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Abstract 

Background:  Genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the only 
approach to rapidly monitor and tackle emerging variants of concern (VOC) of the COVID-19 pandemic. Such scrutiny 
is crucial to limit the spread of VOC that might escape the immune protection conferred by vaccination strategies or 
previous virus exposure. It is also becoming clear now that efficient genomic surveillance would require monitoring 
of the host gene expression to identify prognostic biomarkers of treatment efficacy and disease progression. Here 
we propose an integrative workflow to both generate thousands of SARS-CoV-2 genome sequences per week and 
analyze host gene expression upon infection.

Methods:  In this study we applied an integrated workflow for RNA extracted from nasal swabs to obtain in paral-
lel the full genome of SARS-CoV-2 and transcriptome of host respiratory epithelium. The RNA extracted from each 
sample was reverse transcribed and the viral genome was specifically enriched through an amplicon-based approach. 
The very same RNA was then used for patient transcriptome analysis. Samples were collected in the Campania region, 
Italy, for viral genome sequencing. Patient transcriptome analysis was performed on about 700 samples divided into 
two cohorts of patients, depending on the viral variant detected (B.1 or delta).

Results:  We sequenced over 20,000 viral genomes since the beginning of the pandemic, producing the highest 
number of sequences in Italy. We thus reconstructed the pandemic dynamics in the regional territory from March 
2020 to December 2021. In addition, we have matured and applied novel proof-of-principle approaches to prioritize 
possible gain-of-function mutations by leveraging patients’ metadata and isolated patient-specific signatures of SARS-
CoV-2 infection. This allowed us to (i) identify three new viral variants that specifically originated in the Campania 
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Background
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the etiological agent of the coronavirus disease 
2019 pandemic (COVID-19), is a positive-sense, single-
stranded RNA virus belonging to the genus Betacorona-
virus [1]. The spreading of COVID-19 cases around the 
globe promoted the natural selection of viral variants 
harboring gain-of-function mutations: in 2020 the substi-
tution of aspartate-614 with glycine in the Spike protein 
of the original Wuhan strain (Spike D614G) guaranteed 
the first major competitive advantage, both in terms of 
replication efficiency and infectivity [2]. Consequently, 
it should not come as a surprise that while being mar-
ginally prevalent at the beginning of the pandemic, the 
frequency of the D614G mutation rapidly increased in 
Europe starting from February 2020. In the following 
year, this mutation characterized 99% of SARS-CoV-2 
sample incidence [3]. The virus acquired further muta-
tions since the beginning of the pandemic, increasing its 
genetic diversity, consequently leading to the spread of 
several viral lineages (variants), each characterized by a 
specific set of mutations [4]. Some variants’ mutations 
granted particular advantages to the viral spreading, thus 
leading to their domination over the population of ori-
gin [5–7]. These are usually characterized by enhanced 
infectivity and transmissibility, hence the World Health 
Organization (WHO) defines such as variants of concern 
(VOC) [8]. Although VOC are still responsive to current 
treatments as the ancestral virus does [9], some stan-
dalone SNPs such as the Spike mutation E484K, cause 
a lower sensitivity to both monoclonal antibodies and 
vaccine-induced human serum [10, 11]. This accentu-
ates the importance of tracking not only viral infections 
but also the viral variants causing them. Such an effort is 
resolutely imperative now as new selective stimuli, such 
as vaccines and antibody therapies, are being introduced 
in the general population.

Along with genotyping of the SARS-CoV-2 genome, it 
is becoming pertinent to acquire insights into the cellu-
lar response of the host cells as an approach to monitor 
disease progression, patient stratification and biomark-
ers identification. Now more than ever, providing simple 

and cost-effective tools to comprehensively profile virus 
genome and host transcriptome became imperative to 
effectively tracking and isolating focal areas of variants 
eluding vaccination. At the moment, the vast majority 
of studies concerning the elucidation of the molecular 
bases of viral infection have been carried out in in vitro 
virus-infected models (e.g., cell lines, organoids) [12–14]. 
While these approaches guarantee an easy-to-handle 
and rapid solution, they lack generalization, as they are 
narrowed to the system used, and do not account for 
the physiological interaction between host infected cells 
and their microenvironment (e.g., immune cells). How-
ever, due to the scarce and exiguous quality of nasal swab 
RNA, combined with the excessive costs of sampling a 
considerable cohort of COVID-19 positive patients, it 
has been challenging so far to obtain consistent and cost-
effective patient gene expression data.

In our work we aimed at filling these gaps by creating an 
integrated genomic workflow that allows, from the diag-
nostic extract, to reconstruct the SARS-CoV-2 complete 
genome using a customized amplicon-based method, and 
to retrieve global gene expression of the host airway epi-
thelium, via an adapted RNA-seq approach. As further 
discussed, such an affordable and scalable workflow can 
be implemented in laboratories lacking automation and 
equipped with benchtop sequencers. Nevertheless, we 
applied such workflow on genome-scale NGS sequencers 
to perform an efficient genomic surveillance in the South 
of Italy. Our effort allowed us to establish novel proce-
dures to prioritize new emerging variants and to identify 
molecular signatures associated with a viral infection, 
maturing a powerful tool for disease prevention, diagno-
sis, and, potentially, personalized treatment.

Methods
Samples collection, RNA extraction, and SARS‑CoV‑2 
testing
Sample handling, diagnostics, and logistics were car-
ried out by Ospedale Cotugno as regional reference 
center for infectious diseases and Istituto Zooprofilattico 
Sperimentale del Mezzogiorno (IZSM), as coordinator 
of Coronet network of Regione Campania. All samples 

region, (ii) map SARS-CoV-2 intrahost variability during long-term infections and in one case identify an increase in the 
number of mutations in the viral genome, and (iii) identify host gene expression signatures correlated with viral load 
in upper respiratory ways.

Conclusion:  In conclusion, we have successfully generated an optimized and cost-effective strategy to monitor 
SARS-CoV-2 genetic variability, without the need of automation. Thus, our approach is suitable for any lab with a 
benchtop sequencer and a limited budget, allowing an integrated genomic surveillance on premises. Finally, we have 
also identified a gene expression signature defining SARS-CoV-2 infection in real-world patients’ upper respiratory 
ways.
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were randomly collected in Campania, Italy, as part of 
the institute’s and local health services diagnostic activity 
during 2020 and 2021. In most of the cases, after a first 
diagnosis, a second RNA extraction and qPCR were per-
formed, by IZSM to generate uniform qPCR results. RNA 
extraction was performed  in general by using either the 
Maelstrom 9600 (TANBead), GeneQuality X120 (AbAn-
alitica), or Abbott m2000sp automatic platforms accord-
ing to the manufacturer’s specifications. SARS-CoV-2 
abundance in each sample was tested by using either the 
Allplex 2019-nCoV Assay (Seegene), Real Quality RQ-
2019-nCoV kit (AbAnalitica), or Abbott RealTime SARS-
CoV-2 Amplification Kit by detecting at least two of the 
N, E or RdRP, SARS-CoV-2 genes. In all analyses where 
the Ct value of each subject was employed, the average 
Ct of the three genes was calculated and used. A total of 
about 22228 were used for SARS-CoV-2 whole genome 
sequencing. Out of these, 387 samples were used to 
investigate host gene expression and were divided into 
two cohorts depending on the viral variant identified: the 
first cohort included 162 samples assigned to the B.1.x 
variant and the second included 225 samples assigned to 
the delta avariant. In addition, 300 RNA extracts from 
SARS-CoV-2 negative swabs were also sequenced.

SARS‑CoV‑2 WGS and computational analysis
All procedures including library preps were performed 
with standard filtered low-retention tips and each step of 
the library preps was performed in a separate PCR hood, 
located in different rooms with dedicated pipettes and 
thermocyclers. Prior and after each step, decontamina-
tion occurred by using a combination of UV irradiation, 
0.5% bleach, and DNAzap (Thermofisher). Libraries were 
always prepared in multiples of 96 samples arrayed in a 
96-well plate and at least 5 blank samples (water) were 
added in each plate to monitor cross-contamination. 
Library generation for SARS-CoV-2 genome sequenc-
ing was performed by using a modified and optimized 
version of the amplicon-based ATOPlex RNA Library 
Prep kit (MGI Tech) starting from 5, 2.5, and 1.25 μL of 
unquantified extracted RNA. The volume of reagents 
was reduced to 1/2, 1/4, and 1/8 of the originally recom-
mended volumes, respectively. The sequencing strategy 
was also optimized to increase the sequencing through-
put from 96 libraries per run to 384 by manually loading 
the 4 flow-cell lanes of PE100 cycles 320G flow-cell (MGI 
Tech). Further multiplexing can be achieved by increas-
ing the indexing up to 768 libraries per run, as shown by 
randomly subsampling 1.25 million reads per sample. 
Similarly, two 96 library pools can be sequenced on two 
lanes of a PE100 cycles SP/S1 Novaseq flow-cell (Illu-
mina). The two sequencing technologies show compara-
ble performances [15].

One-step tests were performed by merging the 1st and 
2nd PCR step of the ATOPlex RNA Library Prep kit. In 
particular, we prepared a PCR reaction mixture contain-
ing all the components of the 1st PCR step plus the “PCR 
Primer block” and the “PCR additive” of the 2nd PCR. 
The PCR was then conducted using the program sug-
gested in the original protocol [16]. However, to decrease 
the amount of unincorporated primers at the end of the 
amplification, the number of cycles was increased from 
13 to 25. For the same reason, the concentration of the 
“PCR Primer Pool” component was decreased to 1/75 
of the original one. As soon as the reaction cooled down 
to 4 °C, the indexing primers were added and the reac-
tion was allowed to continue for further 15 cycles. All 
the reagents, except the PCR Primer Pool” were used at 
the same concentration as suggested by the original user 
manual [16].

FASTQ files generated by the MGI sequencer (DNB-
SEQ-G400) were used as input for the pre-process-
ing pipeline. The pipeline used was adapted from 
MGI-tech-bioinformatics [17] and a threshold coverage 
of at least 30X was used to call each base in the consen-
sus sequence. It was further parallelized and automated 
to process 100 samples/h using Nextflow [18]. SARS-
CoV-2 viral load was implied as the percentage of reads 
aligning to the viral genome with respect to the co-
amplified Lambda phage genome added as spike-in at 
the beginning of the library preparation. A co-amplified 
host GAPDH locus was used in the pipeline for internal 
positive control. Only samples with a minimum SARS-
CoV-2/Lambda reads ratio of 10%, 50,000 SARS-CoV-2 
reads and at least 50% of genotyped bases were consid-
ered for GISAID submission. Blank samples always dis-
played around 1% SARS-CoV-2/Lambda reads ratio and 
almost never exceeded 10%. Upon GISAID submission, 
only samples uploaded before 2021-05-26, labeled as 
complete by GISAID and with >95% of genotyped bases 
were used for further analysis. Furthermore, to normal-
ize sequencing statistics when comparing the three solu-
tions developed, only samples with Ct values lower than 
or equal to 33 were selected.

The phylogenetic analysis was generated using Next-
strain [19] standard pipeline on a random subsample of 
sequences generated until 2022-03-30. Tree visualization 
was performed using R (v. 4.1.0) with the packages ape (v. 
5.5), ggTree (v. 3.0.2), phangorn (v. 2.7.1), and castor (v. 
1.6.8). BA.1.21.1 tree was generated by using the omicron 
sequences produced and a random sample of sequences 
from GISAID assigned to other lineages (GISAID epi set: 
EPI_SET_20220509ow).

The frequency of mutations of concern was analyzed 
by considering a mutation as “expected” if its frequency 
in a certain lineage was higher than 30% over the total 
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number of worldwide samples assigned to that specific 
lineage. Mutation trends clustering was performed using 
the PAM clustering method as follows. The input for the 
algorithm was a mutation × month matrix indicating 
the frequency of each mutation in each month. Out of 
all the mutations detected, only the ones reaching 5% of 
incidence at least once during the period of analysis were 
used for clustering. The number of clusters was chosen 
by using the silhouette method (factoextra v. 1.0.7). This 
yielded to 3 optimal clusters. A further round of cluster-
ing on the first two clusters (k=28 and k=3, chosen with 
the silhouette method) resulted in a total of 32 groups. 
The same number of clusters was chosen for both the 
analysis performed in May 2021 and January 2022. 
Finally, clusters too similar were manually merged.

Host mRNA‑seq and computational analysis
RNA-seq was performed by using the 3’DGE mRNA-
seq clinical grade sequencing service (Next Generation 
Diagnostic srl) [20] which included library preparation, 
quality assessment and sequencing on a NovaSeq 6000 
sequencing system using a single-end, 100 cycle strategy 
(Illumina Inc.). Prior to library preparation, a 40–60 μL 
unquantified swab RNA extract (1–5 ng/μl estimate) was 
treated with DNAse I (Life Technologies), purified, and 
concentrated to a final volume of 5μL, all volume was 
then used in the library preparation reaction. One or two 
sets of 96 library pools were sequenced on a SE100 cycles 
SP Novaseq flow-cell (Illumina).

Illumina NovaSeq raw data were initially analyzed 
by Next Generation Diagnostic srl proprietary 3’DGE 
mRNA-seq pipeline (v2.0) which involves a cleaning step 
by quality filtering and trimming, alignment to the refer-
ence genome, and counting by gene [21–23].

Samples were considered qualitatively sufficient and 
retained based on the number of detected genes (≥ 
5000) and the percentage of reads assigned to genes ( ≥ 
20%). Data were normalized via the cpm function from 
the edgeR [24] package (v. 3.34.1). Principal component 

analysis was conducted by prcomp function from R (v. 
4.2) on normalized, log-transformed counts.

Correlation analysis between Ct values and gene 
expression was performed on genes that were expressed 
(i.e., CPM > 1) in at least 70% of the entire dataset (8100 
genes for B.1 and 5525 for Delta). The test was performed 
using the function cor.test from R (v. 4.2). Anti-correla-
tion was defined for results with p-value < 10-4. Pathway 
and gene sets enrichment analysis was conducted using 
the enrichR [25–27] package (v. 3.34.1).

Results
A systematic approach allows the generation of large 
and robust genomic data in a cost‑effective manner
Besides screening and diagnosis, one of the major needs 
related to the SARS-CoV-2 pandemic is to collect and 
analyze a considerable amount of viral genomes, to 
guarantee a rapid geographical and continuous sur-
veillance of VOC. To achieve this goal, we developed a 
systematic workflow that allows the collection, whole 
genome sequencing (WGS), cloud data processing, and 
sharing of up to 4500 SARS-CoV-2 genomes per week. 
Our approach is based on the optimization of an ampli-
con-based workflow [16] (see the “Methods” section) 
(Fig.  1A). To both increase processivity and efficiently 
reduce costs, the protocol was tested and validated with 
a decreasing amount of input RNA for the generation of 
the libraries. In particular, we tested 5 μL, 2,5 μL, 1,25 
μL of unquantified RNA and proportionally scaled down 
the reaction volumes to 1/2, 1/4, and 1/8 (solution A, B, 
and C, respectively) (Fig. 1B, C, Additional file 1: Fig. S1A 
and Additional file  2: Table  S1). Neither the number of 
mapping reads, the genome coverage, nor the number 
of sequences passing our quality filters and submitted to 
GISAID were significantly affected by volume reductions.

Being able to rapidly process the RNA sample to the 
final viral genome consensus is a critical aspect for 
retrieving meaningful data on the SARS-CoV-2 genome 
surveillance in a territory. We addressed this point by 
both optimizing the steps required for library generation 

Fig. 1  A systematic approach allows the generation of large and robust genomic data in a cost-effective manner. A Schematic representation of 
the workflow set up to collect, process, and analyze a considerable number of viral genomes. Top: Oronasopharyngeal swabs are performed to 
diagnose the presence of the SARS-CoV-2 genome in patients and extract its RNA. Subsequently, viral RNA is retrotranscribed and subjected to 
two PCR steps to amplify and index the obtained cDNA. After circularization and nanoball generation, the obtained library is then sequenced and 
analyzed. Bottom: As an alternative and faster approach, an optimized approach enables the amplification and indexing to occur in one PCR step. 
B Multiple solutions were tested to optimize the workflow. The table reports the input RNA volume, the amount of reads produced per sample, 
the number of samples loaded per flowcell, the average time required to process a 96-well plate, and the relative cost per sample. Cost details are 
reported in Additional file 2: table S1. C Boxplot showing the percentage of samples submitted on the GISAID platform, divided by each tested 
solution. Only samples with an average Ct value < 33 were considered. D Violin plot showing the distribution of the percentage of SARS-CoV-2 
reads detected for different ranges of CTs. n:sample size. E Variant annotation, cumulative frequency, and sequencing coverage of each position 
of the SARS-CoV-2 genome. F Venn diagram showing the intersection between mutations detected in all the sequenced genomes worldwide 
(yellow) and the mutations found in this study (light blue). G Representation of all the 156 lineages identified in this study. The length of the bars is 
indicative of the number of samples for each lineage in the logarithmic scale. Colored bars indicate VOC

(See figure on next page.)
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and adjusting the number of samples sequenced in each 
run (Fig.  1B). Particularly, we merged the targeted and 
the indexing amplification steps in a single PCR (Fig. 1A, 

see the “Methods” section). Such a one-step strategy has 
an efficiency of ~ 60%; however, it allows to remove a 
magnetic beads purification step and thus reducing the 

Fig. 1  (See legend on previous page.)
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hands-on time for library generation by ~40% (Fig. 1B). 
In parallel, sequencing flow performance and efficacy 
were tested and validated against increasing number of 
samples per run, as such can have an adverse effect on 
the quality of the resulting viral sequences. We compared 
QC statistics obtained by sequencing at a depth of ~ 9, 
4.5, and 2.75 million 100bp paired-end reads per sample. 
This translates into sequencing two (192 samples), four 
(384 samples) or eight (768 samples) 96-well plates per 
run. As expected, the total amount of reads decreases 
by increasing the number of samples per flow-cell; nev-
ertheless, the downstream parameters were not affected, 
allowing us to genotype a similar amount of SARS-CoV-2 
genomes (i.e., GISAID database sequence acceptance 
rate—Fig. 1C).

Therefore, by finely tuning the starting amount of RNA, 
the library generation steps, and the number of samples 
loaded in each sequencing run, we were able to decrease 
both the processing time and the costs. Using our opti-
mized SARS-CoV-2 WGS workflow solution B, during 
2021, we were able to process, as a proof-of-principle 
approach, about 30,000 swabs and sequence 22,228 of 
them, 17,193 of which generated high-quality genomes 
(defined as those complete genomes with a percentage of 
Ns lower than 5%, Additional file 2: Table S2). A strong 
correlation between the number of reads detected in 
each sample and the Ct values obtained from a diagnostic 
qPCR was observed (Fig. 1D). SARS-CoV-2 reads showed 
a proportional rate with respect to Ct in the intervals 
between 40 and 25 Ct while reaching saturation <25 Ct. 
Altogether, these observations suggest that our WGS 
approach reliably quantifies the viral load and provides 
us with crucial metadata to correlate higher virus titer 
to specific virus lineages and a transcriptional response 
from host cells (see later in Figs. 2 and 4). The robustness 
of this approach was further established by analyzing the 
mean coverage level, which appeared to be homogene-
ous across the entire sequence (Fig.  1E). This piece of 
evidence confirmed the absence of major biases in the 
single nucleotide evaluation: hence, we investigated the 
SNPs information derived from our genomic screening 
and determined missense and synonymous mutations to 
be the most frequent across the entire genome, although 
few positions appeared to be more prone to mutate 
(Fig.  1E). Indeed, a number of mutations (Additional 
file 2: Table S3) were efficiently detected in our dataset, 
194 of which were previously unknown (Additional file 2: 
Table  S4) and 40 only identified in Campania (Fig.  1F). 
Interestingly, out of the 194 mutations first collected in 
the region, 20 fall within the Spike gene, at or nearby 
residues reported to be relevant for neutralizing antibody 
binding [28]. Taken altogether the mutations detected 
allowed us to identify 156 different SARS-CoV-2 pangolin 

[6] lineages (Fig.  1G), some of which were retrieved for 
the first time thanks to our activity (see below).

Characterization of SARS‑CoV‑2 genome evolution 
in the south of Italy
As aforementioned, starting from the end of Decem-
ber 2020 to the first week of 2022, we have sequenced, 
uploaded to GISAID, and analyzed 17,193 SARS-CoV-2 
genomes. Our workflow was tested throughout the Cam-
pania region, which includes the major southern Italian 
metropolitan areas and some of the most densely inhab-
ited cities in Europe. Globally, we were able to sequence, 
in most months during 2021, at least 5% of all COVID-19 
positive samples (Fig. 2A), making Campania compliant 
with EC/ECDC recommendations, reaching a sequenc-
ing coverage comparable to that of North-European 
countries. In fact, our dataset represents almost half of 
all sequences retrieved and uploaded from the south of 
Italy and 28% of all sequences produced in the country 
(Fig.  2B). Samples were collected starting from March 
2020, by randomly selecting positive swabs and reflecting 
population demographics of sex, age, and the geographi-
cal distribution across the area of interest (Additional 
file 1: Fig. S2A and Fig. 2C).

The analysis of samples collected during the whole 
pandemic period allowed us to unveil the full dynamics 
of the SARS-CoV-2 outbreak in Campania. We indeed 
reconstructed the distribution of all the VOC arrived in 
Campania (Additional file  1: Fig. S2B), particularly the 
delta (represented by B.1.617.2 and AY.* lineages) and 
alpha (B.1.1.7 and Q.*) VOC, which represented the vast 
majority of variants detected (71.6%). In accordance with 
worldwide data, the first VOC arriving in the region, 
starting from December 2020, were the B.1.1.7 and P.1 
(gamma variant). Next, other VOC were detected in 
the region, including B.1.351, P.1, and B.1.1.529 lineages 
(i.e., beta, gamma, and omicron VOC, respectively). We 
also identified three main Variants of Interest (VOI); the 
B.1.427, B.1.525, and B.1.621 lineages (i.e., epsilon, eta, 
mu).

Out of the 156 viral lineages identified in the region, 
5 were first recorded in Campania territory, namely 
B.1.1.187, B.1.177.33, B.1.177.75, C.18, and P.1.1 (Addi-
tional file 2: Table S5). In particular, the C.18 viral variant 
was first collected in July 2020, whereas its first record 
outside Campania was registered 3 months later, suggest-
ing a possible epidemiological origin from our territory 
of investigation. Similarly, over 82% of B.1.1.187 samples 
collected during the pandemics were derived from Italy, 
all from Campania. Our analysis also showed that the 
first gamma VOC sub-variant identified (pangolin line-
age P.1.1) was first sampled in Campania by our activity 
(Additional file  2: Table  S6) and that it was specifically 
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enriched in Italy, with sequences from Campania repre-
senting about 20% of all P.1.1 samples identified.

Looking at the whole picture, we determined that the 
main infection peaks in the region were associated with 
the spread of specific viral lineages (Fig. 2D top and mid-
dle overlays). Indeed, while the first wave of infections 
was mostly due to the ancestral B.1 lineage, the second 
one (autumn 2020) was led by the B.1.177 lineage (also 
referred to as the European or Spanish variant) and its 
sub-lineages. Interestingly, the time window between 
the first two infection peaks was characterized by two 
of the aforementioned lineages to be firstly detected in 
Campania; B.1.1.187 and C.18, associated with most of 

the COVID-19 cases during late spring and summer of 
2020. These two variants distinguish the pandemics in 
Campania relative to the rest of Italy (Fig. 2D lower level, 
red arrow). In the same period in the rest of the coun-
try, infections were predominantly associated with other 
B.1 sub-lineages, mainly including B.1.1, B.1.1.305, and 
B.1.1.229.

Finally, the two infection peaks of 2021 were due to the 
spread of alpha and delta variants. These two VOC suc-
ceeded one after the other and accounted for almost all 
COVID-19 cases in the first (alpha) and second (delta) 
half of 2021. Interestingly, from December 2021 B.1.1.529 
(omicron) variants started to emerge.

Fig. 2  Characterization of SARS-CoV-2 genome evolution in the south of Italy. A Geographic map representing European States, colored by the 
number of 2021 months with at least 5% of viral genomes sequenced, compared to new cases. Only for Italy, individual regions are displayed. B 
Top: geographic map representing Italian regions, colored by the number of genomes deposited on the GISAID platform. Bottom: percentage of 
genomes deposited on GISAID over the total Italian sequences, divided in Northern (green) and Southern (blue) regions. 28% of the overall Italian 
sequences have been produced by this study (dark blue). C Geographic distribution in Campania of the genomes analyzed in this study (top) 
relative to the population density (bottom). D Density plots showing the distribution, in time, of the most frequent variants described in this study 
(middle) or in Italy (bottom) relative to the Campania infection curve (top) and waves (red-colored areas). Red arrows highlight different variants 
dynamics between regional and national level, in a certain period of time. E Distribution of the average CT value across different Variants of Concern 
(VOC). Only not significant (n.s.) pairwise comparisons are reported (Bonferroni adjusted p-value > 0.05)
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Since during this succession of variants in the regional 
territory, none of them ever reappears after being under-
mined by the subsequent one, it is fair to suppose that 
each variant has been substituted by one with higher 
fitness and capability to spread. To test this hypothesis, 
we looked at the viral loads in the upper respiratory 
ways of patients infected by the predominant variants in 
Campania (Fig.  2E). We observed a clear trend towards 
an increase of viral titer in patients during the pandem-
ics, with a Ct value difference between omicron and the 
ancestral B.1 variant of −7.8 (q value < 2×10−16 pairwise 
Mann-Whitney test). A similar trend towards decreasing 
Ct values was observed also when taking into account all 
the variants identified in the region (Mann-Kendall test, 
p value=8.99×10-10, Additional file 1: Fig. S2C).

High‑throughput genomic surveillance allows 
the identification of new variants based on the analysis 
of single mutations
As, the comparative analysis of our dataset with GISAID 
world data allowed us to retrospectively identify viral var-
iants firstly sampled in Campania (B.1.1.187 and C.18), 
we were interested to explore whether it was possible to 
unveil new viral lineages circulating in the territory. To 
achieve this goal, we explored several approaches. We 
mainly focused on the concept that a new SARS-CoV-2 
variant is characterized by a specific set of mutations, 
therefore we generated approaches based on (1) muta-
tions associated with a higher infectivity found in unex-
pected variants; (2) an increasing incidence of a set of 
mutations in a short time window; (3) the appearance of 
new mutations in samples collected by patients with per-
sistent infections.

First, we explored SARS-CoV-2 “mutations of concern” 
genotyped in unexpected lineages (Fig.  3A and Addi-
tional file  1: Fig. S3A). Interestingly, we found that the 
Spike E484K substitution had an unexpected distribution 
in the lineage identified at the beginning of 2021. This 
mutation is typically found in P.1.x and B.1.351.x viral lin-
eages and has been associated with a decreased sensibil-
ity to both monoclonal and BNT162b2 vaccine-induced 
antibodies [7, 10, 11, 29]. However, as of May 2021, ~21% 
carrying this mutation were associated with the B.1.177.x 
lineage. To further investigate this finding, we performed 
a phylogenetic analysis over our entire dataset using 
Nextstrain [19] and found that all B.1.177.x samples car-
rying the Spike E484K substitution (B.1.177E484K samples) 
clustered in a specific and monophyletic clade branch-
ing within the B.1.177.x lineage (Fig.  3B). We further 
confirmed this finding by looking at the distribution of 
B.1.177E484K samples in the phylogenetic tree containing 
all high-quality SARS-CoV-2 genomes from GISAID [6, 
30]. This data points to the fact that B.1.177E484K samples 

cluster in a monophyletic clade with an extremely high 
(0.99) support value, thus confirming regional level inci-
dence (Additional file  1: Fig. S3B). Additionally, as the 
GISAID database revealed that B.1.177E484K samples had 
been identified for the first time in Campania through 
our program, we investigated their geographic distribu-
tion in the regional territory to trace the epidemiologi-
cal link (Fig.  3C). Surprisingly, these samples originated 
from a specific area between Naples and Salerno called 
“Agro Nocerino-Sarnese.” Combining these results, we 
hypothesized that B.1.177E484K variant had probably 
arisen in this area in December (treetime divergence 
inferred interval: 2020-11-22~2020-12-21) and, then, 
spread nearby in Campania and in other confining Italian 
regions (mainly Lazio and Basilicata). Altogether, these 
observations allowed us to define a new SARS-CoV-2 lin-
eage, which is now recognized by the Pangolin nomen-
clature B.1.177.88.

To identify any new variant rapidly growing in the 
territory as soon as it appears, we exploited another 
approach based on the incidence over time of each of the 
6441 amino acid mutations we identified. As, by defini-
tion, a viral variant is defined by a specific combination 
of mutations, we looked at mutations that displayed 
similar trends in the same period and grouped them in 
clusters. In order to identify any potential new alpha 
subvariant growing in Campania, we applied this meth-
odology to the data collected until may 2021, when the 
variant reached its maximum (Additional file 1: Fig. S3C). 
Several clusters clearly reflected the trends of known lin-
eages, confirming the robustness of our approach; for 
instance, cluster 6 consisted of those substitutions that 
characterize the B.1.177.x lineage (namely N A220V and 
Spike A222V) and presented the same trend over time. 
Similarly, cluster 29 reflected the trend of B.1.1.7 line-
age. Among these, cluster 18 was particularly interest-
ing (Fig. 3D). It consisted of 4 mutations (NSP2 Y316C, 
NSP3_T1306I, NS7a T120I, NS8 H112Y) with the exact 
same frequency behavior over time, thus suggesting a 
possible SARS-CoV-2 haplotype. A further investigation 
revealed that these SNPs define a set of samples assigned 
to the B.1.1.7 lineage and specifically localized in Cam-
pania in May 2021 (B.1.1.7YTTH samples). Similarly to the 
previous analysis, we carried out a phylogenetic analysis 
that confirmed B.1.1.7YTTH as monophyletic (Fig. 3E and 
Additional file  1: Fig. S3D). While B.1.1.7YTTH genomes 
did not show any geographic enrichment, its temporal 
distribution was indicative of an inland origin (Treetime 
divergence inferred interval: 2020-12-01~2020-12-06), 
followed by its spread first to the Neapolitan coast and 
then towards the Southern Neapolitan province (Fig. 3F). 
B.1.1.7YTTH variant has been recognized, upon our alert, 
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Fig. 3  High-Throughput genomic surveillance allows the identification of new SARS-CoV-2 lineages. A Donut chart representing the amount 
of analyzed genomes presenting the Spike E484K mutation, divided by lineage. The definition of Expected lineage is described in the Methods. 
B Section of the phylogenetic tree representation of the whole dataset (n=12,998), colored by lineages. The identified lineage is reported (blue 
dots, left) and zoomed in (right). n:sample size. C Geographic distribution of genomic variants belonging to the identified lineage, colored by the 
collection date. The size of each pie chart is proportional to the number of samples in each geographic position. n:sample size. D Line plot showing 
the frequency trend of the selected mutations in time. E Section of the phylogenetic tree representation of the whole dataset (n=12,998), colored 
by lineages. The identified lineage is reported (arrow, blue dots). n:sample size. F Geographic distribution of genomic variants belonging to the 
identified lineage, colored by the collection date. The size of each pie chart is proportional to the number of samples in each geographic position. 
n:sample size. G Genomic characterization of twenty patients with long COVID-19 infection. The number of detected mutations is reported as a 
function of the number of days from the first swab. The assigned lineage (colors) and consistency (transparency) are also displayed. H Patient 8 
genomic characterization relative to the number of detected mutations (colors), the infection load (y-axis), and symptoms severity (+++: severe; 
++: moderate)
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as one of the first B.1.1.7 sublineage by the Pangolin sys-
tem and is now referred to as the Q.2 lineage.

By applying the same approach to the data produced 
till January 2022, we also identified a new Omicron sub-
variant (BA.1.21.1, Cluster 17 in Additional file  1: Fig. 
S3E and F). The variant is characterized by an early STOP 
codon mutation in NS7b (E3stop) and a SNP in Nsp12 
(L749M). This variant was first collected at the end of 
2021 and rapidly spread in Campania at the beginning 
during 2022, accounting for over 10% of all the infections 
in the region between January and March 2022.

Several reports [31] showed the accumulation of muta-
tions in the SARS-CoV-2 genome during persistent 
infections. However, the frequency of such events is still 
overlooked. In order to possibly address this question 
and identify potential new variants, we analyzed swabs 
collected from 20 patients multiple times for over 40 days 
during prolonged infections (Fig. 3G). Age and immuno-
logical status highly varied across the patients (Table 1): 
patients’ age ranged from 13 to 88 (average 62) years and 
while most of them were affected by simple or bilateral 
pneumonia, six suffered a more severe respiratory failure 
and only one showed no COVID-related symptomatol-
ogy. It is worth noting that, although most samples were 

collected during 2021, none of the patients had com-
pleted a three-dose SARS-CoV-2 vaccination cycle, 4 had 
only one vaccine dose, and most had no vaccination at all 
(13/20).

Sequencing of the viral genetic material confirmed no 
shift from a viral variant to another over time but each 
had a set of patient-specific mutations. However, looking 
at the individual mutations, in one patient (#8) there was 
an actual increase in the number of amino acid substitu-
tions, as confirmed by several independent sequencing 
runs on several subsequent timepoints. The acquisition 
of the mutation (NSP13 R339C) was recorded only after 
40 days from the first swab and did not correlate with an 
increase in the viral load or a worsening of the symptoms 
(Fig. 3H).

These results suggest that in specific conditions, 
such as over 40 days of persistent infection, the SARS-
CoV-2 genetic consensus sequence can actually change, 
although the rate of such an event, as well as its biological 
significance, are not known yet.

Tracking new variants based on mutations arising 
in specific conditions is a novel approach for SARS-
COV-2 surveillance. Here we showed that, by combin-
ing this approach with deep profiling of viral variability, 

Table 1  Detailed clinical status of patients from Fig. 3G

Patient Immune compromised Main clinical symptoms Comorbidities Age Vaccine Outcome

1 Yes Pneumonia LNH 64 None Healed

2 No Pneumonia Hemoperitoneum, anemia 30 None Deceased

3 Yes Respiratory failure Pulmonary hypertension, NHL 64 Pfizer (×2) N/A

4 No ARDS Diabetes, hypertension, ischemic heart 
disease

76 None Healed

5 No Mild respiratory failure Necrotizing-hemorrhagic pancreatitis 60 None Deceased

6 No ARDS Hypertension, dyslipidemia 61 None Deceased

7 No Bilateral pneumonia, fever, asthenia, 
myalgia, dyspnea

T2D, obesity, hypertension 59 None Healed

8 No Not specified severe symptomatology Atrial fibrillation, T2D 78 None Deceased

9 Yes ARDS Anemia, ALS, COPD 73 Pfizer (×1) Healed

10 No Respiratory failure ARDS, sepsis, anemia, pulmonary 
hypertension

64 None Healed

11 No Bilateral pneumonia None 88 None Deceased

12 No Bilateral pneumonia, fever, asthenia, 
myalgia, dyspnea

Hypertension, T2D, HCV, dyslipidemia, 
obesity

68 None Healed

13 Yes Pneumonia NHL 73 Pfizer (×1) Healed

14 N/A 87 N/A Healed

15 No respiratory failure Psoriasis 44 None Heled

16 No Pneumonia, dyspnea, chest pain Hypothyroidism, severe obesity 71 Pfizer (×1) Healed

17 N/A N/A N/A 26 N/A Healed

18 Secondary to chemotherapy Asymptomatic Ewing sarcoma 13 None Healed

19 No Fever, cough, dyspnea, pneumonia Mixed dyslipidemia, obesity, hyperthy-
roidism, hypovitaminosis D

64 None Healed

20 Yes Pneumonia Thymoma, Good’s syndrome 60 Pfizer (×1) Healed
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new SARS-CoV-2 variants can be unveiled, even at the 
regional level.

Transcriptional profiling of Sars‑CoV‑2‑infected patients 
reveals a gene signature correlated with viral load 
and preserved across different lineages
The comprehensive gene expression profiling of the res-
piratory epithelium of patients positive for SARS-CoV-2 
infection holds great promises in terms of preventive, 
diagnostic, and therapeutic advancements. For this rea-
son, we implemented an RNA-seq workflow adapted to 
work with diagnostic swabs, known to have extremely 
low quantity and quality of RNA. We processed around 
700 samples, divided in two batches for the analysis of 
the differential molecular host response to B.1 and Delta 
variants infection (Additional file  1: Fig. S4A). After fil-
tering, the B.1 final dataset comprehended 116 SARS-
COV-2 positive samples to be compared with 88 negative 
ones. On the other hand, the Delta dataset was composed 
of 43 and 95 SARS-COV-2 positive and negative sam-
ples, respectively (Additional file  1: Fig. S4A). Although 
the cohort of patients was numerous, in both cases many 
confounding variables influenced the possibility to com-
pare positive and negative conditions. Inter-patient 
heterogeneity, different viral loads, and swab-related 
variability are some of the factors that prevented us from 
finding a strong variance solely related to the presence 
or absence of the infection (Additional file  1: Fig. S4B). 
Therefore, we decided to take advantage, again, of the 
Ct values associated with positive samples and perform 

a correlation analysis between gene expression and viral 
load, starting with the B.1 dataset (Fig. 4A top). After fil-
tering non-expressed genes (see Methods), a Pearson cor-
relation test was conducted and a signature of 161 genes 
(Additional file 2: Table S7) was found to be significantly 
anti-correlated with Ct values (p-value < 0.0001, Fig. 4A 
bottom). Among the 10 most anti-correlated genes, many 
downstream targets of interferon antiviral response (e.g., 
IFI44L, OAS2, PARP9, IFITM3, IFIT1) were found, as 
already reported from in  vitro experiments and single-
cell studies [32]. We confirmed an enhanced antiviral 
immune response by performing pathway and gene sig-
natures enrichment analyses (Fig.  4B). Indeed, together 
with COVID-19- and Bronchitis-related signatures, the 
most significant results comprehended Interferon Alpha 
pathway and its inducers, IRFs. Additionally, STAT3-reg-
ulated genes were enriched, which were recently found 
to be aberrantly activated upon SARS-CoV-2 infection 
[33] (Fig. 4B). Interestingly, when looking at the expres-
sion levels of these genes in our cohort, negative patients 
displayed a transcriptional behavior comparable to sam-
ples with the lowest viral load (Fig.  4C). We applied 
the same approach to the Delta dataset and retrieved a 
molecular signature of 16 genes (Fig. 4D and Additional 
file 1: Fig. S4C-E), way smaller than the other one, most 
probably due to the restricted number of patients. Nev-
ertheless, almost every gene (13 genes, 81.25%) was 
common to the B.1 signature and belonged to the same 
pathways (IFIT3, OAS3, IFI6 - Fig.  4D). With that said, 
our CT-based approach overcomes all the technical and 

Fig. 4  Transcriptional profiling of SARS-CoV-2 infected patients reveals a gene signature correlated with viral load and preserved across different 
lineages. A Correlation analysis between CTs and gene expression of B.1 patients, performed on 8100 genes, is shown as a barplot. For each gene 
(x-axis), its correlation value (y-axis) and significance (p-value < 0.0001, red) is reported. Bottom: highlight of the significant results. (161 genes). The 
top 10 most anti-correlated genes are reported (black box). B Pathway and gene set enrichment analysis performed for different databases using 
the gene signature previously identified. Each barplot shows the significance (x-axis) and the percentage of overlap (fill color) between the input 
signature and the tested public genesets. C Heatmap of z-scored, log2-transformed, and normalized gene counts for the 161 significantly correlated 
genes from A. Values have been averaged in 4 groups of samples depending on the CT (x-axis) or whether they were negative. D Venn diagram of 
significantly anti-correlated genes between B.1 (161 genes) and Delta (16 genes) variant-infected patients
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biological variability related to the direct use of regular 
swabs extracts and establishes a robust gene signature 
that is preserved across different viral lineages and could 
be used as biomarkers for disease monitoring, preven-
tion, and non-conventional treatments.

Discussion
Genomic surveillance using Next Generation Sequencing 
approaches has proven its extreme efficacy in some of the 
most notorious outbreaks of the 21st century [34–36]. 
The technology, indeed, allows to specifically identify the 
pathogen genome variability directly from clinical speci-
mens, not relying on the traditional and time-consuming 
isolation and in vitro cultivation steps. As further proof 
of its potential, genome sequencing is now considered 
the standard genotyping procedure for influenza virus 
and has already been used for decision-making in terms 
of vaccine development by CDC [37]. Similarly, with 
the emergence of SARS-CoV-2 and its rapid evolution 
towards more and more infective variants [3, 4] genomic 
surveillance had a critical role in monitoring virus evolu-
tion and detecting new mutations. Nevertheless, several 
countries still lack an efficient or homogenous integrated 
program for SARS-CoV-2 genome sequencing [38]. Such 
observation depends on several factors in a country-spe-
cific manner. The amount of resources NGS technolo-
gies rely on is probably an important factor for emerging 
countries. The approach we optimized aims at generating 
an affordable and easy program that can be translated to 
monitoring viral variability at the regional level; a strategy 
that could allow emerging economies to perform efficient 
surveillance. This approach does not rely on any specific 
automation and can be implemented by a three-person 
team on any short-read sequencer. We proved its appli-
cability to as few as 1.25 μL of unquantified RNA, ena-
bling us to scale down the library reaction volumes, and 
thus the costs, while not affecting the sequencing met-
rics. The percentage of consensus sequences retrieved 
in each sequencing is only slightly affected when pooling 
up to 384 samples per flow cell, corresponding to 5 mil-
lion reads per sample. Similar results were obtained when 
simulating 2.5 million reads per sample, thus demonstrat-
ing that, in principle, it is possible to sequence up to 1536 
samples per run when using two flow cells in parallel.

We also tested a fast protocol which, by merging two 
PCR steps in one step, allows to speed up the library 
generation times by 40%. While in this case, the gen-
eral sequencing quality is lower, the solution still ena-
bles retrieving a consensus sequence for about 60% of 
the analyzed samples. Such a number is still enough for 
screening purposes to identify the main circulating vari-
ants and might be applied when time is a critical factor, 
as during major infection waves. It indeed allows to easily 

sequence over 4000 samples in one month, allowing the 
detection of variants with a frequency of about 1% and 
comply with EC/ECDC recommendation to sequence at 
least 5% of all positive cases.

As proof of principle, we applied the framework to the 
2021 genomic surveillance of the most densely populated 
region in Italy, Campania. As a result, the region is now 
the one with the highest number of sequences deposited 
on GISAID.

One of the biggest limitations of lacking microbiologi-
cal surveillance relies on the inability to detect and iso-
late new emerging variants, increasing the chances of 
new waves of infections. The most adopted evolution-
ary model to study SARS-CoV-2 relies on the assump-
tion that each of the lineages spread from an original 
ancestor originated in a given space and time. Being able 
to deeply profile the pandemic’s dynamics at a regional 
level, is thus critical for the detection of such ancestors 
as soon as they start to emerge and spread. We demon-
strated that, even looking at restricted territory, as Cam-
pania is, new mutations can be identified. In addition, we 
actually observed several lineages potentially originating 
in Campania, including VOC sub-variants (as the P.1.1, 
BA.1.21.1) that spread worldwide. Some of these vari-
ants were designated by the pangolin system only after 
our alert. We indeed propose three different principles 
to investigate and, potentially, define novel lineages. 
First, evaluate the presence of known pathogenic SNPs 
in unexpected lineages. Second, observe the co-occur-
rence of mutations with increasing frequency over time. 
Finally, look at the emergence of new mutations in long 
hospitalized infections. The latter approach emphasizes 
the synergy between the healthcare centers, which pro-
vide clinical metadata, and the sequencing facilities that 
generate the viral consensus sequences. Thanks to these 
approaches we were able to discover and describe three 
new lineages (B.1.177.88, Q.2, BA.1.21.1), and helped to 
guide local policy-makers in the establishment of local-
ized containment areas in the Region. For instance, the 
“Agro Nocerino-Sarnese” area was quarantined after 
pointing out the emergence of the B.1.177.88 variant; this 
decision likely prevented the spreading of the variant and 
it disappeared a few weeks later.

Among the others, we also collected over time sev-
eral samples from patients with persistent SARS-CoV-2 
infections. Interestingly none of the patients completed 
a full SARS-CoV-2 vaccination cycle and the vast major-
ity had no vaccination at all. In only one patient out of 
20, we were able to actually detect the rising of a new 
mutation (in viral NTP/helicase NSP13 R339C), in the 
viral genome. The identification of this mutation can be 
associated to two possible events: (i) the virus actually 
acquired a new mutation in the host or, less likely but 
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possible, (ii) the mutation pre-existed at low frequen-
cies as part of the quasispecies infecting the host and was 
then fixed in the viral population. It is worth noting that 
the mutation identified is extremely rare worldwide and 
it was identified on GISAID only 23 times in the same 
variant of the patient under investigation (alpha). How-
ever, while this observation alone does not necessarily 
imply the identification of a new lineage, it strongly sug-
gests that viral populations in patients with persistent 
infections can potentially evolve.

In conclusion, in this study, we propose a cost-effective 
and rapid workflow for SARS-CoV-2 genome sequencing 
whose cost per sample is 5 times lower than the stand-
ard application for SARS-CoV-2 WGS (using solution 
B). Moreover, our approach is based on PCR enrichment 
and amplification of viral genomes, thus not requiring 
any specialized skill and suitable to be performed after 
a minimum training. Finally, the possibility to pool 384 
samples or more in each sequencing flow cell, allows a 
3-person team (two wet scientists and one bioinforma-
tician) to deliver the sequences of over 760 samples in 
as few as 6 days (with ~ 5h of hands-on time). Taken all 
together, these properties make our approach not only 
highly valuable in monitoring COVID-19 pandemics, as 
we showed at a regional level, but also easily transferable 
to other genomic centers.

Main limitation of the approach is its amplicon-based 
nature, which requires the monitoring of the prim-
ers used as the viral genome mutates over time. Never-
theless, other strategies used for SARS-CoV-2 genome 
sequencing, e.g., probe-based enrichment and metagen-
ome WGS, are either more time-consuming and expen-
sive (probe-based enrichment) or deeply affected by host 
and microbial genetic material (metagenome). In addi-
tion, the use of short-reads, as for all second-generation 
sequencing strategies, has a potential impact on the 
capability to discern viral recombination from patient co-
infection, the former being the main feature in coronavi-
ruses [39]. While such an issue can not be solved without 
a long-read approach, we argue that any possible spread 
of recombinant strains would be recognized by the co-
occurence of the same mutations associated to different 
variants in several samples, as proven by the detection of 
two XA recombinant variants in our dataset.

The general lack of bioinformatics skills required for 
raw data analysis is a critical factor for NGS technolo-
gies implementation in clinical diagnostic laboratories. 
While offering a simple and cheap approach for SARS-
CoV-2 genome sequencing, our workflow also relies on 
the use of bioinformatics tools for data interpretation. 
We addressed this problem by developing a compre-
hensive pipeline which requires minimum informatics 
skills. Once started, the pipeline performs all the analysis 

required for the production of the consensus sequence 
and automatically performs the upload of high-quality 
sequences to GISAID.

Eventually, we identified molecular signatures from 
COVID-19 patients’ gene expression that agree with 
identified biomarkers reported in previous studies. Our 
approach extends the scope of SARS-CoV-2 genomic 
surveillance, as it allows for the examination of in  vivo 
samples characterized by the predominance of degraded 
RNA molecules. This competence enables overcoming 
the limitation of in-vitro and single-cell studies, such as 
model-specific variations and a small number of samples 
limit, respectively. Gene expression data from COVID-
19 patients might have a pivotal role as a bridge between 
genomic data and translational medicine. On one hand, 
finding a gene signature that describes and defines the 
patient status after SARS-CoV-2 infection may be useful 
to understand the pathogenesis of the virus in different 
patients and patients’ status. On the other hand, it might 
be used to evaluate new therapeutic treatments. In this 
study, we propose a cost-effective and rapid workflow 
to produce these data and to retrieve biologically rel-
evant biomarkers. Furthermore, the RNA-seq analysis 
implemented in our workflow offers for the first time a 
comparison between molecular signatures from RNAs 
of different SARS-COV-2 variants, proving that the tran-
scriptional host response of the upper airways changes 
in the same direction, regardless of the viral variant they 
have been infected by. We also envision integrating this 
approach with other types of metadata (e.g., patient 
symptomatology) to achieve the aforementioned goals.

Conclusions
Here we developed a fast and cost-effective approach for 
SARS-CoV-2 genomic surveillance. The proposed strat-
egy allows to scale of viral genome sequencing down to 
10 times less per sample. In addition, this protocol mini-
mizes the hands-on time and does not require intensive 
training or any particular automation. Taken altogether, 
these features allowed us to profile the SARS-CoV-2 pan-
demic in Campania (Italy) during 2020-2021. We thus 
identified the main variants leading each infection wave 
in the regional territory and discovered 3 new SARS-
CoV-2 lineages specifically originated in Campania, 
demonstrating the potential of genomic surveillance. We 
also added a further layer of information by integrating 
viral genotype with host upper respiratory airways tran-
scriptome upon infection. This integrative point of view 
revealed a gene-expression signature correlated with viral 
loads and characterizing real-world infected patients. 
Finally, we showed that the host airways epithelium 
response to SARS-CoV-2 infection is not significantly 
different in B.1 and delta variant infected patients. In 
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conclusion, we believe that the proposed approach can 
significantly help fight against the pandemic by democ-
ratizing viral genome profiling through next-generation 
sequencing.
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Additional file 1: Figure S1. A) Boxplots showing the percentage of sam-
ples with 100x genome coverage (left), million reads produced (centre) 
and mapped (right), divided by each tested solution. Only samples with 
average Ct value < 33 were considered. Figure S2. A) Histogram repre-
senting the cohort of patients of this study. Age (x axis) and sex (colors) 
are reported. B) Barcharts showing the distribution, in time, of the samples 
assigned to variants of concern and of interest identified in the study. 
C) Distribution of Ct values, in time, for all the samples collected during 
the pandemic in Campania. The trend line (red) and 95% confidence 
interval (light gray) are shown. Figure S3. A) Donut charts representing 
the amount of analyzed genomes presenting some mutation of concern, 
namely Spike L18F, S477N and P681H, divided by lineage. The definition 
of Expected lineage is described in the Methods. B) Phylogeny of the 
proposed lineage from Fig. 3A, the proposed lineage is in green. Bootstrap 
values for each node are shown as node points. C) Results from the 
clustering analysis for samples collected until May 2022, displayed as line 
plots of frequency over time (trends). The arrow indicates the investigated 
cluster in Fig. 3D. D) Phylogeny of the proposed lineage from Fig. 3D, 
the proposed lineage is in green. Bootstrap values for each node are 
shown as node points. E) Results from the clustering analysis for samples 
collected until January 2022, displayed as line plots of frequency over time 
(trends). The arrow indicates the investigated cluster F) Phylogeny of the 
proposed BA.1 sublineage, the proposed new variant is in green. Boot-
strap values for each node are shown as node points. Figure S4. A) Sche-
matic representation of RNA-seq data structure, pre- and post-filtering. 
B) Principal Component Analysis plots of B.1 and Delta datasets, colored 
by SARS-COV-2 infection positivity. C) Correlation analysis between CTs 
and gene expression of Delta patients, performed on 5525 genes, is 
shown as a barplot. For each gene (x axis), its correlation value (y axis) and 
significance (p-value < 0.0001, red) is reported. Bottom: highlight of the 
significant results. (16 genes). D) Pathway and gene set enrichment analy-
sis performed for different databases using the gene signature previously 
identified. Each barplot shows the significance (x axis) and the percentage 
of overlap (fill color) between the input signature and the tested public 
genesets. E) Heatmap of z-scored, log2-transformed and normalized gene 
counts for the 16 significantly correlated genes from the analysis of Delta 
dataset. Values have been averaged in 3 groups of samples depending on 
the CT (x axis) or whether they were negative.

Additional file 2: Supplementary tables 1-6. Extended table 1: Cost 
details for each solution. Extended table 2: Summary of all data produced. 
Extended table 3: List of the 6970 mutations found in this study, sorted 
by position along the Sars-CoV-2 genome. Extended table 4: List of the 
194 mutations first detected in Campania, sorted by position along the 
Sars-CoV-2 genome. Extended table 5: List of lineages first detected in 
Campania. Extended table 6: World distribution of lineages first detected 
in Campania. Extended table 7: List of 161 genes correlated with viral load.

Additional file 3. Laboratory protocol adopted in this work for SARS-
CoV-2 WGS library generation (“Solution B”).
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