
Yin et al. Genome Medicine           (2024) 16:11  
https://doi.org/10.1186/s13073-024-01286-8

RESEARCH

Genomic and transcriptomic analysis 
of breast cancer identifies novel signatures 
associated with response to neoadjuvant 
chemotherapy
Gengshen Yin1, Liyuan Liu1,2,3, Ting Yu4, Lixiang Yu1,2,3, Man Feng5, Chengjun Zhou6, Xiaoying Wang6, 
Guoxin Teng6, Zhongbing Ma1,2,3, Wenzhong Zhou1,2,3, Chunmiao Ye1,2,3, Jialin Zhang1, Changhua Ji6, 
Linfeng Zhao2,7, Peng Zhou1, Yaxun Guo1, Xingchen Meng8, Qinye Fu1,2,3, Qiang Zhang1,2,3, Liang Li1,2,3, 
Fei Zhou1,2,3, Chao Zheng1,2,3, Yujuan Xiang1,2,3, Mingming Guo1,2,3, Yongjiu Wang1,2,3, Fei Wang1,2,3*, 
Shuya Huang1,2,3* and Zhigang Yu1,2,3*    

Abstract 

Background  Neoadjuvant chemotherapy (NAC) has become a standard treatment strategy for breast cancer 
(BC). However, owing to the high heterogeneity of these tumors, it is unclear which patient population most likely 
benefit from NAC. Multi-omics offer an improved approach to uncovering genomic and transcriptomic changes 
before and after NAC in BC and to identifying molecular features associated with NAC sensitivity.

Methods  We performed whole-exome and RNA sequencing on 233 samples (including matched pre- and post-
treatment tumors) from 50 BC patients with rigorously defined responses to NAC and analyzed changes in the multi-
omics landscape. Molecular features associated with NAC response were identified and validated in a larger internal, 
and two external validation cohorts, as well as in vitro experiments.

Results  The most frequently altered genes were TP53, TTN, and MUC16 in both pre- and post-treatment tumors. 
In comparison with pre-treatment tumors, there was a significant decrease in C > A transversion mutations in post-
treatment tumors (P = 0.020). NAC significantly decreased the mutation rate (P = 0.006) of the DNA repair pathway 
and gene expression levels (FDR = 0.007) in this pathway. NAC also significantly changed the expression level 
of immune checkpoint genes and the abundance of tumor-infiltrating immune and stroma cells, including B cells, 
activated dendritic cells, γδT cells, M2 macrophages and endothelial cells. Furthermore, there was a higher rate 
of C > T substitutions in NAC nonresponsive tumors than responsive ones, especially when the substitution site 
was flanked by C and G. Importantly, there was a unique amplified region at 8p11.23 (containing ADGRA2 and ADRB3) 
and a deleted region at 3p13 (harboring FOXP1) in NAC nonresponsive and responsive tumors, respectively. 
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Background
Breast cancer (BC) is the most frequent malignancy and 
the leading cause of cancer-related deaths among women 
worldwide [1]. Neoadjuvant chemotherapy (NAC) is cur-
rently the standard treatment for high-risk early-stage, 
locally advanced or inoperable BC. NAC is performed 
before surgery to reduce tumor burden and test the sensi-
tivity of BC to treatment. Previous studies have indicated 
that response to NAC is significantly associated with the 
prognosis of BC patients [2, 3]. However, the benefit var-
ies from patient to patient.

If tumors are sensitive to NAC, optimal treatment 
strategies can be used to improve the outcome. It has 
been demonstrated that patients with pathologic com-
plete response (pCR) to NAC improve disease-free sur-
vival (DFS) and overall survival (OS) [2, 4–6]. This has 
made achieving pCR one of the main objectives of NAC. 
Unfortunately, pCR occurs only in a small proportion of 
BC patients, and differs significantly according to tumor 
subtypes [7]. Therefore, it is critical to identify patients 
who are most likely to benefit from NAC. To date, sev-
eral clinical biomarkers have been exploited in clinics 
to assess NAC response, including Ki-67 expression, 
tumor size and molecular subtype. Multiple predic-
tive molecular biomarkers have also been investigated 
in clinical trials involving neoadjuvant therapies. It has 
been shown that BRCA1/2 mutation status leads to a bet-
ter response to NAC in BC whereas PIK3CA and TEKT4 
mutations are associated with resistance to neoadjuvant 
therapy, including chemotherapy and targeted therapy 
[8–12]. Previous studies provide predictive biomarkers 
for screening patients who benefit from NAC, and lay 
the foundation for exploring new therapeutic targets for 
BC. However, owing to high heterogeneity and insuffi-
cient precision of BC, the prediction for NAC response 
still remains a big challenge in BC management. There-
fore, there is an urgent need to identify novel predictive 
molecular biomarkers that can further facilitate the selec-
tion of patients who are more likely to benefit from NAC.

Studies in bladder cancer, gastric cancer, ovarian can-
cer, and esophageal squamous cell carcinoma have shown 
that NAC can change the omics characteristics of tumor 
cells, which may further affect responses to subsequent 

therapy and patient prognosis [13–16]. In BC, simi-
lar studies have tended to focus on a single-level omics 
such as genomics or transcriptomics [17–19], rather than 
simultaneous multi-omics analyses, which are beneficial 
for a more comprehensive understanding of molecular 
changes in BC during NAC.

In the present study, we first established the genomic 
and transcriptomic profiles of breast tumors before and 
after treatment using a multi-omics characterization 
strategy that combined whole exome sequencing (WES) 
and RNA sequencing (RNA-seq) analyses. Molecular fea-
tures related to NAC sensitivity were further analyzed by 
integrating omics and clinical characteristics, followed by 
confirmation assays of potential biomarkers using in vitro 
cell line models or clinical validation cohorts.

Methods
Patient population and samples
This study included four datasets: three datasets enrolled 
BC patients who received NAC (the NACBC sequencing 
set, the internal NACBC validation set, and the external 
Gene Expression Omnibus (GEO) validation set) and the 
fourth dataset enrolled BC patients who received adju-
vant chemotherapy (the external The Cancer Genome 
Atlas (TCGA) validation set). Their characteristics are as 
follows.

In the NACBC sequencing set, eligible patients diag-
nosed with primary BC were treated with NAC, followed 
by surgery at The Second Hospital of Shandong Univer-
sity between March 2013 and August 2019. The inclu-
sion criteria were: (1) patients were newly diagnosed with 
histologically confirmed non-metastatic BCs; (2) patients 
received at least two cycles of NAC before surgery; (3) 
Biopsies samples before NAC, and surgical samples after 
NAC (if there was residual disease) could be collected 
(Fig. 1A). Pre-NAC samples were collected by biopsy. For 
the post-NAC samples collection, immediately after the 
residual disease was resected, the specimens were deliv-
ered to the Department of Pathology for gross and micro-
scopic examination. Post-NAC samples were collected 
without compromising the surgical pathological evalu-
ation of the resection specimen. The tissues were sub-
merged in RNAlater or frozen directly in liquid nitrogen 

Particularly, the CDKAL1 missense variant P409L (p.Pro409Leu, c.1226C > T) decreased BC cell sensitivity to docetaxel, 
and ADGRA2 or ADRB3 gene amplifications were associated with worse NAC response and poor prognosis in BC 
patients.

Conclusions  Our study has revealed genomic and transcriptomic landscape changes following NAC in BC, and iden-
tified novel biomarkers (CDKAL1P409L, ADGRA2 and ADRB3) underlying chemotherapy resistance and poor prognosis, 
which could guide the development of personalized treatments for BC.
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until further use. In this set, samples from 50 patients 
were used for WES and/or RNAseq. Forty-seven pre- and 
44 post-treatment tumor samples and matched germline 
DNA samples were analyzed by WES. Fifty pre- and 45 
post-treatment tumor samples were analyzed by RNA-
seq (Fig.  1B, Additional file  1: Fig. S1). This sequencing 
set was used to identify molecular changes following 
NAC and screen for molecular features associated with 
response to NAC in BC.

After NAC, the abundance of residual tumor cells in 
the primary breast tumor bed site was evaluated accord-
ing to the Miller–Payne (MP) histological grading sys-
tem [20]. It was performed on all patients according 
to the standard criteria by two independent, blinded 
pathologists. Tumors were classified into three groups: 
the responsive was defined when infiltrating cancer cells 
were significantly reduced by > 90% with only small clus-
ters or widely dispersed individual cancer cells, or there 
were no infiltrating cancer cells at the original tumor bed 
site (MP scores: 4 or 5); the middle responsive referred 
to those with a reduction of cancer cells between 30 and 
90% (MP scores: 3); and the nonresponsive were those 
with a reduction of tumor cells between 0 and 30% (MP 
scores: 1 or 2) (Figs. 1C and D).

Clinicopathological characteristics including age at ini-
tial diagnosis, tumor histologic type, tumor size, lymph 

node status, histologic grade, neoadjuvant therapies, 
and estrogen receptor (ER), progesterone receptor (PR), 
human epidermal growth factor receptor 2 (HER2), 
and Ki-67 status were collected. ER and PR status were 
assessed using immunohistochemistry (IHC), with 
positivity defined as ≥ 1% of tumor cells being positive 
immunostaining [21]. HER2 status was assessed using 
IHC and in situ hybridization (ISH) analysis if necessary. 
Positive HER2 status was determined as an IHC score of 
3 + (more than 10% tumor cells with intense, complete 
and homogeneous membrane staining of HER2) or a 
positive ISH result. Clinical tumor and lymph node stage 
before NAC were determined by an experienced physi-
cian through physical examination and ultrasonography 
by at least two independent radiologists.

In the internal NACBC validation set, a tissue micro-
array (TMA) was constructed from formalin-fixed paraf-
fin-embedded pre-treatment biopsies from patients who 
were diagnosed with primary BC and treated with NAC 
at the same center as the NACBC sequencing cohort 
between January 2013 and December 2018. Invasive 
cancer sites in donor paraffin blocks were identified by 
an experienced pathologist using matching hematoxy-
lin and eosin reference slides. Then, the TMA was con-
structed using 2 mm cores by a tissue microarray facility 
(3DHISTECH, Budapest, Hungary). After the TMA was 

Fig. 1  Study overview. A A schematic diagram of sample collection in the context of neoadjuvant chemotherapy (NAC), followed by whole 
exome sequencing (WES), RNA sequencing (RNA-seq), and data analyses. B The final number of samples in the NACBC sequencing set 
for analysis. All samples were acquired from 50 patients. In the pre-treatment group, there were 47 tumor samples for WES and 50 for RNA-seq. 
In the post-treatment group, there were 44 tumor samples for WES and 45 for RNA-seq. C Representative pathological images of tumors 
by hematoxylin–eosin staining from the responsive, middle responsive, and nonresponsive patients. Bar, 250 μm. D The distribution of patients 
with different Miller–Payne scores in the responsive, middle responsive, and nonresponsive groups
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fabricated, it was sectioned into 4-μm-thick tissue slices 
and stained with hematoxylin–eosin. The quality of the 
TMA was evaluated by two experienced pathologists. In 
the subsequent IHC analysis, cores without invasive car-
cinoma were excluded. The patient inclusion criteria were 
as follows: (1) with newly diagnosed, histologically con-
firmed non-metastatic BC; (2) received at least two cycles 
of NAC before surgery; (3) received a standard treatment 
(including surgery and chemotherapy); (4) with complete 
follow-up information available; (5) whose tumor tis-
sue on the TMA being confirmed as invasive carcinoma 
by hematoxylin–eosin staining; and (6) ADGRA2 and 
ADRB3 expression could be assessed. A final population 
of 156 patients was included in the NACBC validation 
set. Clinicopathological assessments of this validation 
set were the same as for the NACBC sequencing set. 
This validation set was used to analyze the relationship 
between ADGRA2 or ADRB3 protein expression and 
pathological response and prognosis of patients.

In the GEO validation set, the GSE25066 dataset was 
used to study genomic predictors of response and sur-
vival following neoadjuvant taxane-anthracycline chem-
otherapy in BC [22]. The GSE25066 is a combination of 
GSE25055 and GSE25065 datasets. Gene expression data 
were log2 transformed and scaled to a reference distribu-
tion of 1,322 BC specific genes. The GSE25066 dataset 
included a total of 508 patients with complete DFS event 
information; however, whether 20 of the patients had 
residual disease after NAC was unknown. We extracted 
the expression level of ADGRA2 and ADRB3 for analy-
sis with the cut-off values being determined by using the 
maximum Youden Index [23, 24]. This set was used to 
validate the relationship between ADGRA2 or ADRB3 
mRNA expression and pathological response and prog-
nosis of patients.

The TCGA validation set included 1,085 female BC 
patients. It was used to further validate the role of 
ADGRA2 and ADRB3 in chemotherapy response as 
did with the GSE25066 dataset. Therefore, only the 566 
patients who received chemotherapy and had prognos-
tic information available were analyzed for the mRNA 
expression in the present study. This validation set was 
used to analyze the relationship between ADGRA2 or 
ADRB3 mRNA expression and patient’s prognosis.

Isolation of genomic DNA and RNA
Total DNA was isolated from fresh frozen tissue sam-
ples using the QIAamp DNA Mini Kit (Qiagen, Hilden, 
Germany), and blood samples using the QIAamp DNA 
Blood Mini Kit (Qiagen). TRIzol reagents (Tiangen, Bei-
jing, China) was used to extract RNA from fresh frozen 
tumor tissue. The purity of total DNA and RNA were 
estimated by measuring the absorbances at 260 nm (A260) 

and 280  nm (A280) using a NanoPhotometer® spectro-
photometer (IMPLEN, Munich, Germany). The extracted 
DNA and RNA were considered pure and suitable for 
subsequent experiments when the A260/A280 ratio was 
within the range of 1.8 to 2.0. A mass ≥ 3 µg was consid-
ered to meet the experimental requirements for sequenc-
ing sample library construction. RNA samples were also 
tested by formaldehyde denaturing gel electrophoresis, 
wherein the rRNA ratio (28S/18S) needed to be ≥ 1.5, 
otherwise it meant that the RNA had degraded.

DNA sequencing
Qualified genomic DNA samples were prepared from 
tissue and peripheral blood samples for WES. Briefly, 
3 μg of DNA was sheared into short fragments of 150 to 
200  bp using an ultrasonicator Covaris M220 (Thermo 
Fisher Scientific, Waltham, MA, USA). Quality control 
was performed using a 2100 Bioanalyzer system (Agilent 
Technologies, Santa Clara, CA, USA) after fragmenta-
tion. The library was constructed using a KAPA Library 
Quantification kit (KAPA Biosystems, South Africa) and 
“SureSelectXT Human All Exon V6” (Agilent Technolo-
gies) according to the manufacturer’s protocol. The kit 
was used to enrich the 357,999 exons from the 21,522 
genes, covering approximately 60  Mb of the human 
genome. Validated DNA libraries were sequenced with 
paired-end runs on an Illumina NovaSeq 6000 (Illumina 
Inc., San Diego, CA, USA) by the CapitalBio (Beijing, 
China).

RNA sequencing
Library construction for RNA-seq was performed as 
described in the TruSeq RNA Sample Preparation Kit. 
Briefly, isolated total RNA was reverse-transcribed into 
cDNA with poly-dT primers using the Hifair® kit (Yeasen 
Biotech, Shanghai, China). The RNA-seq library was 
prepared by cDNA synthesis, end repair, 3′ adenylation, 
adaptor ligation, amplification, and product purification. 
Quality control was performed using the Agilent 2100 
Bioanalyzer (Agilent Technologies) with a DNA chip. 
After quantification with a NanoPhotometer® spectro-
photometer (IMPLEN), libraries were sequenced with 
paired-end runs on an Illumina NovaSeq 6000 (Illumina 
Inc.) by the CapitalBio.

WES data analysis
The fastp (v0.20.0) [25] was used to filter raw data. The 
specific conditions were as follows: the adapter in the 
sequence was identified and cut off in the read with a 
minimum length of the reserve being 100 bp. If a read 
with > 5% “N” bases and/or > 50% low-quality base, 
the entire pair of reads were removed. Valid sequenc-
ing data were aligned to the human reference genome 
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(GRCh38) using the Burrows–Wheeler Aligner (v0.6.1) 
[26], and the resulting BAM files were preprocessed 
using the Sentieon (v202010). Sequencing quality sta-
tistics were obtained using the fastp. The average tar-
get sequencing coverage depth of tumor and matched 
germline samples was approximately 100 × .

To identify all somatic variants in the samples, we 
used two pipelines (Sentieon TNseq and TNscope) 
[27] to detect for single nucleotide variants (SNVs) 
and indels, and matched normal samples were used to 
exclude germline variations. Somatic mutations were 
annotated using the ANNOVAR (v20160201) [28]. 
To obtain the accurate mutation call set, two caller 
consensus mutations were performed for additional 
filtering. The bcftools v1.10.2 [29] (https://​github.​
com/​samto​ols/​bcfto​ols) was used for further filter-
ing to reduce false positive calls with the following 
criteria: (1) quality score ≥ 20; (2) FisherStrand ≤ 60.0; 
(3) StrandOddsRatio ≤ 3; (4) sequencing depth in 
the region ≥ 30; (5) sequence reads in support of 
the variant call ≥ 2; and (6) variant allele frequency 
(VAF) ≥ 0.05.

Based on the somatic mutation data, we conducted 
somatic mutation signature analysis using the decon-
structSigs1.9.0 R package with the default parameters 
[30, 31]. The COSMIC signatures were used as the 
reference to annotate the identified signatures. The 
MuSiC2 was used to explore significantly mutated 
genes (false discovery rate [FDR] < 0.1) [32]. Tumor 
mutation burden was calculated by the Maftools R 
package [33]. When calculating tumor mutational 
burden and analyzing mutations related to chemo-
therapy sensitivity, only mutations with the follow-
ing functional classifications were considered [34–36]: 
frame_shift_del, frame_shift_ins, in_frame_del, in_
frame_ins, missense_mutation, nonsense_mutation, 
nonstop_mutation, splice_site, and translation_start_
site. Somatic copy number alterations (SCNAs) were 
detected using the CNVkit [37], and genomic regions 
with significant amplifications or deletions in the sam-
ples were summarized by the GISTIC2.0 [38]. Tumor 
purity was estimated by the ABSOLUTE [39].

Germline variants were identified using the Sen-
tieon Haplotyper tool [40]. The ClinVar database was 
used to annotate known pathogenic and likely patho-
genic variants. The 28 cancer predisposition genes 
[41] were evaluated. They include 12 established breast 
cancer–predisposition genes (ATM, BARD1, BRCA1, 
BRCA2, CDH1, CHEK2, NF1, PALB2, PTEN, RAD51C, 
RAD51D, and TP53) and 16 candidate predisposi-
tion genes (BLM, BRIP1, CDKN2A, ERCC3, FANCC, 
FANCM, MLH1, MRE11A, MSH2, MSH6, NBN, 
RAD50, RECQL, RINT1, SLX4, and XRCC2).

RNA‑seq analysis
Raw data were filtered following standard pipelines, and 
reads that did not meet the analysis criteria were deleted 
by fastp. The HISAT2 [42] was then used to map the fil-
tered data to the human reference genome (GRCh38). 
Finally, the FeatureCounts [43] and StringTie [44] were 
used to perform transcript reconstruction and statistics 
on the basis of the reads-reply results.

Differentially expressed genes between subgroups were 
identified using the DESeq2 R package [45]. For compari-
sons between pre- and post-treatment samples, we per-
formed a paired analysis on the basis of patient IDs. The 
WebGestalt 2019 [46] was used for the gene set enrich-
ment analysis [47]. Transcripts per million (TPM) was 
used to measure the expression levels of genes, and the 
composition of immune and stroma cells were calculated 
using the xCell [48].

Cell culture and chemicals
The human BC cell line HCC1806 was purchased from 
the BeNa Culture Collection (Kunshan, China). BT-549, 
MDA-MB-231, MDA-MB-453, SK-BR-3, T47D, BT-474, 
and MCF-7 cells were purchased from the Zhong 
Qiao Xin Zhou Biotechnology Co. (Shanghai, China). 
HCC1806, MDA-MB-231, MDA-MB-453, T47D, and 
BT-474 cells were maintained in RPMI 1640 medium 
(Corning Inc., Corning, NY, USA) supplemented with 
10% fetal bovine serum (FBS; ExCell Bio, Shanghai, 
China) and 1% penicillin and streptomycin (Solarbio, Bei-
jing, China). MCF-7 cells were cultured in MEM medium 
(Corning Inc.) supplemented with 10% FBS, 1% penicil-
lin and streptomycin, and 0.005  mg/mL bovine insulin 
(Solarbio). SK-BR-3 cells were cultured in McCoy’s 5a 
medium (Macgene, Beijing, China) supplemented with 
10% FBS and 1% penicillin and streptomycin. BT-549 
cells were cultured in RPMI 1640 medium supplemented 
with 10% FBS, 1% penicillin and streptomycin, and 
0.023 IU/mL insulin (Beyotime, Shanghai, China). All cell 
lines were cultured at 37 °C in a humidified atmosphere 
containing 5% CO2. All cell lines were authenticated by 
the Shanghai Biowing Applied Biotechnology Co. Ltd. 
(China) using a short tandem repeat profiling analysis 
before conducting experiments. Assessments of myco-
plasma contamination using the MycoBlue Mycoplasma 
Detector (Vazyme, Nanjing, China) were performed prior 
to performing experiments to confirm that the cells used 
for experiments were free of mycoplasma contamination.

Cell infection
The CDKAL1 wild type and mutant (CDKAL1P409L) 
cDNAs were cloned into the pCDH-CMV-MCS-EF1-
BSD vector. The CENPT wild type, and CDKAL1P409L 
mutants (CENPTR122G, and CENPTP442L) cDNAs were 

https://github.com/samtools/bcftools
https://github.com/samtools/bcftools
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cloned into the pLenti-C-Myc-DDK-IRES-Puro vector. 
These two lentiviral vectors were purchased from the 
BioSune Biotechnology Co. Ltd. (Shanghai, China). Viral 
particles were prepared by transfecting HEK293T cells 
with the constructed or control plasmids in combina-
tion with packaging vectors using Lipofectamine 3000 
transfection reagents (Invitrogen, Waltham, MA, USA). 
The cell supernatant was collected at 48 and 72  h after 
transfection. After the supernatant was filtered through a 
0.45-μm filter, it was ultracentrifuged at 11,000 × g for 3 h 
at 4  °C using an Optima XPN-80 ultracentrifuge (Beck-
man Coulter, Brea, CA, USA). After ultracentrifugation, 
virus pellets were resuspended in PBS. Finally, a concen-
trated virus solution (plus polybrene) was used to infect 
cells 48 h before selection with the appropriate antibiotic.

Quantitative real‑time PCR (qPCR)
Total RNA was prepared from cells using a TRIzol rea-
gent (Invitrogen) and reverse-transcribed to cDNA using 
the HiScript®III RT SuperMix for qPCR (+ gDNA wiper) 
kit (Vazyme). Primers are listed as follows: 5′-CTG​
CTG​CAT​CTC​AGT​GTG​AC-3′ (forward) and 5′-TCC​
TCA​GCG​CAC​AGT​CTT​GA-3′ (reverse) for CDKAL1; 
5′-GCC​TCT​TCC​CTC​ACC​AGA​TCC-3′ (forward) and 
5′-CAC​AAT​GTT​TGG​AGG​AGC​CAG-3′ (reverse) for 
CENPT; 5′- CAT​GTA​CGT​TGC​TAT​CCA​GGC-3′ (for-
ward) and 5′- CTC​CTT​AAT​GTC​ACG​CAC​GAT-3′ 
(reverse) for ACTB. qPCR was performed on a QuantS-
tudio 5 Real-Time PCR Instrument (Thermo Fisher Sci-
entific) using a 2 × Universal SYBR Green Fast qPCR Mix 
(ABclonal, Wuhan, China). ACTB was used as the inter-
nal control, and the relative expression of target genes 
was calculated using the 2−ΔΔCt method.

Protein extraction and western blot analysis
To obtain whole-cell protein extracts, cells were lysed 
with 1 × SDS-PAGE Sample Loading Buffer (Beyo-
time). The cell lysates were denatured for 5 min at 95 °C. 
Equal amounts of proteins from cell lysates were elec-
trophoresed on SDS-PAGE and transferred to polyvi-
nylidene difluoride membranes (Millipore, Burlington, 
MA, USA). After blocking with 5% non-fat milk, the 
membranes were incubated with the indicated primary 
antibodies overnight at 4  °C, and then with horserad-
ish peroxidase (HRP)-labeled secondary antibody at 
room temperature for 1 h. The membranes were washed 
three times (5  min per wash) with Tris-buffered saline 
containing Tween-20 (TBST) before and after antibody 
incubations. Finally, chemiluminescent HRP substrate 
(Millipore) was added to the membranes, and immu-
noreactive bands were detected by a chemiluminescent 
imaging system (Tanon, Shanghai, China). All experi-
ments were repeated at least three times. The primary 

and secondary antibodies used in this study were as fol-
lows: CDKAL1 (Cat# ab169531, AbCam, Cambridge, 
UK), CENPT (Cat# ab86595, AbCam), β-actin (Cat# 
AC026, ABclonal), and HRP-AffiniPure Goat Anti-Rab-
bit IgG (H + L) (Cat# 111–035-003, Jackson ImmunoRe-
search, West Grove, PA, USA).

Cell proliferation assays
For proliferation assays, a CCK-8 cell counting kit 
(Dojindo, Kumamoto, Japan) was used to assay the cell 
viability. Infected cells were plated in 96-well plates with a 
final volume of 100 μL of growth medium and incubated 
overnight under 5% CO2 at 37  °C. Ten drug concentra-
tions were freshly prepared according to the half-log 
dilution method (10,000-fold range, docetaxel: 0–1  μM, 
epirubicin: 0–20  μM). The cells were treated with dif-
ferent concentrations of docetaxel (MedChemExpress, 
Houston, TX, USA) and epirubicin (MedChemExpress) 
with five replicates per condition. After 48 h, the CCK-8 
assay was performed by incubating cells with a CCK-8 
reagent for 2 h at 37 °C, and measuring the absorbance at 
450 nm with an Infinite 200 PRO plate reader (TECAN, 
Männedorf, Switzerland). These data were used to cal-
culate the cell viability at different drug concentrations. 
The growth and dose inhibition curves were plotted and 
analyzed using the GraphPad Prism 8.3.0 (GraphPad 
Software, Inc., San Diego, CA, USA). The IC50 values 
were determined by nonlinear regression analysis of the 
plots of the percentage of growth inhibition vs. the log of 
inhibitor concentrations. All experiments were repeated 
at least three times, and data are expressed as mean ± SD.

IHC
In IHC analyses, the EnVision method was used to 
assess the expression of ADGRA2 and ADRB3. Briefly, 
the TMA was sectioned into 4-μm-thick tissue sections. 
After deparaffinization, rehydration, antigen retrieval 
using the PT Link for Pre-Treatment reagent (Agilent 
Technologies), and blockage of endogenous peroxidase 
activity, the sections were incubated with the rabbit anti-
ADGRA2 (1:40; Cat# ab198817, Abcam) or rabbit anti-
ADRB3 (1:50; Cat# ab140713, Abcam) antibodies for 1 h 
at room temperature, followed by incubation with a sec-
ondary antibody (Cat# SM802, DAKO, Glostrup, Den-
mark) for 20 min at room temperature. Negative controls 
only included the antibody dilution buffer (DAKO, Cat# 
DM830) without a primary antibody. The staining was 
assessed independently by two pathologists blinded to 
patient information. The IHC scoring was based on the 
proportion and intensity of positively stained invasive BC 
cells on slides. The proportion of positive tumor cells was 
recorded as a percentage. The intensity scores represent 
the average staining intensity of the positive tumor cells 
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(negative = 0; weak staining = 1; moderate staining = 2; 
and strong staining = 3). The proportion and intensity 
scores were then multiplied to obtain a total IHC score, 
which ranges from 0 to 300. According to whether the 
patient had a DFS event (as a judgment standard), we 
analyzed the receiver operating characteristics (ROC) 
curve of ADGRA2 and ADRB3 expression. The maxi-
mum Youden Index was again used to determine the 
optimal cut-off value to divide patients into high and 
low expression groups. An IHC score ≥ 70 for ADGRA2 
and ≥ 80 for ADGRA3 was considered high expression.

Statistical analyses
The Student’s t-test and Wilcoxon test were used to com-
pare continuous variables, while the Pearson’s chi-square 
test and Fisher’s exact test were used to compare unor-
dered categorical variables. The log-rank test was used 
to compare differences in breast cancer-specific sur-
vival (BCSS) and DFS between patients with a high and 
low expression of ADGRA2 and ADRB3. Cox regression 
models were used to estimate the HRs at 95% CIs for 
BCSS and DFS events associated with the expression of 
ADGRA2 and ADRB3. Age and Ki-67 level were adjusted 
as continuous variables; menopausal status, endocrine 
therapy, radiotherapy, and other clinical factors (cT, cN, 
histological grade, ER status, PR status, HER2 status) 
were adjusted as categorical variables. All statistical anal-
yses were performed using the R packages version 4.2.0 
(https://​cran.r-​proje​ct.​org/) and the SPSS version 23.0 
(IBM, Armonk, NY, USA). P < 0.05 were considered sta-
tistically significant and P < 0.1 marginally significant.

Results
Characteristics of BC patients treated with NAC 
in the sequencing set
To investigate the genomic and transcriptomic features of 
tumors before and after NAC, we enrolled 50 BC patients 
who received NAC in the NACBC sequencing set for this 
study (Figs. 1A and B). The median age at diagnosis was 
49 years (range: 27–68 years). The stages of BCs at diag-
nosis were stage I (n = 4), stage II (n = 41), and stage III 
(n = 5). ER, PR, and HER2 positive patients accounted for 
82%, 56%, and 40% of the cohort, respectively. Among 
them, 82% (41/50) patients received a taxane-based regi-
men as first-line treatment (Additional file  2: Tables S1 
and S2).

Changes in somatic mutation and copy number variation 
between paired pre‑ and post‑treatment tumors
There were no statistical differences in tumor purity 
among the 44 paired pre- and post-treatment tumors 
(Fig.  2A). We further analyzed the somatic mutation 
and copy number variation (CNV) landscape changes 

between tumors in response to NAC. We identified 
15,499 somatic SNVs (median: 139.5) and 598 somatic 
small indels (median: 4) in the pre-treatment tumors, and 
27,458 nucleotide substitutions (median: 134) and 770 
small indels (median: 5) in the post-treatment tumors. 
SNV analysis showed that C > T substitutions occurred 
more frequently than any other SNVs in all the tumors 
and that the fraction of transversion mutations (C > A) 
was reduced after NAC (P = 0.020, Additional file  1: 
Fig. S2). We examined the mutational signature weights 
among the Catalogue of Somatic Mutations in Cancer 
(COSMIC) signatures based on the frequency of 96 dif-
ferent possible trinucleotide substitutions. However, we 
did not detect any statistically significant changes in the 
COSMIC mutational signatures in the cohort (Additional 
file 1: Fig. S3, Additional file 2: Table S3).

In total, 4,433 and 6,767 nonsynonymous mutations 
were identified in the 44 paired pre- and post-treatment 
tumors, respectively. There were no statistically signifi-
cant changes in mutation loads in the cohort (Fig.  2B), 
and the most frequently altered genes were TP53, 
TTN, and MUC16 in both pre- and post-NAC samples 
although the change of these three genes was not statis-
tically significant (Fig. 2C). However, compared with the 
pre-treatment tumors, CNR2, KIAA1549, and CCDC168 
gene mutations were solely observed in the post-treat-
ment tumors under the pressure of chemotherapy 
(P < 0.05, Additional file 2: Table S4). We next performed 
gene set enrichment analyses on the Molecular Signa-
tures Database (MSigDB) of hallmark gene sets and iden-
tified that three pathways were significantly affected by 
mutations. The mutation rates of the DNA REPAIR and 
PROTEIN SECRETION pathways significantly decreased 
in the post-treatment tumors. Of the 44 paired pre- and 
post-treatment tumors, 29 pre-treatment and 16 post-
treatment tumors contained gene mutations in the DNA 
REPAIR pathway (P = 0.006, Fig. 2D) while there were 14 
pre-treatment and 4 post-treatment tumors contained 
gene mutations in the PROTEIN SECRETION pathway 
(P = 0.042, Fig.  2D). Conversely, a higher mutation rate 
of ANGIOGENESIS pathway was observed in the post-
treatment group (4 out of 44) than in the pre-treatment 
group (11 out of 44) (P = 0.047, Fig. 2D).

SCNA analyses identified 13 amplifications and 23 
deletions in the pre-treatment tumors, and 13 amplifi-
cations and 18 deletions in the post-treatment tumors 
(Additional file  1: Fig. S4A). Of them, 4 amplifications 
(1q21.3, 11q13.3, 15q26.3, and 17p11.2) and 11 deletions 
(1p36.31, 1q44, 2q37.3, 3p14.1, 6p22.1, 6q27, 8p23.3, 
11q12.1, 12p13.2, 13q34, and 15q13.3) only occurred in 
the pre-treatment tumors. In addition, 4 amplifications 
(2p11.2, 8q24.3, 11q13.4, and 11p15.4) and 6 deletions 
(1q43, 4q35.1, 5p15.33, 6p21.33, 6q22.33, and 16p13.11) 

https://cran.r-project.org/
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were specifically detected in the post-treatment tumors 
(Additional file  1: Fig. S4B). The 4q35.1 region contains 
the CENPU gene, whose mRNA expression was also 
downregulated in post-treatment tumors (Additional 
file 1: Fig. S4C).

Changes in gene expression and cell composition 
following NAC
Differential gene expression analyses between the 
paired pre- and post-treatment tumors identified 
1,130 differentially expressed genes (DEGs), including 

705 upregulated and 425 downregulated genes (fold 
change > 2, FDR < 0.05, Fig. 3A). Compared with the pre-
treatment tumors, gene enrichment analyses showed 
that gene sets associated with cell cycle progression 
(FDR < 0.001) and DNA repair were significantly down-
regulated (FDR = 0.007), whereas gene sets associated 
with response to hypoxia/HIF1A targets (FDR < 0.001) 
and KRAS signaling (FDR < 0.001) were upregulated in 
the post-treatment tumors (FDR < 0.01, Fig. 3B).

We further analyzed the cell composition of each tumor 
using the xCell algorithm [48] and compared the changes 

Fig. 2  Changes in gene mutation, mutation burden, and the MSigDB pathway between the paired pre- and post-treatment tumor samples. 
Comparison of tumor purity (A) and mutation burden (B) between the 44 paired pre- and post-treatment tumors. P values are calculated 
based on the Wilcoxon signed-rank test. C The most frequently mutated genes before and after NAC. D Mutations associated with the MSigDB 
pathway in the pre- and post-treatment tumors. Bars on the top indicate the number of pathways affected in a given patient, and colored bars 
indicate if the variant was only found in the pre- or post-treatment tumors, or shared in both. P values in panels C and D are calculated based 
on the Pearson’s chi-square test; **P < 0.01, *P < 0.05
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between the pre- and post-treatment tumors based on 
the Wilcoxon signed-rank test. The results indicated 
that after NAC, the fractions of B cells (P < 0.001), acti-
vated dendritic cells (aDCs, P = 0.002), and gamma delta 

T cells (γδT cells, P < 0.001) were decreased (Fig.  3C), 
whereas the fractions of M2 macrophages (P = 0.005), 
and endothelial cells (P < 0.001) were increased in the 
post-treatment tumors (Fig.  3D). We next compared 

Fig. 3  Changes in gene expression, tumor-infiltrating immune and stromal cell composition following NAC. A Volcano plots showing differentially 
expressed genes (DEGs) between the matched pre- and post-treatment tumors. Significant DEGs are shown as red (upregulated) and blue 
(downregulated) dots (fold change > 2, FDR < 0.05). B Significantly down and up-regulated pathways following NAC (FDR < 0.01). C, D The fractions 
of B cell, M2 macrophage, activated dendritic cell (aDC), endothelial cell, and gamma delta T (γδT) cell in the pre- and post-treatment tumors. P 
values are calculated based on the Wilcoxon signed-rank test. E–G The expression of DEGs was significantly related to positive regulations of γδT cell 
activation (E), antigen processing and presentation (F), and angiogenesis (G) between the pre- and post-treatment tumors. Values are presented 
as paired fold changes of post-/pre-treatment. P values were calculated by the Wilcoxon signed-rank test. ***P < 0.001, **P < 0.01, *P < 0.05
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the expression of immune checkpoint molecules and 
genes in antigen processing/presentation, positive regu-
lation of γδT cell activation, and angiogenesis path-
ways in the pre- and post-treatment tumors. The results 
showed that compared with the pre-treatment tumors, 
the expression of LAG3 gene was significantly decreased 
(P = 0.024), while the expression of SIGLEC15 was sig-
nificantly increased (P < 0.001) in the post-treatment 
tumors (Additional file  1: Figs. S5A and B). Marginal 
downregulation of CTLA4 (P = 0.05), PD-L1 (P = 0.072), 
and PD-1 (P = 0.067) genes were also observed in the 
post-treatment samples (Additional file  1: Figs. S5C-E). 
Most of the genes related to antigen processing and pres-
entation (70%), and positive regulation of γδT cell activa-
tion (80%) were significantly downregulated (all P < 0.05, 
Figs. 3E and F; Additional file 2: Table S5), while 84.62% 
of genes related to the angiogenesis pathway were upreg-
ulated in the post-treatment tumors (all P < 0.05, Fig. 3G, 
Additional file 2: Table S5). We further analyzed the cell 

component fraction changes in subgroups with different 
degrees of NAC responses in the post-treatment tumors. 
A decrease in B cell fraction was observed in the middle 
responsive and nonresponsive groups, and a decrease in 
aDCs composition was only detected in the nonrespon-
sive group (Additional file 1: Fig. S6).

Somatic mutational analyses identify CDKAL1P409L 
mutation decreases NAC sensitivity in BC
To screen for molecular features related to NAC suscep-
tibility, we compared the genomic differences between 
the nonresponsive (n = 16) and responsive (n = 11) groups 
of the pre-treatment tumors by analyzing the WES data. 
We observed no statistically significant differences in 
mutational loads between the two groups (Fig.  4A). 
Among the six possible base pair substitutions, the pro-
portion of C > T substitutions was lower in the respon-
sive group (39.35%) compared with the nonresponsive 
group (48.89%, P = 0.020, Fig.  4B), especially when the 

Fig. 4  Mutation signatures in the pre-treatment tumors. Comparison of tumor mutation burden (A) and nucleotide substitutions (B) 
between the nonresponsive and responsive groups. C Distributions of the 10 main COSMIC signatures in the different NAC responsive groups 
across the 47 pre-treatment samples (left). Comparison of the relative weights of the signature 3 between the nonresponsive and responsive 
groups (right). D Heatmap comparison of the 22 genes statistically significantly related to the DNA repair pathway between the responsive 
and nonresponsive pre-treatment tumors. P values were calculated based on the Wilcoxon rank sum test. ***P < 0.001, **P < 0.01, *P < 0.05
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substitution site was flanked by C and G (responsive vs. 
nonresponsive: 3.93% vs. 6.87%, P = 0.022, Additional 
file 1: Fig. S7). Analyses of mutational signature weights 
for the COSMIC signatures demonstrated that a lower 
weight of signature 3, which is associated with failure of 
DNA double-strand break-repair by homologous recom-
bination, in the nonresponsive group (range: 0%–29%) 
compared with the responsive group (range: 0%–72%); 
however, the difference was not statistically significant 
(P = 0.151, Fig.  4C). We further compared the differ-
ences in the expression of DNA repair pathway-related 
genes between the nonresponsive and responsive groups 
by analyzing the RNA-seq data. The expression of most 
DNA repair related genes was significantly upregulated 
in the nonresponsive group (all P < 0.05, Fig.  4D, Addi-
tional file 2: Table S6).

As germline mutations may affect pathological 
response, we analyzed the presence of pathogenic ger-
mline variants of the 28 cancer predisposition genes [41]. 
We detected mutations in three of them in the NACBC 
sequence set (Fig.  5A): one BRCA1 variant in the non-
responsive group, one BRCA2 variant in the responsive 
group, and one BRCA1 variant and one PALB2 variant in 
the middle responsive group. No other pathogenic ger-
mline mutations were detected in the studied cohort. We 
found that the frequency of germline gene mutations did 
not differ between the nonresponsive (1 out of 16) and 
responsive (1 out of 11) groups (P = 1.0). Moreover, NAC 
sensitivity analyses including/excluding the patients car-
rying the aforementioned deleterious germline muta-
tions did not alter the significance of the changes in the 
mutational signatures and the expression levels of DNA 
damage repair pathways (Fig. 4, Additional file 1: Figs. S7 
and S8). Therefore, the pathological response observed in 
the sequencing set was not likely driven by the germline 
mutations in the breast cancer susceptibility genes.

We next analyzed the WES data using the MuSiC2 [32] 
and identified 43 significantly mutated genes (SMGs) in 
the 47 pre-treatment tumors (FDR < 0.1, Fig.  5A, Addi-
tional file 2: Table S7). To identify mutated genes that are 
associated with chemosensitivity in BC, we compared 
the differentially mutated genes in the nonresponsive 
and responsive groups. Mutations in CDKAL1, ALPK2, 
EMILIN3, CENPT, OR51M1, THAP8, TTLL2, and 
ZFPM1 genes were primarily detected in the nonrespon-
sive group but not in the responsive group. These muta-
tions occurred in at least 2 nonresponsive tumor samples 
(Additional file 2: Table S8). We further conducted SIFT 
4G [49] and PROVEAN [50] analyses to predict whether 
these gene mutational variations affect protein functions. 
The CDKAL1 missense variant P409L (p.Pro409Leu, 
c.1226 C > T) and the CENPT missense variants R122G 
(p.Arg122Gly, c.364 A > G) and P442L (p.Pro442Leu, 

c.1325 C > T) were predicted to have a “deleterious” func-
tional impact. These potentially deleterious mutations 
were also observed in at least 2 nonresponsive tumor 
samples (Fig. 5B, Additional file 2: Table S9).

We subsequently conducted in vitro studies to validate 
the effects of the deleterious CDKAL1 and CENPT muta-
tions on the responsiveness of BC cells to chemothera-
peutics. We examined the mutations of both CDKAL1 
and CENPT in different BC cell lines using the Cancer 
Cell Line Encyclopedia (CCLE) online database [51]. 
All the cell lines tested did not harbor non-synony-
mous mutations except that MDA-MB-453 and BT-474 
cells had nonsense and missense mutations of CENPT, 
respectively (Additional file  1: Fig. S9A). Western blots 
demonstrated that CDKAL1 and CENPT proteins were 
expressed in all cell lines tested (Fig. 5C, Additional file 1: 
Fig. S9B). HCC1806 and MDA-MB-231 for CDKAL1, and 
MDA-MB-231 and BT-549 cells for CENPT were selected 
for gene overexpression studies. Cells were infected 
with the lentiviruses that overexpress the wild type or 
mutants of the targeted genes CDKAL1 (CDKAL1WT 
and CDKAL1P409L), or CENPT (CENPTWT, CENP-
TR122G and CENPTP442L). The efficiency of gene expres-
sion in infected BC cells was confirmed by western blot 
and real-time PCR (Fig. 5D, Additional file 1: Fig. S9C). 
The genotypes of the infected cells were also verified by 
Sanger sequencing (Additional file 1: Fig. S9D). The sen-
sitivity of infected BC cells to chemotherapy drugs were 
determined with CCK-8 assays. The results indicated that 
HCC1806 cells overexpressing the p.Pro409Leu CDKAL1 
variant (CDKAL1P409L) decreased the sensitivity to doc-
etaxel compared with cells overexpressing the wild type 
CDKAL1 (CDKAL1WT), with the IC50 of docetaxel for 
CDKAL1P409L and CDKAL1WT cells being 3.50 ± 0.45 nM 
and 1.69 ± 0.11 nM, respectively (P < 0.05, Fig. 5E). A sim-
ilar result was observed in MDA-MB-231 cells despite a 
higher expression of endogenous CDKAL1WT compared 
with HCC1806 cells (P < 0.01, Fig. 5E). However, CENPT 
mutations did not affect the IC50 values of docetaxel 
in both MDA-MB-231 and BT-549 cells, and neither 
CDKAL1 nor CENPT mutations affected the sensitivity 
of BC cells to epirubicin in the cell lines tested (Addi-
tional file 1: Fig. S9E).

To delineate the in-depth mechanism underlying these 
findings, we further compared RNA-seq data from the 
CDKAL1P409L mutant and CDKAL1WT wild type groups. 
The results showed that the HALLMARK_APOPTOSIS 
set was significantly enriched in the CDKAL1WT wild 
type group compared with the CDKAL1P409L mutant 
group (Additional file  1: Fig. S10A). The expression of 
anti-apoptosis gene BCL2L2 was significantly higher, 
while the expression of pro-apoptosis genes BAX and 
BID were lower in the CDKAL1P409L mutant group 
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Fig. 5  CDKAL1P409L mutation decreased the sensitivity of cancer cells to docetaxel treatment. A Somatic and germline mutations in the 47 
pre-treatment tumors and matched germline DNA. Samples were annotated for clinicopathological and molecular features (top panel). The types 
of somatic (middle panel) and germline (bottom panel) mutations of the indicated genes for each sample are displayed with colored squares. 
The histograms on the right-hand side show the accumulated number of alterations among the SMGs identified by the MuSiC2 (FDR < 0.1) 
or the pathogenic germline mutations classified in the ClinVar database. AJCC, The American Joint Committee on Cancer. B The distribution 
of potentially deleterious mutations in CDKAL1 and CENPT in the nonresponsive and responsive pre-treatment groups (left). Diagrams representing 
the protein domains of potentially deleterious mutations (right). The “lollipopPlots” were generated using the maftools R package and manually 
edited. C The CDKAL1 expression in different human breast cancer cell lines as indicated was examined by western blot. D The expression 
of CDKAL1WT and CDKAL1P409L in HCC1806 and MDA-MB-231 cells infected with empty vector, CDKAL1WT and CDKAL1P409L lentiviruses by western 
blot and quantitative real-time PCR (qPCR) analyses. E IC50 assays of docetaxel. The proliferation of HCC1806 and MDA-MB-231 cells as described 
in (D) were determined with a CCK-8 cell counting kit at an increasing dose of docetaxel as indicated. The significance of relative IC50 values 
between CDKAL1WT and CDKAL1P409L cells with that of CDKAL1WT cells as 1.0 were analyzed by paired t-test. Data represent mean ± SD (n = 3). *, 
P < 0.05; **, P < 0.01
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(Additional file  1: Fig. S10B). These data suggested that 
the CDKAL1P409L mutation induced docetaxel resistance 
possibly by inhibiting apoptosis in BC cells.

SCNA analyses demonstrate ADRB3 or ADGRA2 
amplification induces worse NAC response and BC 
prognosis
We conducted SCNA analyses of the paired tumor and 
normal samples for copy number amplification or dele-
tion peaks between the genomes of nonresponsive and 
responsive pre-treatment samples using the GISTIC2.0 
(FDR < 0.1). A unique amplification peak at 8p11.23 was 

identified in the nonresponsive group, which contained 
ADGRA2 and ADRB3 genes. Additionally, a unique dele-
tion peak at 3p13 was observed in the responsive tumors, 
which contains the cancer related gene FOXP1 (Fig. 6A).

We next examined whether changes in gene copy num-
ber affected the mRNA expression of ADGRA2, ADRB3, 
and FOXP1 by analyzing the RNA-seq data in the pre-
treatment tumors. The results indicated that the mRNA 
levels of ADGRA2, ADRB3, and FOXP1 were signifi-
cantly downregulated in the responsive group (P < 0.05, 
Figs. 6B-D). This was consistent with the SCNA analyses 
above.

Fig. 6  High ADGRA2 or ADRB3 expression is associated with worse NAC response and prognosis of BC patients. A The SCNA signal profiles 
identified by the GISTIC2.0 in the nonresponsive and responsive pre-treatment tumors. The significantly altered chromosome regions 
(q < 0.01) and the gene loci (ADGRA2, ADRB3 and FOXP1) are annotated. The mRNA expression level of ADGRA2 (B), ADRB3 (C), and FOXP1 (D) 
in the nonresponsive and responsive pre-treatment tumors from the RNA-seq data were shown as transcripts per million (TPM). E Representative 
immunohistochemistry staining of tumors with low and high expression of ADGRA2 and ADRB3 in the NACBC validation set (n = 156). 
Magnification: 400 × ; Bar, 100 μm. F Kaplan–Meier analyses of the DFS and BCSS in the NACBC validation set. Patients were stratified as high and low 
protein expression of ADGRA2 and ADRB3. P values were calculated based on the log-rank test
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A previous study has revealed that cytoplasmic 
FOXP1 expression in BC is associated with worse out-
comes [52]. It is in agreement with our observation 
that FOXP1 containing 3p13 region was deleted in the 
NAC-sensitive tumors. To validate the role of ADGRA2 
and ADRB3 expression in chemotherapy response and 
prognosis, we used a NACBC validation set, which 
consisted of 156 pre-treatment tumor samples of BC 
patients who received NAC with follow-up information 
available. The baseline characteristics of this validation 
set are shown in Additional file  2: Table  S1. ADGRA2 
and ADRB3 protein expressions were examined by 
IHC on TMAs. The samples were divided into low and 
high expression groups based on the staining scores of 
ADGRA2 or ADRB3 (Fig.  6E). We demonstrated that 
a lower ADRB3 expression was significantly associ-
ated with a higher breast-only pCR rate (P = 0.031); no 
statistically significant correlations between ADGRA2 
protein expression and baseline characteristics were 
found (Additional file  2: Table  S10). Similar results 
were observed in an external GEO dataset [22], in 
which a lower ADRB3 expression was correlated with a 
higher pCR rate, albeit with only marginal significance 
(P = 0.075). However, a significant association between 
a lower ADGRA2 expression and a higher pCR rate was 
observed in this dataset (P = 0.047, Additional file  1: 
Fig. S11A).

We next determined whether ADGRA2 and ADRB3 
expressions were associated with survival in our inter-
nal NACBC validation set, the external GEO and TCGA 
validation sets. In our NACBC validation set, Kaplan–
Meier survival curve analysis showed that higher (ver-
sus lower) ADGRA2 protein levels were associated with 
a significantly reduced probability of DFS and BCSS 
(P = 0.017 and P = 0.018, respectively, Fig.  6F), and a 
high-level ADRB3 expression was associated with poor 
DFS (P = 0.026). In the GEO and TCGA validation sets, 
a lower ADGRA2 expression was significantly associated 
with better prognosis (P < 0.05, Additional file  1: Figs. 
S11B and C). In the multivariate Cox proportional haz-
ards regression model, after adjusting for age at diagnosis, 
clinical characteristics, and treatment, a higher ADGRA2 
expression in BC cells significantly increased the risk of 
BCSS (hazard ratio [HR]: 8.042, 95% confidence inter-
val [CI]: 1.874–35.012, P = 0.005) and DFS (HR: 2.487, 
95%CI: 1.193–5.183, P = 0.015) events in the NACBC val-
idation set. However, ADRB3 expression levels were not 
associated with BCSS (HR: 1.49, 95%CI: 0.138–16.112, 
P = 0.742) and DFS (HR: 3.36, 95%CI: 0.434–26.032, 
P = 0.246). These findings suggested that the expression 
of ADGRA2 and/or ADRB3 may be potential biomarkers 
for predicting the NAC response and the outcomes of BC 
patients.

Discussion
Through combination analyses of both the WES and 
RNA-seq data, we first evaluated the differences in gene 
mutations, CNVs, gene expression, signaling pathways, 
and cellular components between tumors before and 
after treatment in primary BC, then examined the key 
molecular features related to NAC sensitivity of BC, 
and successfully identified CDKAL1P409L, ADGRA2 and 
ADRB3 as novel biomarkers for the selection of patients 
for NAC. These findings may help develop personalized 
treatments for BC.

In our cohort, the most frequently altered genes were 
TP53, TTN, and MUC16 in both paired pre- and post-
treatment tumors of BC. Following NAC, we observed 
acquired genetic alterations in CNR2, KIAA1549, and 
CCDC168. We further analyzed the functional biological 
processes or pathways that the mutated genes may affect. 
The mutation rate of the DNA repair pathway was signifi-
cantly decreased after NAC, together with an expression 
downregulation of this pathway-related genes. The exact 
mechanism of how NAC affects the DNA repair-related 
genes via mutations or expression remains to be further 
investigated.

Our SCNA analysis demonstrated that CENPU was 
deleted in the post-treatment tumor samples in our 
cohort and that pathways related to cell cycle progres-
sion were downregulated in the RNA-seq data. CENPU 
has been shown to promote cell proliferation in various 
tumors [53–55], and previous studies have also found 
that tumors with a rapid growth rate are more sensitive 
to chemotherapy [56, 57]. Therefore, tumor cells with 
rapid proliferation are more likely to be eliminated by 
chemotherapy, while those with slow proliferation are 
more likely to remain. Our finding is in agreement with 
these studies in that cell cycle progression pathways were 
downregulated following NAC.

Cancer immunotherapy has achieved remarkable suc-
cesses in certain molecular subtypes of BC patients [58]. 
The presence of immune cells and specific molecular 
expression patterns in the tumor microenvironment 
(TME) may affect the effectiveness of immunotherapy. 
The nature and composition of TME can vary over time 
with chemotherapy. The SWOG S0800 neoadjuvant 
trial showed no changes in tumor-infiltrating lympho-
cyte counts or PD-L1 expression levels in residual dis-
ease (RD) cases [59]. However, another study found that 
both stromal tumor-infiltrating lymphocytes and CD8+ 
T cells were both decreased, while the expression of M2 
macrophage-specific genes was significantly increased 
after treatment [17]. Therefore, the reported results 
from different centers are inconsistent. In our study, we 
found that NAC affected TME. NAC altered not only 
the expression levels of immune-related genes in BC 
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tumor tissues, but also the composition of immune and 
stromal cells, including B cells, M2 macrophages, aDCs, 
endothelial cells, and γδT cells. DCs [60] and B cells [61] 
are professional antigen-presenting cells (APCs) of the 
immune system that can efficiently generate immune 
responses against tumors, including effective activation 
and expansion of CD8+ cytotoxic T lymphocytes that 
can specifically kill cancer cells [62–64]. In our study, 
we demonstrated that patients in the nonresponsive 
group displayed reduced levels of aDCs and B cells in 
the TME after NAC, suggesting that NAC may further 
induce insensitivity to immunotherapy in nonrespon-
sive patients. Therefore, more attention should be paid 
to this patient population, especially when using immu-
notherapy drugs. In this group, the timing of immuno-
therapy and chemotherapeutic drugs should be carefully 
considered.

We also analyzed the molecular features associated 
with NAC response in the pre-treatment tumors. Dif-
ferent mutational processes often generate different 
combinations of single-nucleotide alterations, termed 
“signatures” [65]. The pattern of mutation signatures is 
associated with tumor sensitivity to chemotherapy and 
prognosis [13, 15]. In our cohort, there was a trend for 
higher levels of mutational signature 3 in the respon-
sive group compared with the nonresponsive group. The 
signature 3 is associated with a failure of DNA double-
strand break-repair by homologous recombination 
(https://​cancer.​sanger.​ac.​uk/​signa​tures/​signa​tures_​v2/). 
Our RNA-seq data confirmed that most of the genes 
related to the DNA repair pathway exhibited higher 
expression levels in the nonresponsive tumors than in 
the responsive tumors, suggesting that the nonrespon-
sive tumors may have a stronger ability to repair DNA 
damage, which is conducive to the survival of tumor 
cells. This finding is consistent with a previous study that 
found a higher proportion of signature 3 was associated 
with a higher rate of pCR after NAC [19]. Collectively, 
these results indicate that DNA repair deficiency confers 
increased chemotherapy sensitivity in BC.

We have identified a CDKAL1 mutation in the nonre-
sponsive group. Using in vitro studies, we demonstrated 
that BC cells with the CDKAL1P409L mutation were 
more resistant to docetaxel. CDKAL1 is a mammalian 
methylthiotransferase that biosynthesizes 2-methyl-
thio-N6-threonylcarbamoyladenosine (ms2t6A) in 
tRNALys(UUU) for the accurate translation of AAA and 
AAG codons [66]. Previous studies have shown that 
single nucleotide polymorphisms of CDKAL1 are asso-
ciated with susceptibility to and mortality from BC 
[67–69]. A germline genome-wide association study 
revealed that rs7453577 (located within CDKAL1) 
increased the pCR rate of NAC in HER2-negative BC 

patients who received bevacizumab [70]. However, to 
our knowledge, no studies have reported a relationship 
between CDKAL1P409L and chemotherapy response. 
Our analysis of the RNA-seq data showed that the 
HALLMARK_APOPTOSIS gene set was significantly 
enriched in the CDKAL1WT tumors compared with 
the CDKAL1P409L tumors, resulting in a lower expres-
sion of the pro-apoptosis genes BAX and BID. Previous 
studies indicated that CDKAL1 deficiency could induce 
the misreading of Lys codons and affect the synthesis 
of downstream proteins [71, 72]. We speculate that 
the CDKAL1P409L mutation may decrease the ms2t6A 
modification of tRNALys and downstream translation of 
pro-apoptotic proteins, thereby rendering mutant cells 
insensitive to docetaxel. Collectively, these results indi-
cate that CDKAL1P409L could be a biomarker for pre-
dicting insensitivity to NAC.

In the overall CNV analysis of the pre-treatment 
tumors, we found a gene amplification peak at 8p11.23 
only in the nonresponsive subgroup. This chromosome 
region contains two genes ADGRA2 and ADRB3, whose 
mRNA expression was higher in the nonresponsive group 
than in the responsive group, as shown in the RNA-seq 
analysis. ADGRA2, also known as GPR124, is an impor-
tant member of the adhesion-type G protein-coupled 
receptor (aGPCR) family. ADGRA2 was originally identi-
fied in the endothelial cells that form the neovasculature 
in invasive colorectal tumors [73]. Aberrant expression 
of ADGRA2 has also been found in other types of can-
cers. In glioblastoma, it affected cancer cell proliferation 
by regulating the duration of mitotic progression [74]. 
In osteosarcoma, combination of β-elemene and pacli-
taxel inhibited bone neoplasm growth via downregulat-
ing ADGRA2, suggesting a potential role for ADGRA2 
in therapy response [75]. ADRB3 has been proven to be 
a poor prognostic factor that accelerates cell prolifera-
tion in a variety of human cancers [76–78]. Additionally, 
blocking ADRB3 promoted apoptosis and reduced chem-
oresistance in leukemia cells [79]. However, the role of 
ADGRA2 and ADRB3 in NAC response in BC has not 
been previously reported. In our study, we observed that 
low level expressions of ADGRA2 or ADRB3 increased 
the pCR rate in the NACBC validation and GEO sets, 
suggesting a negative correlation between ADGRA2 or 
ADRB3 amplification and NAC response in BC. Fur-
ther survival analyses of all three datasets—the NACBC 
validation, GEO, and TCGA datasets—identified that a 
higher ADGRA2 expression significantly increased risks 
of BCSS and DFS events, and a higher ADRB3 expression 
was associated with poorer DFS in the NACBC valida-
tion set. These findings suggest that ADGRA2 or ADRB3 
amplification could predict worse NAC responses and 
poor outcomes in BC patients.

https://cancer.sanger.ac.uk/signatures/signatures_v2/
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It is worth noting that our study is a single-center 
multi-omics analysis of BC before and after NAC. Con-
ducting both genomic and transcriptomic studies in the 
same cohort has advantages to exploring the underlying 
mechanisms of genomic abnormalities. The consequence 
of any genomic abnormalities can be examined at a func-
tional level. However, we also acknowledge that this 
study has limitations. Firstly, our study may suffer from 
potential biases introduced by the non-stratified popu-
lation of molecular subtypes, such as ER, HER2 posi-
tive or triple negative, due to the relatively small sample 
size, which limited the power of our analyses. Secondly, 
although we conducted a series of in  vitro studies and 
external dataset validations to confirm the key molecular 
features identified in the sequencing set, in  vivo studies 
in animal models can be exploited next to provide further 
evidence. Therefore, future studies may focus on specific 
breast cancer subtypes with a big sample size for stronger 
evidence. A validation study using independent cohorts 
in other centers, perhaps on different ethnical popula-
tions, should also be considered.

Conclusions
In summary, our study has revealed the dynamic genomic 
and transcriptomic landscape before and after NAC in 
BC, and identified multi-omics molecular signatures and 
potential biomarkers associated with NAC responsive-
ness and prognosis that can be used to make informed 
therapeutic decisions or serve as potential therapeutic 
targets in this population.
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