complex of SLE patients via TLR9, resulting in
high production of type I IEN [10]. An intra-renal activa-
tion of TLR was described and is mediated by an immune

complex acting on infiltrating macrophages and dendritic
cells [3]. Importantly, only a few drugs, such as hydroxyl-
chloroquine or glucocorticoids in pulse regimen, can
interfere with TLR activation in plasmacytoid DC, redu-
cing the production of IFN-alpha [26-29].

TLR activation may also occur on renal resident cells
including RPTEC, glomerular endothelium, mesangial
cells, and macrophages resulting in the production of
large amounts of proinflammatory cytokines, such as
type I IEN [3,11]. Interestingly, our data indicated that
RPTEC are the major producers of IFN-alpha in lupus
nephritis with a particular cellular localization of mRNA
transcript.

Effectively, mRNAs might be transported in different
subcellular regions for the synthesis of proteins directly
to the site of their function. This mechanism allowed the
correct distribution of proteins in polarized cells, such
as neurons, oocytes, early embryos and epithelial cells.
In particular, in polarized epithelial cells the apical or
basolateral localization of mRNA reduced cell trafficking
and allowed a rapid response to external stimuli [30,31].
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Figure 3 Quantitative analysis of IFN-alpha up regulated genes and proteins involved in antigen presentation pathways. Validation of
differential expression of PSMB8 (A), DTX3L (B) and FBOX6 (C) in RPTEC stimulated with IFN-alpha. Expression levels were quantified using
RT-PCR. The genes' relative expressions were normalized to the expression of 3 actin. The histograms represent the mean + SEM. The intracellular
expression of LMP7 was evaluated by flow cytometry analysis (D) (LMP7 48.09% + 2 basal versus 76.18% + 2, 48 hours, 100 U/ml INF-alpha) and
western blot analysis (LMP7 basal versus 48 hours, 100 U/ml INF-alpha P <0.02) (E). The surface expression of HLA | (F) in RPTEC stimulated with
IFN-alpha showed a significant increase of mean fluorescence intensity (Mnl) (19.5 + 3 basal versus 43.7 + 2, 48 hours, 100 U/ml IFN-alpha stimulation).
Data shown were gated on RPTEC cells and histograms were based on RPTEC staining with isotype control mAbs. The data presented for both HLA-I
and LMP7 are representative of three independent experiments performed using RPTEC cells (P <0.02 and P <0.05, respectively). mAbs, monoclonal

antibodies; RPTEC, renal proximal tubular cells; SEM, standard error of the mean.

The increased recruitment of plasmacytoid DC at the
tubule interstitial level [13] and the production of IFN-
alpha by RPTEC suggest the presence of specific type I
IEN triggers acting at the renal level, a process that
might lead to autocrine tubular activation, with produc-
tion of different mediators of tissue damage such as pro
inflammatory cytokines and chemokines [3,32]. More-
over, the induction of MXA in tubular epithelial cells
might indicate that these cells are more sensitive to IFN-
alpha compared to other resident cells [13].

How type I IFN might be pathogenic for kidney in SLE
patients is still debated [3,11]. In a mouse model of
lupus nephritis, the pathological lesions and the auto-
antibody response were significantly attenuated in mice
deficient in type I IFN receptors [33]. Interestingly, we
found that IFN-alpha can induce the expressions of in-
nate immune genes in RPTEC, such as complement

factor B and TLR3. The local production of complement
is also supported by infiltrating leucocytes [32] and
might have detrimental effects leading to further activa-
tion of tubular epithelial cells expressing C3a and C5a
receptors [18,26]. In addition, complement is capable of
further increasing the activation of infiltrating B and T
lymphocytes driving the local autoimmune response and
auto-antibody production [26]. Among the up-regulated
genes involved in our analysis, we then focused our at-
tention on genes involved in protein ubiquitination
(FBXO6, DTX3L) and in the assembly of immunoprotea-
some (PSMB8 gene codifying for LMP7 subunit). In par-
ticular, we focused our attention on LMP7 (upregulated
3.5 fold), because it belongs to a set of up regulated genes
that are part of the same biological process (antigen pres-
entation). In particular, this pathway was highlighted fol-
lowing the application of different statistical approaches
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Figure 4 Immunoproteasome subunit LMP7 induction in tubular epithelial cells from SLE patients with nephritis. Increased expression of
LMP7 was found in renal biopsies of patients with class IV lupus nephritis (B,D) compared to those with class I (A,C). LMP7 expression was found
at the tubular interstitial level but not on glomerular cells (G) and vessels (V). Co-localization of LMP7 (red H, K) and MXA (green G, J) in tubular

epithelium of patients with lupus nephritis was investigated by immunofluorescence/confocal microscopy (E-L). We found co-localization of
LMP7 and MXA in class IV lupus nephritis (F,I,L) but not in class I, where MXA was absent and LMP7 had very low expression (E); nuclei were
stained with TO-PRO-3 (blue); (L) zoom of figure F. (M) Quantification of immunohistochemical staining was carried out as described in Methods
section. The histograms represent the increased tissue expressions of MXA (P <0.0001) and LMP7 proteins (P <0.0001) in eight class IV lupus
nephritis patients compared to eight patients of class I/Il. SLE, systemic lupus erythematous.

(GSEA and the pathway analysis) and represented the bio-
logical process most representative in relation to the
pathogenesis of the autoimmune diseases. Consequently,
LMP7 was identified within the framework of biological
processes potentially linked SLE. Most antigenic peptides
presented by MHC (Major histocompatibility complex)
class I molecules are degraded by intracellular proteins via
proteasome. Under inflammatory conditions, the immuno-
proteasome replaces the standard proteasome, by inducing
the new subunits B1i, f2i, and 5i. Once assembled, immu-
noproteasome significantly contributes to the activation of
inflammation via NF-kB [34]. In fact, the LMP7 subunit of
immunoproteasome [35] and FBXO6 ubiquitin enzyme,
contribute to the increase of degradation of IKBa [20].

In addition, we identified an up-regulation of RARRES 3
that promotes phosphorylation of IKBa, as a first step to
the poly-ubiquitination and degradation [36,37]. The path-
way analysis indicated a central role of these IFN-regulated
genes in NF-kB activation by confirming the co-localization
of MXA and p65 in biopsies of patients with class IV lupus
nephritis. Particularly interesting is our finding of the nu-
clear translocation of pNIK upon IFN-alpha activation.
pNIK translocation has been involved in nucleosome regu-
lation by enhancing histone H3 phosphorylation [22], a
mechanism that might be particularly relevant for auto-
immune diseases [1,23]. Moreover, our data contribute to
give a new perspective to previous studies showing that
RPTEC can participate in immune responses within the
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Figure 5 Activation of NF-kB pathways in tubular epithelial cells with type I IFN signature. (A) RPTEC were stimulated at different time
points with IFN-alpha 100 U/ml and stained for p65 (green) and pNIK (red). At basal conditions both proteins were detectable only in the
cytoplasm; after five minutes of stimulation p65 and pNIK began to move from the cytoplasm to the nucleus with significant translocation after
15 and 30 minutes. (B) Specific p65 and pNIK fluorescence intensity inside the nuclei was quantified as described in Methods section. Data are
averages + SD for n= 10 cells from one field on one slide; *P <0.05 and °P <0.05 for comparison pNIK and p65 versus basal, respectively. The
images and results are representative of at least three independent experiments. (C) Double staining for MXA (green), p65 (red) and merge
analysis (yellow) on class IV lupus nephritis showing translocation of p65 from cytoplasm to nuclei. NF-kB, nuclear factor-kB; RPTEC, renal proximal
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kidney and may activate T cells by processing and present-
ing antigens in an immunogenic form [38].

Our findings indicating that IFN-alpha can induce
LMP7 in vitro and in vivo might also be clinically rele-
vant, since new therapies are currently available that
interfere with IFN-alpha signaling, but also with the
proteasome/immunoproteasome system [39]. Recent

evidence supports the use of proteasome inhibitors in
preventing lupus disease progression by targeting both
type I IEN activation and auto-antibodies production
by plasma cells [40]. It is important to consider that
LMP?7 can be induced by several cytokines and it might
be an interesting target for new therapeutic ap-
proaches. By using a specific LMP7 inhibitor in vivo, it
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was possible to suppress arthritis with production of
pro-inflammatory cytokines such as TNF-alpha and IL-
23 [41], opening new possibilities for the treatment of
autoimmune diseases.

Conclusions

In conclusion, our data indicate that a type I IFN signature
is detectable in infiltrating plasmacytoid DC and renal
tubular epithelial cells in SLE patients with nephritis, asso-
ciated with local synthesis of IEN-alpha by RPTEC. By this
autocrine loop, type I [FN might have a pathogenic role in
lupus nephritis activating pro-inflammatory and antigen
presentation pathways in RPTEC. Therefore, inhibition of
IFN-alpha signaling might represent a therapeutic strategy
to prevent tubulo-interstitial damage in patients with
lupus nephritis.
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modulated by IFN-alpha.

Additional file 3: Network analysis. This file contains the network
analysis showing IFN-alpha modulated genes involved in IFN signaling,
NF-kB pathway and antigen presentation.
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