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Abstract 

Multiple computational approaches have been developed to improve our understanding of genetic variants. How-
ever, their ability to identify rare pathogenic variants from rare benign ones is still lacking. Using context annotations 
and deep learning methods, we present pathogenicity prediction models, MetaRNN and MetaRNN-indel, to help 
identify and prioritize rare nonsynonymous single nucleotide variants (nsSNVs) and non-frameshift insertion/dele-
tions (nfINDELs). We use independent test sets to demonstrate that these new models outperform state-of-the-art 
competitors and achieve a more interpretable score distribution. Importantly, prediction scores from both models are 
comparable, enabling easy adoption of integrated genotype-phenotype association analysis methods. All pre-com-
puted nsSNV scores are available at http://​www.​liulab.​scien​ce/​MetaR​NN. The stand-alone program is also available at 
https://​github.​com/​Chang-​Li2019/​MetaR​NN.
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Background
Next-generation sequencing (NGS) has dramatically 
improved our ability to detect genetic variants in the 
human genome. However, our current ability to detect 
genetic variants far exceeds our ability to interpret them, 
which is one of the significant gaps in effectively utiliz-
ing NGS data [1]. This issue is prominent for rare genetic 
variants (allele frequency <1%) since traditional meth-
ods, such as population-based genome-wide association 
and whole-exome sequencing studies, lack the power 
to identify rare pathogenic or causal variants from rare 
benign variants. The issue is especially prominent when 
the phenotype of interest has low prevalence, such as 
rare Mendelian disorders where only the proband’s and 
the parents’ genetic testing data are available. Amino acid 

changing variants are probably the most well-studied 
candidate variant type for pathogenic variants. However, 
as each healthy individual carries approximately 10,000 
such variants, hundreds of them are singletons [2], it is 
still challenging to correctly identify pathogenic causal 
variants from benign and non-functional ones in the cod-
ing regions. Nonsynonymous single nucleotide variants 
(nsSNVs) and non-frameshift insertion/deletions (nfIN-
DELs) are two types of amino acid changing variants 
that can exhibit a wide range of functional consequences, 
from completely neutral and non-functional to protein 
damaging, which eventually cause severe diseases. This 
variability makes classifying them in terms of patho-
genicity very challenging.

Because experimentally validating the effects of these 
variants is highly time-consuming and costly, com-
putational approaches have been developed for this 
purpose [3–18]. These methods can be loosely catego-
rized into three groups: functional prediction methods, 
which model the functional importance of the variants; 
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conservation-based methods, which use evolution-
ary data to identify functional regions and variants; and 
ensemble methods, which combine multiple individual 
prediction tools into a single more powerful predictor. 
While these methods have been widely used to predict 
potentially pathogenic variants, there are still two sig-
nificant limitations in their application to whole-exome 
sequencing studies. First, most of these methods either 
deployed models trained with rare pathogenic and 
common benign variants or ignored the importance of 
observed allele frequencies as features, leading to less 
optimized performance for separating rare pathogenic 
and rare benign variants. Second, most methods pro-
vide prediction scores for only nsSNVs or incomparable 
scores for nsSNVs and nfINDELs separately, making it 
infeasible to use these scores as weights in an integrated 
(nsSNV+nfINDELs) burden test for genotype-phenotype 
association analysis.

This study developed the MetaRNN and MetaRNN-
indel models to overcome these limitations, enabling users 
to easily annotate and score both nsSNVs and nfINDELs. 
As predictive features, our classifiers combine recently 
developed independent prediction algorithms, conserva-
tion scores, and allele frequency information from the 1000 
Genomes Project (1000GP) [19], ExAC [20], and gnomAD 
[21]. Annotations from flanking ± 1 codon of nucleotides 
around the target variants were extracted by bidirectional 
gated recurrent units [22] (GRUs). We trained our recur-
rent neural network (RNN) model with 26,517 nsSNVs 
(absent from at least one of the three population datasets, 
namely gnomAD, ExAC, and 1000GP) and 1981 nfINDELs 
reported in ClinVar [23] on or before 20190102. To evalu-
ate the performance of the proposed models, we com-
pared multiple state-of-the-art computational methods 
using independent test sets constructed from well-known 
variation-disease association databases, i.e., ClinVar [23] 
and HGMD [24], a TP53 functional mutation dataset [25], 
and a dataset of potential cancer driver variants [26]. Our 
results suggest that utilizing flanking region annotations 
helps boost model performance for separating rare patho-
genic variants versus rare (and common) benign variants. 
In addition, we provide pre-computed MetaRNN scores 
for all possible human nsSNVs available at https://​sites.​
google.​com/​site/​jpopg​en/​dbNSFP [27, 28]. A GitHub page 
for a stand-alone annotation software package for both 
nsSNVs and nfINDELs is available at https://​github.​com/​
Chang-​Li2019/​MetaR​NN [29].

Methods
Training sets
ClinVar database files clinvar_20190102.vcf.gz and clin-
var_20200609.vcf.gz were downloaded from https://​www.​
ncbi.​nlm.​nih.​gov/​clinv​ar/ [23] under the GRCh38/hg38 

genome assembly. Variants in the older file were used in 
the training phase of model development. Next, we pre-
pared separate training sets for point variants and inser-
tion/deletions (InDels). For SNVs, nonsynonymous SNVs 
(nsSNVs) labeled “Pathogenic” or “Likely pathogenic” 
were used as true positives (TPs), and nsSNVs labeled 
“Benign” or “Likely benign” were used as true nega-
tives (TNs). Variants with conflicting clinical interpreta-
tions were removed. Conflicting clinical interpretations 
were defined as one of these scenarios: conflict between 
benign/likely benign and variants of unknown signifi-
cance (VUS), conflict between pathogenic/likely patho-
genic and VUS, or conflict between benign/likely benign 
and pathogenic/likely pathogenic. Variants that were 
absent from at least one of the three datasets (gnomAD 
[21], ExAC [20], and the 1000 Genomes Project [19]) 
were retained. A further filter removed any nsSNVs that 
were absent in all three datasets. We consider this to be 
a good trade-off between preserving important allele fre-
quency information and removing “easy-to-classify” vari-
ants during training. In the end, 26,517 rare nsSNVs with 
9009 TPs and 17,508 TNs (Additional file  1: Table  S1) 
were used for training. For InDels, the same criteria were 
applied to obtain TPs and TNs. Additionally, only InDels 
annotated as non-frameshift (nfINDELs) and having 
lengths >1 and ≤ 48 base pairs were included. A total of 
1981 rare nfINDELs with 1306 TPs and 675 TNs passed 
the filtering criteria and were used to train the MetaRNN-
indel model (https://​github.​com/​Chang-​Li2019/​MetaR​
NN) [29] (Additional file 1: Table S2).

Test sets
We constructed 7 test sets to evaluate the performance 
of our SNV-based model, namely, MetaRNN (https://​
github.​com/​Chang-​Li2019/​MetaR​NN) [29] (summary in 
Additional file 1: Table S3) with 24 other methods, includ-
ing MutationTaster [10], FATHMM [30], FATHMM-XF 
[12], VEST4 [9], MetaSVM [31], MetaLR [31], M-CAP [17], 
REVEL [4], MutPred [16], MVP [8], PrimateAI [15], DEO-
GEN2 [14], BayesDel_addAF [7], ClinPred [6], LIST-S2 [5], 
CADD [3], Eigen [13], GERP [32], phyloP100way_vertebrate 
[33], phyloP30way_mammalian, phyloP17way_primate, 
phastCons100way_vertebrate, phastCons30way_mammalian, 
and phastCons17way_primate. The first test set (rare nsSNV 
test set, RNTS) was constructed from rare pathogenic 
nsSNVs with a maximum population allele frequency 
(AF) of 0.01 that were added to the ClinVar database 
after 20190102 and rare nsSNVs with a maximum popu-
lation AF of 0.01 that were present in all three popula-
tion datasets while not reported in ClinVar and matching 
on genomic location (randomly selected non-pathogenic 
nsSNVs within 10 kb from the pathogenic ones), result-
ing in 11,540 variants with 5770 TPs and 5770 TNs 
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(Additional file 1: Table S4). The second test set (rare clin-
var-only test set, RCTS) was constructed from recently 
curated (after 20190102) ClinVar rare pathogenic nsSNVs 
(n = 6190) and rare benign nsSNVs defined as having a 
maximum AF<0.01 in all population datasets (n = 11,811) 
(Additional file  1: Table  S5). The third test set (de novo 
RCTS, DN-RCTS) was constructed from RCTS with 0 
AF in all population datasets, which resulted in 4537 TPs 
and 831 TNs (Additional file 1: Table S6). The fourth test 
set (all allele frequency set, AAFS) was constructed from 
all pathogenic and benign nsSNVs added to the ClinVar 
database after 20190102 regardless of AF, resulting in 
29,924 variants with 6205 TPs and 22,808 TNs (Addi-
tional file 1: Table S7). The fifth test set, the TP53 test set 
(TP53TS), was constructed from the TP53 mutation web-
site (https://​p53.​fr/​index.​php) [34]. Variants with median 
activity <50 were considered pathogenic, while variants 
with median activity ≥100 were considered benign. After 
removing variants used in the training set, 824 variants 
remained with 385 TPs and 439 TNs (Additional file  1: 
Table  S8). The sixth test set was retrieved from a 
recent publication (Additional file  1: Table  S9) [26]. 
The TPs (n = 878) were curated from cancer somatic 
variant hotspots, and the TNs (n = 1756) were curated 
from the population sequencing study DiscovEHR 
[35]. The Human Gene Mutation Database (HGMD) 
(https://​www.​hgmd.​cf.​ac.​uk/) [24] is another popular 
database that provides high-quality disease-associated 
variants. As the last test set, we retrieved all DM variants 
(disease mutation; the class of variants in HGMD with 
the highest confidence of being pathogenic) from HGMD 
Professional version 2021.01. Only variants reported in 
dbNSFP (https://​sites.​google.​com/​site/​jpopg​en/​dbNSFP) 
[27, 28] as missense were kept. We further removed variants 
that were reported in the HGMD Professional version 2017 to 
avoid unfair comparisons with scores that used HGMD 
in their training process. Additionally, variants reported 
in ClinVar 20200609 as pathogenic, likely pathogenic, 
benign, or likely benign were filtered out to explore the 
generalizability of our score to independently curated 
disease-causing variants. These filtered nsSNVs were 
used as TPs. For true negatives (TNs), we used rare  
nsSNVs that were observed in gnomAD v3 with allele 
frequencies between 0.01 and 0.0001 as a trade-off 
between their rarity and probability of being truly benign. 
The number of TP and TN variants were matched using 
random selection, which resulted in 45,256 nsSNVs in 
total (22,628 TP variants and 22,628 TN variants). For 
our InDel-based model, namely, MetaRNN-indel, the 
first test set was constructed from InDels added to the 
ClinVar database after 20190102, which resulted in 828 
InDels with 365 TPs and 463 TNs (Additional file  1: 
Table  S10). The second test set was constructed from 

HGMD Professional version 2021.01. All the nfINDELs 
that were not used in training MetaRNN-indel were kept 
as TP. For TN, rare nfINDELs with AF less than 0.01 were 
retrieved from gnomAD v2.1.1 as TNs, which were then 
randomly sampled to match the number of TPs. A total 
of 8020 nfINDELs (4010 TP variants and 4010 TN vari-
ants) were collected after filtering.

Flanking nsSNVs
After obtaining all data sets of target variants, we 
retrieved nsSNVs from their flanking sequences using 
dbNSFP4.1a [27, 28]. Specifically, the genomic location 
of the variant and the affected amino acid position of 
the protein and the affected codon were first identified 
in dbNSFP. Then, a window size of ± 1 codon around 
the affected codon was identified, and all nsSNVs inside 
this window were retrieved with a maximum length of 9 
base pairs (bps). For a given target variant, the maximum 
possible number of nucleotides on either side is 5 bps (3 
bps from one flanking codon and 2 bps from the target 
codon). To center the input window on the target variant 
and have a uniform shape for all inputs, we padded the 
input window to reach an 11-bp window for each target 
variant so that there were 5 bps on each side of the target 
variant. This window, including the target variants, was 
used as one input for our model (Fig. 1).

For each position, multiple alternative alleles may 
exist. For each annotation at context loci, we calculated 
the average score across all alleles that would result in 
a nonsynonymous variant at the locus. This averaged 
annotation score was then used to represent the locus for 
that annotation. This setup has the advantage of keep-
ing the most critical context information while limiting 
the unnecessary noise introduced by having inconsistent 
order and dimension of alleles at different loci, e.g., some 
loci may possess three nsSNVs while others may include 
only one nsSNV. The target variant would directly use 
annotation scores for the observed allele. We assume that 
these nsSNVs and related annotations can capture the 
most critical context information concerning the patho-
genicity and functional importance of the amino acids. 
We assumed that context nsSNVs provided all the criti-
cal information, so we ignored any synonymous variants 
in composing the context information. After these steps, 
the input dimension for the MetaRNN model becomes 
11 (bps) by 28 (features, see below).

The same rules to adopt the flanking region were 
applied to InDels with one difference: instead of affecting 
only one codon, target InDels may directly affect multiple 
codons simultaneously. Thus, the ± 1 codon window was 
defined as the window beyond all the directly affected 
codons. For deletions, target variants were those loci 
deleted by the variant, and their annotations were 
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averaged for each locus. For insertions, since no anno-
tation is available for the inserted nucleotides, we used 
annotations from loci adjacent to the insertion position 
as surrogates. Since we focus on short InDels with length 
≤ 48, with 5 bps around each side as context information, 
the input dimension for the MetaRNN-indel model is 
58 (bps) by 28 (features, see below). Again, the synony-
mous variants were ignored in composing the context 
information.

Feature selection
For each variant, including target nsSNV/nfINDEL and 
flanking region nsSNVs, 28 features were either calcu-
lated or retrieved from the dbNSFP database, including 
16 functional prediction scores: SIFT [36], Polyphen2_
HDIV [37], Polyphen2_HVAR, MutationAssessor [11], 
PROVEAN [38], VEST4 [9], M-CAP [17], REVEL [4], 
MutPred [16], MVP [8], PrimateAI [15], DEOGEN2 [14], 
CADD [3], fathmm-XF [12], Eigen [13], and GenoCan-
yon [39]; eight conservation scores including GERP [40], 
phyloP100way_vertebrate [33], phyloP30way_mamma-
lian, phyloP17way_primate, phastCons100way_vertebrate, 
phastCons30way_mammalian, phastCons17way_primate, 
and SiPhy [41]; and four calculated allele frequency (AF)-
related scores. The highest AF values across subpopula-
tions of the four data sets from three studies, namely, 
the 1000 Genomes Project (1000GP), ExAC, gnomAD 
exomes, and gnomAD genomes, were used as the AF 
scores. All missing scores in the dbNSFP database were 

first imputed using BPCAfill (http://​ishii​lab.​jp/​member/​
oba/​tools/​BPCAF​ill.​html) [42], and all scores were stand-
ardized before feeding to the model for training. Some 
more recently developed scores were excluded to mini-
mize type I circularity in training our ensemble model, 
including MPC and ClinPred, which used ClinVar variants 
in their training process.

Model development
We applied a recurrent neural network with gated recur-
rent units [22] (GRU) to extract and learn the context 
information around target variants (Fig.  1). Bayesian 
Hyperparameter Optimization [43] was used to deter-
mine the best-performing model structure from a wide 
range of model structures. Specifically, the input layer 
takes an 11 × 28 matrix as input for the MetaRNN and a 
58 × 28 matrix for the MetaRNN-indel model. After the 
bidirectional GRU layer, the MetaRNN model cropped 
out the context information, and only the learned fea-
tures for the target variant were kept. This setup can sig-
nificantly reduce the number of parameters compared to 
keeping all context features in the subsequent dense layer. 
Following the same idea, for MetaRNN-indel, the output 
for the last bidirectional GRU layer only returns the pre-
diction for the final locus (return_sequences parameter 
was set to false) to limit the number of possible parame-
ters in the following dense layer. The output layer is com-
posed of 1 neuron with a sigmoid activation to model our 
binary classification problem. A binary cross-entropy loss 

Fig. 1  Data preparation and model development steps for MetaRNN. First, the target variant and affect codon were identified, e.g., g.1022225G>T. 
Second, the flanking sequences were retrieved as well as all possible alternative alleles, as illustrated on the nucleotides to the right of the 
up-pointing arrow. Third, only alleles that result in a missense variant were kept, and annotation scores were averaged across these alleles within 
the same locus. For example, the annotation scores for variants g.1022230A>T and g.1022230A>C will be averaged, to get the locus-specific 
annotations. Lastly, the model will be trained using the annotations for context variants and annotations for the target variant
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was used as the loss function, and the Adam optimizer 
[44] was used to update model parameters through back-
propagation [45]. This process used 70% of the train-
ing data for model training and 30% of the training data 
for performance evaluation, so no test sets were used 
in this step. The Python packages sci-kit-learn (https://​
scikit-​learn.​org/​stable/) [46] and TensorFlow 2.0 (https://​
www.​Tenso​rFlow.​org/) [47] were used to develop the 
models, and KerasTuner (https://​keras-​team.​github.​io/​
keras-​tuner/) [48] was adopted to apply Bayesian Hyper-
parameter Optimization. The search space for all the 
hyperparameters is shown in Additional file 1: Table S11. 
The models with the smallest validation log loss were 
used as our final models for nsSNV (MetaRNN) and 
nfINDEL (MetaRNN-indel).

Comparison of the performance of individual predictors
As a model diagnosis step, SHAP (SHapley Additive exPla-
nations) values were calculated to measure each feature’s 
contribution to the predicted consequence of variants [49]. 
We first used 100 random samples from our training data 
to calculate the background distribution of the values. Next, 
feature permutations were performed using 100 random 
samples from our validation data (RNTS). Since the vari-
ance of the estimates scale by 1/sqrt(background sample 
size), we chose to use 100 samples, which would give a rea-
sonable estimate. The Python library SHAP (https://​shap.​
readt​hedocs.​io/​en/​latest/​index.​html)   [49] was used to cal-
culate SHAP values and plot visualizations.

To quantitatively evaluate model performance, we 
retrieved 39 prediction scores from dbNSFP to compare 
with our MetaRNN model including MutationTaster 
[10], MutationAssessor [11], FATHMM [30], FATHMM-
MKL [50], FATHMM-XF [12], PROVEAN [38], VEST4 
[9], MetaSVM [31], MetaLR [31], M-CAP [17], MPC 
[18], REVEL [4], MutPred [16], MVP [8], PrimateAI [15],  
DEOGEN2 [14], BayesDel (AF and noAF models) [7], 
ClinPred [6], LIST-S2 [5], LRT [51], CADD (raw and hg19 
models) [3], DANN [52], Eigen (raw and PC models) [13], 
GERP [32], Polyphen2 (HVAR and HDIV) [53], SIFT4G 
[54], SiPhy [41], GenoCanyon [55], fitCons (integrated) 
[56], phyloP (100way_vertebrate, 30way_mammalian and 
17way_primate) [33], and phastCons (100way_vertebrate, 
30way_mammalian and 17way_primate) [57]. The cor-
responding rank scores were retrieved for each of these 
39 annotation scores to facilitate comparison. For the 
MetaRNN-indel model, four popular methods were com-
pared, including DDIG-in (http://​sparks-​lab.​org/​server/​
ddig/) [58], CADD (https://​cadd.​gs.​washi​ngton.​edu/) [3], 
PROVEAN (https://​www.​jcvi.​org/​resea​rch/​prove​an) [38], 
and VEST4 (http://​cravat.​us/​CRAVAT/) [59]. For the 
ClinVar holdout test set, all four methods were compared 
with MetaRNN-indel. For the HGMD test set, VEST4 

was removed from the comparison since it used HGMD 
InDels during training, and we did not have access to 
an older version of HGMD with InDels to exclude these 
variants. For both test data sets, LiftOver was used to 
convert hg38 genomic coordinates to GRCh37/hg19 for 
DDIG-in and PROVEAN. DDIG-in scores were retrieved 
from https://​sparks-​lab.​org/​server/​ddig/ [58]. VEST4 indel 
scores were retrieved from http://​cravat.​us/​CRAVAT/ [59]. 
The CRAVAT format was used, and each InDel variant 
was assumed to be located on both + and – strands. 
For PROVEAN indel, the scores were retrieved from 
http://​prove​an.​jcvi.​org/​genome_​submit_​2.​php?​speci​es=​
human [38]. The CADD v1.6 scores under the GRCh38 
assembly were obtained from https://​cadd.​gs.​washi​ngton.​
edu/​score [3]. We plotted receiver operating characteris-
tic (ROC) curves and calculated the area under the ROC 
curve (AUC) for each method being compared using our 
test sets. Additionally, average precision, which summa-
rizes a precision-recall curve, was used to measure test 
sets with an imbalanced number of TPs and TNs. The 
Python package matplotlib (https://​matpl​otlib.​org/) [60] 
was used to plot ROC curves, and the Python package sci-
kit-learn (https://​scikit-​learn.​org/​stable/) [46] was used to 
calculate AUC scores.

Development of MetaRNN and MetaRNN‑indel stand‑alone 
program
To facilitate custom annotations with user-provided VCF 
files, we created a GitHub page (https://​github.​com/​
Chang-​Li2019/​MetaR​NN) [29] with instructions to run 
annotations as a stand-alone program. Briefly, the pro-
gram includes the following steps to make final predic-
tions of MetaRNN and MetaRNN-indel scores. First, 
it takes as input a VCF file that includes candidate vari-
ants. Second, ANNOVAR (https://​annov​ar.​openb​ioinf​
ormat​ics.​org/​en/​latest/) [61] was used to annotate these 
variants, and only nsSNVs and nfINDELs were retained. 
Third, for nsSNVs, the program will extract MetaRNN 
predictions from our database of all pre-calculated  
nsSNVs; for nfINDELs, the target variant and its con-
text variants will be first identified, and all required 
annotations will be retrieved from dbNSFP [27], and the 
MetaRNN-indel model will be used to make predictions 
on these user-provided nfINDELs. Lastly, an output file 
will be generated for nsSNVs and nfINDELs separately.

Results
Allele frequencies as crucial features in separating 
pathogenic variants
The MetaRNN and MetaRNN-indel models used an 
ensemble method that combined 24 individual predic-
tion scores and four allele frequency (AF) features from 
the 1000 Genomes Project (1000GP) [19], ExAC [20], and 
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gnomAD [21]. As shown in Fig. 2a, most of the compo-
nent conservation scores and ensemble scores showed 
moderate to strong correlations (correlation coefficient 
between 0.4 and 1). However, MutationTaster [10] and 
GenoCanyon [39] showed a weak correlation with all 

other features. Since most SNVs are not observed in mul-
tiple populations (AF=0), correlations between different 
AF features are also strong (>0.8). AF features showed 
a weak correlation with all other individual predictors, 
implying that previous annotation scores have not fully 

Fig. 2  Features used to train MetaRNN and MetaRNN-indel. a Correlation between features used to train MetaRNN. b Feature importance for all 
features used in the MetaRNN model
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exploited such allele frequency information. This obser-
vation is also supported by the feature importance anal-
ysis (Fig.  2b). The most important feature is the VEST4 
score, which was trained on rare pathogenic variants 
and common benign variants. The ExAC and gnomAD 
exome AFs were ranked as the second and third most 
important features, while AF information from the 1000 
GP and gnomAD whole-genome sequencing studies were 
ranked fifth and sixth, respectively. This observation is in 
concordance with previous observations [6], highlight-
ing the importance of population AF data in inferring the 
functional significance of nsSNVs. With the increasing 
availability of population-based studies, these new AF-
based features can complement earlier developed func-
tional annotation tools, such as VEST4.

Performance comparison of MetaRNN to other predictive 
algorithms using ClinVar
As the major goal of the MetaRNN model is to sepa-
rate rare pathogenic from rare benign nsSNVs, we con-
structed a rare nsSNV test set (RNTS; see the “Methods” 
section) that was composed of rare (AF<0.01) pathogenic 
ClinVar nsSNVs after release 20190102 and location-
matched rare (AF<0.01) benign nsSNVs from gnomAD, 
ExAC, and 1000GP. The RNTS (n = 11,540) was con-
structed to simulate the challenge faced by real-world 
whole-exome sequencing studies where it is crucial to 
correctly identify potentially pathogenic variants from 
neutral background variants that both have low AF fre-
quencies in population datasets. For the RNTS set, 
MetaRNN achieved the best performance with an area 
under the ROC curve (AUC) equal to 0.9311 in separat-
ing these rare nsSNVs, followed by BayesDel_addAF [7] 
and ClinPred [6] (selected comparisons with eight tools 
are available in Fig.  3a; all comparisons with 24 tools 
are available in Additional file  2: Fig. S1). It has been 
reported that computational tools tend to overestimate 
the number of pathogenic variants (i.e., high sensitiv-
ity and low specificity) [62, 63]. Consequently, we then 
examined the models’ specificity at 95% sensitivity. The 
MetaRNN model achieved the best specificity (0.6877) at 
95% sensitivity, followed by ClinPred (0.6430) and Bayes-
Del (0.6404).

To comprehensively evaluate the performance of 
MetaRNN in separating ClinVar reported pathogenic 
and benign nsSNVs, we constructed 3 test sets for 3 
different use scenarios. First, we constructed a de novo 
rare ClinVar test set (DN-RCTS) where all variants had 
AF equal to 0 to evaluate MetaRNN’s performance for 
extremely rare variants or those without available popu-
lation AF data. As shown in Fig. 3b (selected compari-
sons with eight tools; all comparisons with 24 tools 
are available in Additional file  2: Fig. S2), MetaRNN 

outperformed all competitors with an AUC equal 
to 0.9337, followed by ClinPred (AUC=0.9179) and 
VEST4 (AUC=0.9047). We also evaluated the mod-
els’ specificity at 95% sensitivity. The MetaRNN model 
achieved the best specificity (0.6919) at 95% sensitivity, 
followed by ClinPred (0.6760) and VEST4 (0.5974). As 
this test set was imbalanced (4537 TPs vs. 831 TNs), a 
precision-recall curve was plotted, and similar results 
were observed (Additional file  2: Fig. S3). Second, we 
constructed a rare ClinVar test set (RCTS) where all 

Fig. 3  Comparisons of MetaRNN with other prediction tools. a 
Performance comparison of MetaRNN and 8 other nsSNV prediction 
tools using the rare nsSNV test set (RNTS). b Performance comparison 
of MetaRNN and 8 other nsSNV prediction tools using the de novo 
ClinVar test set (DN-RCTS)
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variants had AF<0.01 to evaluate MetaRNN’s perfor-
mance for separating rare variants reported in ClinVar. 
As shown in Additional file  2: Fig. S4, the MetaRNN 
performed the best in terms of average precision (AP) 
and AUC, and ClinPred and BayesDel were not far 
behind. Lastly, to examine our model’s performance in 
ClinVar regardless of AF, we constructed an all-allele-
frequency set (AAFS) comprised of all available ClinVar 
pathogenic SNVs and benign SNVs (rare+common) 
that are not used for model development. As shown in 
Additional file 2: Fig. S5, using AAFS as the benchmark 
test set, MetaRNN outperforms all competitors with an 
AUC of 0.9862. The second-best model was ClinPred 
(AUC=0.9841), followed by BayesDel (AUC=0.9759). 
In general, in our ClinVar-based comparisons, ensemble 
methods and functional predictors outperform conser-
vation-based methods. In addition, MetaRNN showed 
improved performance under all benchmark settings 
regardless of the different AF filters used for the inclu-
sion of nsSNVs.

Investigating the generalizability of MetaRNN to different 
disease and functional databases
To explore the generalizability of our model to disease-
causing nsSNVs curated with different standards, we 
retrieved disease-causing mutations (DMs) from HGMD 
Professional v.2021.01 [24] as TPs (n = 22,628) and rare 
nsSNVs observed in gnomAD v3 with allele frequencies 
between 0.01 and 0.0001 as TNs (n = 22,628), which 
matched the number of TPs. Only variants reported in 
dbNSFP [27, 28] as missense were kept. To minimize the 
type I circularity of the data, we further removed variants 
that were reported from an older version HGMD Profes-
sional database (v. 2017). Additionally, variants reported 
in ClinVar 20200609 as “pathogenic,” “likely pathogenic,” 
“benign,” or “likely benign” were filtered out. MetaRNN 
still outperformed other competitors using this test set 
with an AUC of 0.9689 (Additional file 2: Fig. S6). TP53 is 
one of the most well-studied human genes, and its func-
tional impact is linked to tumor suppression [34]. Using 
results from a TP53 mutagenesis assay (n = 824), we 
showed that MetaRNN provides the best estimations for 
results from such functional experiments with an AUC 
of 0.8074 (Additional file 2: Fig. S7). Additionally, we col-
lected a test set of cancer somatic variants from a recent 
study [26] and showed that both MetaRNN and Bayes-
Del showed the best performance in separating potential 
driver variants from potentially benign variants observed 
in populations (Additional file  2: Fig. S8) [26]. These 
results highlighted MetaRNN’s increased ability rela-
tive to those of the other methods to separate not only 
rare pathogenic variants from rare benign ones but also 

variants with various degrees of functional importance 
across different disease pathways.

MetaRNN‑indel outperformed competitors in identifying 
pathogenic nfINDELs
To examine the performance of MetaRNN-indel, we 
first curated a test set that was composed of pathogenic 
ClinVar nfINDELs after release 20190102 (n = 828). 
MetaRNN-indel outperformed all competitors in rank-
ing nfINDELs with an AUC equal to 0.9371 (Fig.  4a), 
including two methods, VEST [59] and CADD [3], which 
showed good performance in nsSNV-based analyses. The 
second test set was constructed from HGMD Profes-
sional version 2021.01. All the nfINDELs that were not 
in the training set of MetaRNN-indel were used as the 
pathogenic set. For the benign set, rare nfINDELs with 
AF less than 0.01 were retrieved from gnomAD v2.1.1 
and then matched to the number of pathogenic vari-
ants. A total of 8020 nfINDELs (4010 pathogenic variants 
and 4010 benign variants) were collected after filtering. 
MetaRNN-indel still outperformed other scores with an 
AUC of 0.8491, followed by PROVEAN (AUC=0.7951) 
(Fig. 4b).

MetaRNN showed improved interpretability of variants 
of unknown significance
To explore the interpretability and usability of the proposed 
models, we first predicted scores for all nsSNVs in ClinVar 
that showed conflicting clinical interpretations (n = 20,337). 
These nsSNVs represent an essential class of variants with 
unknown significance (VUS) according to the ACMG-AMP 
guidelines [64]. The ability to distinguish and interpret VUS 
variants is crucial to the clinical application of the proposed 
score. A score that shows sufficient dispersion enables fur-
ther identification of relevant candidate variants. Addition-
ally, these conflicting VUS variants are of interest with some 
evidence of being either pathogenic or benign. Among these 
variants, 15,788 (77.6%) showed conflicting interpretations 
between benign/likely benign and unknown significance 
(“benign conflicting group”), whereas 4110 (20.2%) showed 
conflicting interpretations between pathogenic/likely 
pathogenic and unknown significance (“conflicting patho-
genic group”). Based on the fact that the benign conflicting 
group had approximately four times more variants than the 
conflicting pathogenic group, we expect that variant pre-
diction tools should reflect this observation. While other 
scores either showed little change in the distribution across 
their predictions (e.g., CADD [3], VEST [9], REVEL [4]) or 
potentially underestimated the proportion of VUSs at the 
extremes (BayesDel [7]), MetaRNN’s predictions showed 
a score distribution that fit these assumptions (Fig.  5a), 
which peaked at the extremes of its score range and had 



Page 9 of 14Li et al. Genome Medicine          (2022) 14:115 	

approximately four times more extreme benign predictions 
than extreme pathogenic predictions.

Compatibility of MetaRNN and MetaRNN‑indel scores
Additionally, we explored the score distributions for 
nsSNVs and nfINDELs used in testing the respec-
tive MetaRNN models. A clear bimodal distribution 
was observed for both MetaRNN and MetaRNN-indel 
predictions (Fig.  5b). Based on a cutoff value of 0.5 as 

inherited by the sigmoid activation function used in the 
MetaRNN models, pathogenic nsSNVs and nfINDELs 
can be effectively separated from benign ones. To fur-
ther check for compatibility of predictions from both 
models, defined as the trend that similar prediction 
scores convey a similar likelihood of being pathogenic, 
we constructed a combined dataset with 828 randomly 
sampled prediction scores from the RNTS by MetaRNN 
and 828 prediction scores from the ClinVar test set for 
nfINDELs by MetaRNN-indel. We hypothesize that if 

Fig. 4  Comparisons of MetaRNN-indel with other prediction tools. 
a Performance comparison of MetaRNN-indel and 4 other nfINDEL 
prediction tools using the ClinVar test set for nfINDELs. b Performance 
comparison of MetaRNN-indel and other nfINDEL prediction tools 
using the HGMD test set for nfINDELs. Note that VEST4 was removed 
in this comparison because it used HGMD during its training process

Fig. 5  MetaRNN and MetaRNN-indel score distributions in test data 
sets. a Score distribution for ClinVar variants of unknown significance 
(VUS). b Score distributions of MetaRNN and MetaRNN-indel 
predictions on matched test sets where the number of pathogenic 
and benign variants are the same
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these two scores are compatible, the AUC calculated 
using the combined data will perform similarly to the 
individual AUCs. As shown in Additional file 2: Fig. S9, 
the combined predictions had an AUC equal to 0.9379, 
similar to those observed using predictions from indi-
vidual models (MetaRNN AUC=0.9322, MetaRNN-indel 
AUC=0.9378). These observations have two implica-
tions. First, using a cutoff of 0.5 is in accordance with 
the interpretation of the scores as probabilities, where 
a score greater than 0.5 can be categorized as having a 
higher probability of being pathogenic and a score less 
than 0.5 can be categorized as having a higher probabil-
ity of being benign. Second, with a shared cutoff value 
and similar distributions for nsSNV and nfINDEL scores 
across independent test sets, we show that predictions 
from our two models, namely, MetaRNN and MetaRNN-
indel, are comparable. This feature can effectively help 
increase the power of genotype-phenotype association 
studies and related gene-set association analyses. It can 
also help fine-mapping the exact causal variants in cod-
ing sequences.

Sensitivity analysis shows MetaRNN’s superior 
performance over other model structures
Finally, to further explore the robustness of our 
MetaRNN model, we trained multiple alternative mod-
els using different setups and tested their performances 
under various perturbation conditions. First, we trained 
a model using only rare TPs and TNs with AF<0.01, 
which included 8937 TPs and 9133 TNs from ClinVar 
20190102 (MetaRNN_rareModel). Additionally, an AF-
free model was trained, which removed all AF informa-
tion during training (MetaRNN_AFfreeModel). Both 
models were trained using the same search spaces as 
the original MetaRNN model. These two models were 
used to examine whether a more stringent AF filtering 
process or dropping AF information completely can 
improve the model’s performance. Finally, to investigate 
whether our MetaRNN model, which adopted flanking 
sequence information and a bidirectional GRU layer, 
can provide additional predictive power, we trained a 
feed-forward neural network using only annotations of 
the target variant (MetaRNN_feedforwardModel). We 
first evaluated these models using the RNTS test set 
regarding their average precision-recall (AP) and AUC 
(Fig. 6a). We found that MetaRNN showed the best per-
formance across both metrics compared with all other 
model setups. Limiting the training data to only rare 
variants (MetaRNN_rareModel) and ignoring context 
information (MetaRNN_feedforwardModel) negatively 
impacted model performance. For de novo variants, it 
is expected that AF information from population-based 

studies is not available. Therefore, we created a pertur-
bation condition that masked all AF information during 
model evaluation (_noAF). As expected, all models’ per-
formances dropped when AF information was removed. 
For example, MetaRNN’s AUC decreased from ~0.93 
to ~0.895. However, even without AF information, 
MetaRNN can still perform well in separating rare path-
ogenic and rare benign variants. Moreover, we exam-
ined these same conditions using AAFS as a benchmark 
(Fig.  6b). As shown in the figure, our MetaRNN again 
performed the best, followed by MetaRNN_feedfor-
wardModel and MetaRNN_rareModel. MetaRNN’s 
performance when all AF information was masked per-
formed well with AP=0.86 and AUC=0.94. We addi-
tionally examined MetaRNN’s performance for variants 
located in genes not seen by the model during training 
(MetaRNN_UnseenGenes). We identified 10,846 vari-
ants in 3971 qualified genes in AAFS for this analysis. 
The figure shows that the MetaRNN_UnseenGenes 
showed a similar AUC but lowered AP compared to 
the MetaRNN model benchmarked using the complete 
AAFS. This observation demonstrated that our model 
generalizes well to variants in genes with no available 
labeled data.

Discussion
This study proposed two supervised deep learning 
models to effectively distinguish pathogenic nsSNVs 
and nfINDELs from benign ones. Compared to other 
competitors, MetaRNN showed improved overall AUC 
and specificity across various test data sets, especially 
those with only rare or de novo TPs and TNs. The 
improved performance can be attributed to several 
factors. First, allele frequencies were used as features. 
Some evidence and observations from our study have 
shown that population allele frequency can provide 
valuable information to help separate pathogenic from 
benign variants [6, 7, 12]. Our training data, which 
removed only those “easy” benign nsSNVs observed in 
all populations, seem to be a good trade-off between 
posing a difficult enough training set for the model to 
learn useful information from and preserving valuable 
information from AF features. In future development, 
different modes of inheritance of diseases and pen-
etrance can be incorporated into model development, 
making AF information even more useful. Second, 
information from nsSNVs flanking the target variant 
helps predict the pathogenicity of the target variant. 
Our results indicate that incorporating annotations 
from context nsSNVs, which were previously neglected 
by other computational tools, can help improve model 
performance.
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Improved score interpretability is another highlight of 
the models. As clinical laboratories report candidate var-
iants mainly based on the ACMG-AMP guidelines [64], 
reliable and robust computational approaches can be a 
cost-effective way of providing supporting evidence for 
variant interpretation (such as the PM4 and PM5 criteria 
from the guidelines). By correctly assigning more VUSs 
into functional groups (pathogenic/benign), more de 
novo variants or variants with insufficient evidence are 

likely to be interpreted, leading to an improved diagnos-
tic rate in rare Mendelian disorders.

As illustrated previously, MetaRNN and MetaRNN-
indel scores are compatible, which filled another gap 
by providing a one-stop annotation score for both 
types of variants. This improvement is expected to be 
applicable across various settings, such as integrated 
(nsSNV+nfINDELs) rare-variant burden tests for gen-
otype-phenotype association. Even though NGS-based 

Fig. 6  Performance comparison of alternative model setups. a RNTS as the benchmark, which has 5770 TPs and 5770 TNs. b AAFS as the 
benchmark, which has 6208 TPs and 22,808 TNs. Triangular shapes indicate _noAF models
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studies such as whole-exome sequencing studies are 
designed to detect rare genetic variants, their ability to 
systematically assess rare genetic variants’ contribution 
to human diseases and phenotypes still lags behind due 
to insufficient power. This contributes to both the low 
AF of the detected variants and relatively low sample 
sizes compared to genotype-based studies [65]. Using 
computational prediction scores as weights in burden 
tests is able to increase the power of such studies [66]. 
The power increase will be more prominent when nsS-
NVs and nfINDELs are analyzed in an integrated fash-
ion instead of being analyzed separately.

We provide predictions for all potential nsSNVs (~86 
million) in the dbNSFP [27, 28] database for rapid and 
user-friendly analysis and a GitHub page for stand-
alone annotation of nfINDELs (and nsSNVs). The pro-
gram takes a standard VCF file as input and provides 
variant pathogenicity scores in a transcript-specific 
manner as output (supported by ANNOVAR [61]). The 
average prediction time for a single insertion/deletion 
is approximately 0.2 s, which can support timely large-
scale predictions.

Conclusions
In this study, we developed two models, namely, 
MetaRNN and MetaRNN-indel, for the pathogenicity 
prediction of nsSNVs and nfINDELs. Our models pro-
vide improved performance with the following innova-
tions. First, we used flanking region annotations around 
the target variant to help boost model performance. 
Second, we focused our predictions on rare variants, 
which is one of the major gaps in our ability to inter-
pret sequence variants effectively. Third, we provide 
compatible models on both nsSNVs and nfINDELs to 
make predictions for these two classes of variants com-
parable. Last, we provide pre-computed scores for all 
possible human nsSNVs and a stand-alone program for 
a fast one-stop annotation of both nsSNVs and nfIN-
DELs. In conclusion, with improved prediction accu-
racy, score interpretability, and usability, MetaRNN 
and MetaRNN-indel will provide a more accessible 
and accurate interpretation of rare VUSs for exome-
sequencing-based Mendelian disease studies and inte-
grated (nsSNV+nfINDELs) burden tests for common 
disease studies.
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