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Abstract 

Rare diseases affect 30 million people in the USA and more than 300–400 million worldwide, often causing chronic ill-
ness, disability, and premature death. Traditional diagnostic techniques rely heavily on heuristic approaches, coupling 
clinical experience from prior rare disease presentations with the medical literature. A large number of rare disease 
patients remain undiagnosed for years and many even die without an accurate diagnosis. In recent years, gene panels, 
microarrays, and exome sequencing have helped to identify the molecular cause of such rare and undiagnosed dis-
eases. These technologies have allowed diagnoses for a sizable proportion (25–35%) of undiagnosed patients, often 
with actionable findings. However, a large proportion of these patients remain undiagnosed. In this review, we focus 
on technologies that can be adopted if exome sequencing is unrevealing. We discuss the benefits of sequencing the 
whole genome and the additional benefit that may be offered by long-read technology, pan-genome reference, tran-
scriptomics, metabolomics, proteomics, and methyl profiling. We highlight computational methods to help identify 
regionally distant patients with similar phenotypes or similar genetic mutations. Finally, we describe approaches to 
automate and accelerate genomic analysis. The strategies discussed here are intended to serve as a guide for clini-
cians and researchers in the next steps when encountering patients with non-diagnostic exomes.
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Background
Although the occurrence of individual rare diseases often 
seems negligible, it is estimated that 30 million people in 
the USA are suffering from a rare disease, affecting 1 in 
10 Americans, equivalent to the prevalence of type 2 dia-
betes [1, 2]. About 7000 rare disorders are defined [2, 3] 
and many others fall under the umbrella of undiagnosed 
diseases. Most patients suffering from a rare or undiag-
nosed disease receive only symptomatic treatment. An 
accurate diagnosis can result in better management of the 
disease, identification of potential therapeutics and avoid 
unnecessary treatments that may have severe side effects. 
For inherited rare diseases, knowing the causative vari-
ant and the mode of inheritance informs patients about 

the risk of passing the disease to future generations and 
helps evaluate alternate family planning options [4]. The 
diagnostic delay for rare diseases varies from months to 
decades, depending on the patient’s phenotype, age, and 
available resources. The average time for accurate diag-
nosis of a rare disease is about 4–5 years [5–7]; in some 
cases, it can take over a decade [8, 9]. These patients face 
a diagnostic odyssey and often undergo extensive and 
expensive workups at several institutions. Despite this, 
patients often remain undiagnosed or even misdiagnosed 
[8], which further adds emotional distress to patients and 
family members.

It is estimated that 80% of rare diseases have a genetic 
origin [13]. Until 10 years ago, genetic testing was expen-
sive and usually limited to a few genes at a time. The 
advent of next-generation sequencing technology has 
had a dramatic effect on the cost, accuracy, and utility of 
genetic testing and has supplanted older technologies. 
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Many undiagnosed diseases [14, 15] have been identified 
by exome sequencing (ES) that looks at the protein-cod-
ing regions, which constitute less than 2% of the genome 
[16]. Additionally, sequencing family members and per-
forming segregation analysis can eliminate hundreds of 
non-causative variants and thus reduce the search space. 
In a cohort of children with undiagnosed developmental 
disorders (n = 989) and unaffected parents, Wright et al. 
[17] observed that exome sequencing of the parent–child 
trios rather than singletons reduced candidate variants by 
ten folds. Clark et al. [18] performed a meta-analysis on 
five studies consisting of children with suspected genetic 
diseases (n = 3613) to compare the diagnostic yield of 
genome sequencing (GS)/ES by individual proband and 
trio testing within cohorts. They found that the odds of 
diagnosis using trios was double that using singletons.

Programs like Care for Rare [19], Deciphering Devel-
opmental Disorders [20], Rare and Undiagnosed Diseases 
Diagnostic Service [21], and the Undiagnosed Diseases 
Network [22] have demonstrated how exome sequenc-
ing can not only end an expensive, potentially invasive 
and emotionally challenging journey for the patients but 
also help in better disease management [23, 24]. Still, a 
minority of patients receive a definitive molecular diag-
nosis [17, 25–28]. This review, aimed towards clinicians 
and rare disease researchers, presents the key challenges 
in diagnosing patients with negative exome sequencing 
and discusses the strategies that can potentially fill the 
diagnostic gap in such patients. We propose technolo-
gies that should be considered when ES is unrevealing, 
many of which complement each other (Fig.  1). These 
include sequencing the whole genome and the transcrip-
tome. Based on the patient’s phenotype, metabolomics, 
or proteomics or methyl profiling should be considered. 
In parallel, automated processes should be established 
for periodic re-analysis of the genomic data and identi-
fication of patients with similar phenotypes or similar 
genetic mutations. Finally, functional studies should be 
conducted to support the causality of a putative variant 
and understand the molecular mechanism of the rare 
disease.

Genome sequencing
ES can capture the protein-coding regions of the genome 
and in some cases also untranslated regions (UTRs) 
and intron-exon boundaries [29], at a low cost. In addi-
tion, augmented exome capture techniques can further 
improve the coverage in medically relevant genes [30]. 
Despite the numerous advancements of exome sequenc-
ing, it has non-uniform coverage (particularly in first 
exons, regions of high GC/AT, and regions of low com-
plexity [31–33]) and is limited by the specificity of 
the capture probes [34]. ES has had modest success in 

detecting structural variants, tandem repeats, and path-
ogenic variants in deep intronic regions. Some of these 
challenges can be addressed by genome sequencing 
(GS) [31, 33, 35, 36]. GS can identify canonical [37, 38] 
and complex structural variants [39, 40], tandem repeats 
[37, 38], intronic variants [37, 38], and coding variants 
that may not be accurately captured by ES. GS has ena-
bled identification of the causative variants for many 
undiagnosed cases where prior ES was either unreveal-
ing [38, 41] or had provided only partial diagnosis (the 
causative variant explained only some phenotypes of the 
patient) [42]. Diagnosis mediated by GS has also opened 
avenues for therapy in some cases by identifying the dis-
ease mechanism and potential drug targets [42–44]. In 
this section, we illustrate with examples how short-read 
genome sequencing technology can facilitate detection 
of structural variants and tandem repeats that are often 
missed by ES. We discuss different long-read sequencing 
platforms, its advantages over short-read, especially for 
detecting large, complex structural variants and meth-
ylation changes and explore the potential of pan-genome 
reference in aiding rare disease diagnostics.

Structural variants
Structural variants (SVs) represent a class of variants that 
are greater than 50 base pairs (bp) [10, 45–47] and can 
be as long as 3 Mb [48, 49]. Structural variants include 
microscopic and often submicroscopic variants that 
comprise deletions, duplications, insertions, inversions, 
mobile element insertions (transposons), transloca-
tions, and complex rearrangements [10]. Since SVs often 
encompass several exons or genes, GS is a better tool 
for studying them than ES. With the advent of PCR-free 
library preparations, population frequency databases [47, 
50, 51], benchmarking structural variant datasets [52], 
and recent advancements in SV detection algorithms [46, 
53], many groups have implemented GS to identify path-
ogenic SVs in previously undiagnosed patients [39, 54–
57]. In a cohort of 477 undiagnosed patients with varied 
phenotype, Holt et  al. [55] identified molecular diagno-
ses for 16 cases (3.35%) by scanning for structural vari-
ants using short-read GS data. Carss et  al. [57] showed 
that in a phenotypically heterogeneous group of 722 
inherited retinal disease (IRD) patients, 33 pathogenic 
structural variants were responsible for the disease in 31 
(4.29%) individuals. Despite the ability of GS to detect 
large and complex variants, their interpretation remains 
difficult, especially for the non-coding variants [58]. The 
challenges associated with identifying the causative vari-
ant from ES/GS can be broadly classified into two groups 
— (i) interpretation (VUS in a known disease gene, novel 
disease gene or non-coding variant) and (ii) detection 
(missing second variant in a recessive disorder, causative 
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Fig. 1  Technologies and methods to diagnose rare diseases when ES is unrevealing. Many of these technologies complement each other, fill the 
missing gaps, and should be analyzed in an integrated manner. The selection between metabolomics, proteomics, methyl profiling, and immune 
assays should be guided by the patient’s clinical presentation and existing candidate genes identified through sequencing. Functional studies can 
be used to validate strong candidate variants or elucidate the underlying molecular mechanism of the disease after identifying the causative gene. 
ES: Exome Sequencing, GS: Genome Sequencing, UN: unstimulated. Some of the graphics representing different technologies or methods have 
been adapted with permission from [10–12]
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variant lies in difficult to sequence region or is masked 
due to biases in reference genome and genomic datasets). 
In Fig.  2, we summarize these challenges and suggest 
alternate technologies, informatics tools, and experi-
mental approaches that may help to reach a molecular 
diagnosis. With active development in variant prioritiza-
tion algorithms (like genomiser [59], SpliceAI [60]), new 
disease-gene discoveries, and complementary omic tech-
nologies (like RNA-seq, metabolomics, and proteomics), 
we expect the diagnostic yield by GS will continue to 
improve.

Short tandem repeats (STRs) are short (1–6 bp) DNA 
sequences repeated head-to-tail multiple times. Approxi-
mately 3% of the human genome consists of STRs [61] 
and 6% of human coding regions are estimated to contain 
STR variation [62]. Expansion of non-coding repeats can 
result in loss of protein function or altered RNA function 
while expansion of coding repeats can cause altered pro-
tein function [63]. STRs have been implicated in many 
neurological and genetic diseases like Friedreich’s ataxia 
(GAA), Huntington’s disease (CAG), Fragile X Syn-
drome (CGG), amyotrophic lateral sclerosis (GGG​GCC​
), and other hereditary ataxias [63–68]. Historically, STRs 
were genotyped using polymerase chain reaction (PCR) 
and gel electrophoresis, which is time consuming, costly 
and limited to identifying expanded repeats in regions 

previously associated with STR diseases. In past years, 
many bioinformatics tools like GangSTR [69], Expan-
sionHunter Denovo [70, 71], and STRetch [72] have been 
developed to predict STRs from PCR-free short-read 
sequencing. A recent study [73] benchmarked 8 STR pre-
diction tools using known disease-causing full-mutation 
STR expansions and simulated data and found that the 
ensemble approach of using ExpansionHunter, STRetch, 
and exSTRa performed the best. These tools have ena-
bled diagnoses of many Mendelian diseases caused by 
repeat expansion [74–76]. We discuss one of the cases in 
detail to demonstrate how STR analysis can guide diag-
nosis when ES is inconclusive.

Using GS and clinical and biochemical phenotyping, 
Kuilenburg et al. [75] identified expansion of GCA-repeat 
region in 5′UTR of glutaminase gene (GLS) in three 
unrelated patients with an inborn error of metabolism 
that resulted in reduced glutaminase activity. Initially, 
exome sequencing of the three patients and their fami-
lies identified heterozygous, damaging variants in GLS 
gene in probands 1 and 3. Although a good phenotypic 
match, the ES finding was not conclusive and prompted 
further biochemical analysis and genome sequencing of 
proband 1. Expansion Hunter tool that identifies repeat 
expansions in a locus-specific manner, predicted a large 
GCA-repeat expansion in proband 1 when compared 

Fig. 2  Challenges in identifying causal variants using exome or genome sequencing and the potential solutions and alternate approaches. These 
challenges can be at the level of interpretation or detection. GS: genome sequencing, ASE: allele-specific expression, VUS: variant of unknown 
significance
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with control population (n = 8295). Later, large GCA-
repeat expansions in the GLS were confirmed in all three 
patients using triplet repeat-primed PCR assay, facilitat-
ing molecular diagnoses for the three patients.

Although short-read sequencing can potentially iden-
tify known and novel SVs and repeat expansions across 
the genome, it has limited success in detecting large, 
complex structural variants and long tandem repeats 
or those which lie in highly repetitive and/ or GC-rich 
regions [77]. In the following section, we address how 
some of these limitations can be overcome by long-read 
sequencing.

Long‑read sequencing
Reads from short-read sequencing (SRS) — typically 
100–300 bp long [78]— are mapped to a consensus ref-
erence during the alignment step. Nowadays, paired-
end sequencing (sequencing both ends of a fragment) is 
often performed over single-end, allowing more accurate 
mapping of the reads, especially in regions with repeti-
tive sequences. However, the alignment process is still 
challenging in repetitive regions of the reference genome 
because of the short length of reads, making it difficult to 
predict large variants and long tandem repeats with high 
certainty. In the last decade, new sequencing technolo-
gies have been developed that generate reads that typi-
cally range 10–60 kb [79], with some extending to 2 Mb 
[80]. The longer reads result in improved alignment to 
the reference genome and better detection of SVs, espe-
cially within repetitive elements or segmental duplica-
tions or high GC content, regions that were difficult to 
access using short-read technology [81].

Long-read sequencing (LRS) also allows haplotype 
phasing — assigning genetic variants to the homolo-
gous paternal or maternal chromosomes [82, 83]. This 
information helps in identifying compound heterozy-
gous mutations and de novo autosomal dominant muta-
tions [84]. Most variant callers developed for short-read 
sequencing provide unphased variants and thus require 
sequencing of parents to detect compound heterozygous 
and de novo mutations. LRS also provides precise details 
about the breakpoints [85], improving our understanding 
of the mutation and disease mechanism.

Currently, there are two main LRS platforms — sin-
gle-molecule real-time (SMRT) sequencing from Pacific 
Biosciences [86] and nanopore-based sequencing from 
Oxford Nanopore Technologies (ONT) [87]. ONT can 
generate very long contiguous reads (2.2 Mb) [80] while 
Circular Consensus Sequencing (by Pacific Biosciences) 
provides highly accurate (99.8%) high-fidelity (HiFi) reads 
with an average length of 13.5 kb [88]. Cost-effective syn-
thetic LRS technologies like linked reads (Transposase 
Enzyme Linked Long-read Sequencing (TELL-seq) 

[89], single-tube long fragment read (stLFR) [90], Hi-C 
and chromatin cross-linking [91, 92], and optical map-
ping (from BioNano Genomics) [93] can provide several 
advantages of LRS (e.g., detection of large SV) at some 
additional cost. We suggest the review by Sedlazeck et al. 
[81] and Sakamoto et  al. [94] for further in-depth com-
parison of these technologies.

LRS also enables direct detection of methylated nucle-
otides [95–97]. Among all types of methylation modifi-
cations in DNA, 5-methylcytosine (5mC) is most well 
studied, partly due to the advancements in bisulfite-
based short-read sequencing techniques like whole 
genome bisulfite sequencing (WGBS) [98] and reduced 
representation bisulfite sequencing (RRBS) [99, 100]. 
Although bisulfite sequencing provides a quantitative 
and accurate measure of 5mC modifications at base 
resolution, it cannot capture other methylation changes 
including 6-methyladenine (6 mA) and 4-methylcyto-
sine (4mC). In contrast, long-read technology sequences 
native DNA and can predict the base modifications from 
the deviations seen in the raw signal, thus avoiding DNA 
amplification and bisulfite conversion steps and the 
biases associated with them [101]. Both nanopore tech-
nology and SMRT sequencing can capture many types 
of base modifications (including 5mC, 4mC, and 6 mA) 
simultaneously. In Pacific Biosciences’ SMRT sequenc-
ing, DNA polymerase adds labeled nucleotides along the 
template DNA, generating a succession of fluorescence 
pulses. Base modification can alter the kinetics of the 
polymerase during this process. If a nucleotide is meth-
ylated, DNA polymerase will pause before incorporating 
the next nucleotide. Changes in fluorescence pulses from 
the labeled nucleotides are used to measure the shift in 
polymerization speed, thus detecting the base modifica-
tion. For example, the time interval between two suc-
cessive fluorescence pulses called inter-pulse duration 
is used to detect 6 mA [81, 95]. Recently, Tse OYO et al. 
[102] developed a method that drastically improved the 
detection of 5mC modifications from SMRT sequencing 
using sequence context, inter-pulse duration, and pulse 
width associated with DNA polymerase kinetics. ONT’s 
technology identifies one of the 5 possible nucleotides 
based on the difference in electrical current produced 
when the base passes through protein nanopores embed-
ded in a flow cell. Base modifications on the DNA or 
RNA cause a minor shift in current that can be detected 
and interpreted by algorithms [96, 103]. Comparison of 
performance of nanopore, SMRT, and bisulfite-based 
short-read sequencing on the same set of samples will 
inform the community about benefits and limitations 
of each technology and which method is most suitable 
under a given situation.
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Using low coverage LRS, Merker et  al. [56] identified 
a 2184-bp deletion in a patient with negative targeted 
clinical testing and unrevealing SRS of the genome. Maio 
et al. [4] demonstrated how LRS can help to solve reces-
sive disease cases where the second pathogenic allele is 
missing from the ES data. Although SR GS is capable of 
identifying repeat expansions, it is limited in detecting 
undiscovered repeat diseases in long [104] and complex 
GC-rich regions [105]. Recent studies have proved that 
LRS can detect known [106, 107] and novel repeat expan-
sions [104, 108, 109] for Mendelian diseases in which no 
causal variants were detected through SRS. The longer 
reads can encompass an entire expanded repeat or a 
flanking unique sequence, making long-read technology 
apt for analyzing tandem repeat expansions [104]. Faci-
oscapulohumeral muscular dystrophy 1 (FSHD1) disease 
results from a heterozygous contraction of 3.3 kb repeat 
unit (referred as D4Z4) in the subtelomeric region of 
chromosome 4q35 and a chromosome 4 haplotype called 
4qA. The D4Z4 unit varies from 11 to 100 repeats in the 
healthy population, but FSHD1 patients show only 1–10 
repeats, hence the term contraction [110]. Convention-
ally Southern Blotting is used for molecular diagnosis 
of FSHD1 and alternative methods have been explored 
as Southern Blot is semi-quantitative and time consum-
ing. However, sequencing long, repetitive subtelomeric 
regions of the genome is challenging for both short-read 
technology and Sanger sequencing. Moreover, D4Z4 has 
variable number of repeat units and homologous repeat 
array on chromosome 4 and chromosome 10. Both true 
LR (SMRT [111] and ONT’s Minion [112]) and synthetic 
LR (BioNano Genomics’ optical mapping) [113] technol-
ogies have shown variable degrees of success in sequenc-
ing this region, determining the repeat number and 
haplotype. With continuing improvements, long-read 
technologies can enable sequencing of more such diffi-
cult-to-sequence regions, identifying new associations 
between genomic regions and genetic disorders. Several 
groups have exemplified the clinical significance of tar-
geted long-read sequencing using CRISPR/Cas9 [114] 
mediated methods [115, 116] or computational adap-
tive sampling [117] for enrichment of specific regions of 
the genome. In a small cohort of 22 patients with known 
canonical and complex SVs, Miller et  al. [117] demon-
strated that targeted LRS can not only detect all SVs pre-
viously identified with clinical testing (n = 46) but also 
discovered variants (n = 41) that were missed by the clini-
cal test. Targeted long-read sequencing has the potential 
to be used clinically for patients with suspected complex 
SVs and tandem repeats in candidate genes.

In summary, LRS can be the single test to detect sin-
gle-nucleotide variants (SNVs), insertion and deletion 
(INDELs), simple and complex SVs, tandem repeats, 

and methylation changes and inform about phasing. 
Although LRS holds promise for undiagnosed genetic 
diseases, some challenges need to be overcome in order 
to bring LRS from the research setting to the clinic. The 
cost of ONT is now comparable to SR but Pacific Bio-
sciences is relatively expensive. Recently, great strides 
have been made in sequencing technology and algorithm 
development to improve the accuracy of calling small 
variants (SNVs and INDELs) from nanopore and HiFi 
long-read data [88, 118]. At high coverage, both long-
read sequencing platforms can outperform the short-
read-based method in accurate SNV identification at 
whole genome scale, including segmental duplication and 
difficult-to-map regions. SR and HiFi have comparable 
performance at identifying INDELs but ONT has much 
lower accuracy. Identification of base modifications (epi-
genetic changes) by LRS is still in its infancy and suf-
fers from low accuracy and the need for training models 
[101]. However, continuous improvements in sequenc-
ing technology and algorithm development are being 
made to further increase the accuracy and lower the cost, 
which will eventually enable the use of LRS routinely for 
clinical diagnostics. In the interim, an attractive solution 
is a hybrid approach combining the advantages of each 
in a combined assay using, for example, lower coverage 
(e.g., 15×) long-read sequencing along with higher cov-
erage (e.g., 40×) short-read sequencing or using targeted 
LRS to evaluate candidate genes or in case of suspected 
tandem repeat disease or complex rearrangements.

Pan‑genome reference
The current human reference genome is a linear haploid 
consensus sequence derived from a very small number 
of individuals and thus lacks genetic diversity observed 
across populations [119, 120]. Mapping sequencing 
reads to this reference genome can cause the reads to 
be misaligned or remain unaligned, especially in highly 
polymorphic or repetitive regions or regions spanning 
structural variant breakpoints [119, 121] or may miss 
a rare variant that is represented by the minor allele on 
the haploid reference sequence [122]. This results in a 
“reference bias” as non-reference alleles from a sample 
are difficult to align to the linear reference sequence. To 
overcome these limitations, many efforts have been made 
in the past few years to incorporate known variants in the 
reference in order to allow variant-aware read alignment 
and variant calling [119, 120, 123–125]. These efforts 
propose a pan-genome, which represents a collection of 
all genomic sequences in a population or a species or a 
phylogenetic clade [123, 126].

Aligning reads to a pan-genome that considers many 
alternate haplotypes at each locus reduces the refer-
ence bias [127], thereby improving alignment accuracy 
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and variant calling [119, 124]. Recently, Siren et  al. 
[120] developed a tool called Giraffe to map short reads 
to pan-genome with high accuracy and speed. Giraffe 
detected SNVs, INDELs, and SVs more accurately when 
using a pan-genome than using the single reference 
genome, showcasing the significance and practicality 
of the pan-genomic approach to short-read mapping. 
It was able to genotype 167,000 SVs that were discov-
ered from LR studies, in 5202 individuals from diverse 
populations that were sequenced by SR sequencing. 
Recently, precisionFDA truth challenge V2 evaluated 
different bioinformatics pipelines’ accuracy in predict-
ing small variants in difficult-to-map regions and Major 
Histocompatibility Complex using Genome In A Bottle 
(GIAB) benchmark data set [128]. The top performing 
algorithms in the short-read sequencing category used 
either alt-aware mapping (DRAGEN’s graph mapper) 
or pan-genome (by Seven Bridges’ GRAF pipeline). 
Despite the several benefits of the pan-genome, there 
are practical limitations associated that have hindered 
the community in embracing this paradigm shift. This 
includes high compute cost, scalability, and complexity 
of the tasks. Addition of variants to the existing linear 
reference genome is not straightforward as simply add-
ing more variation to the reference can result in more 
ambiguity. Alternative methods have been proposed 
that aim to strike a balance between accuracy and limi-
tations of graph-based pan-genome. Reference flow 
[129] involves an iterative two-step process. Reads are 
first aligned to the linear reference genome and the una-
ligned reads and the reads with low mapping-quality 
are then re-aligned to a set of references. Tetikol et  al. 
[130] recommend population-specific graphs that iter-
atively augment tailored genome graphs for targeted 
populations.

By reducing the reference bias, the graph genome 
will be instrumental in detecting novel structural vari-
ants, large INDELs, and mutations that affect allele-
specific expression [126, 131, 132]. The pan-genomic 
model can help to detect more accurate variants for 
rare disease patients from underrepresented popula-
tions [130] and even allow construction of personal-
ized reference genome using the parent’s sequencing 
data (if available). To the best of our knowledge, pan-
genome has not yet led to a diagnosis; however, efforts 
are being made in this direction [133]. In the next 
few years, we expect further optimizations in speed 
and accuracy of the tools working in the pan-genome 
space. Since use of pan-genome and variant-aware 
algorithms lead to more accurate variant detection in 
SR sequencing, especially the structural variants, we 
anticipate that these approaches will benefit diagnoses 
of ultra-rare patients.

Transcriptomics
Although genome sequencing can theoretically capture 
all types of variants, prioritization and interpretation of 
the non-coding variants remains a big challenge. Com-
plementing DNA sequencing with transcriptomics can 
help to prioritize potential disease-causing variants. In 
this section, we review four approaches to analyze RNA 
sequencing data for prioritizing candidate genes for 
rare diseases — expression outliers, aberrant splicing, 
allele-specific expression, and transcriptomic structural 
variants [11, 134–136]. Next, we discuss the potential of 
long-read sequencing to predict alternative splicing and 
gene fusions with high accuracy. We also highlight the 
potential of single-cell transcriptomics to elucidate the 
cellular and molecular mechanisms of rare and undi-
agnosed diseases that involve rare, undiscovered cell 
populations.

RNA sequencing can help to classify a variant of 
unknown significance (VUS) and provide insights into 
the disease mechanism or identify variant in the second 
allele in a recessive disease where genomic sequencing 
returned only one pathogenic variant [137]. In a cohort 
of 50 patients with rare muscle disorders, who had non-
diagnostic ES and/GS, Cummings et al. [138] illustrated 
the utility of RNA sequencing the affected tissue (mus-
cle), yielding a diagnostic rate of 34%.

Gene expression and mRNA isoforms can vary sig-
nificantly from one tissue to another [139, 140] and so 
it is recommended to use the affected tissue for RNA 
sequencing [138, 141]. But the disease-relevant tissue 
is not always easily available in a non-invasive manner. 
Blood, fibroblasts, and induced pluripotent stem cells 
(iPSCs) appear to be promising alternatives [11, 134, 141, 
142]. By RNA sequencing blood from 94 undiagnosed 
patients, representing 16 distinct disease categories, Fre-
sard et al. [134] identified the causative variants in 7.5% 
of the cases, demonstrating the potential of blood tran-
scriptome sequencing to aid the diagnoses of rare Men-
delian diseases. Lee et al. [142] reported a 14.5% (n = 7) 
diagnostic rate by sequencing mRNA from blood, fibro-
blast, and/or muscle samples from 48 genome-negative 
individuals, primarily affected by neurological (n = 25) 
and musculoskeletal disorders (n = 12). They identified 
pathogenic splicing abnormalities in seven patients with 
neurological or musculoskeletal diseases. They observed 
that fibroblast was a better tissue choice than blood for 
identifying the splicing defects in this cohort. Similarly, 
Baynam et  al. reported a case of megalencephaly-capil-
lary malformation syndrome where the causative muta-
tion (mosaicism in PIK3CA) was detected in fibroblasts 
and not in blood [21].

However, many genes are expressed at very low lev-
els in both blood and fibroblasts to be captured at high 
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depth by RNA sequencing. CRISPR/Cas9 technology can 
be used to improve coverage of low-expressed genes in a 
scalable manner [143]. Huang et al. [144] applied CRIS-
PRclean method, using Cas9 nuclease and 360,000 guide 
RNAs to specifically remove RNA-Seq library fragments 
from over 4000 targeted genes and observed about a six-
fold increase in coverage of untargeted genes compared 
to untreated RNA-Seq libraries. iPSCs are a good substi-
tute when the candidate gene is known to be expressed 
at low levels in blood and fibroblast. Recently, Bonder 
et  al. [145] unified data from five major iPSC genetic 
studies [146–150] to create the integrated iPSC QTL 
(i2QTL) consortium. They observed a fivefold enrich-
ment of outliers in known rare disease genes as com-
pared to non-disease genes and demonstrated detection 
of gene outliers in patients with Bardet-Biedl syndrome 
and hereditary cerebellar ataxia. Therefore, alternate tis-
sues like fibroblasts, iPSCs, and blood should be consid-
ered carefully when the affected tissue is not available for 
transcriptome analysis. In the following section, we will 
discuss how sequencing the transcriptome can uncover 
pathogenic mutations, missed by studying genomic vari-
ants alone.

Expression outliers
When working with rare and undiagnosed diseases, 
it is assumed that most of the samples express each 
gene within its physiological range and the goal is to 
identify genes from each sample that are expressed at 
extremely high or low levels. This is achieved by calcu-
lating Z-scores, comparing each patient against others in 
the cohort. GTEX [140] and GEUVADIS [151] are great 
resources for additional control RNA-seq samples.

Caution should be exercised when applying the expres-
sion outlier approach. For example, controls should be 
from same tissue type as the disease samples [135]; data 
should be normalized for batch effect, sex, or biopsy site 
[11]. Typically, the Z-score-based approach uses an arbi-
trary threshold for selecting outlier genes [134, 138, 141] 
often followed by applying additional filters like predicted 
pathogenicity, minor allele frequency, and phenotypic 
match to further prune down the number of candidate 
genes [134]. Recent methods like OUTRIDER [152] and 
PEER [153] control for technical and biological variations 
among genes and the former also provides a statistical 
test for outlier detection in RNA-seq samples. Fresard 
et  al. [134] demonstrated how their expression outlier 
pipeline prioritized a causative gene (MECR) within the 
top 15 candidate genes for two siblings with MEPAN dis-
ease. Overall, analyzing expression outliers along with 
genomic variants and the patient’s phenotype can be a 
powerful strategy to identify strong candidate variants 
for clinical interpretation.

Aberrant splicing variants
Alternative splicing is a naturally occurring phenomenon 
in eukaryotes that results in a single gene coding for mul-
tiple proteins. Post transcription, non-coding sequences 
(introns) are removed from the pre-mRNA and some 
exons may be included or excluded from the final, pro-
cessed mRNA [154]. Errors in this process cause several 
diseases including rare Mendelian diseases [155]. Splic-
ing mutations can be broadly divided into five categories: 
exon skipping, inclusion of intronic pseudoexon, exon 
extension, exon retraction, and intron retention [142, 
156]. Algorithms like LeafCutterMD [157] and Fraser 
[158] provide statistical frameworks that are designed for 
predicting splicing outliers in rare diseases.

Certain types of variants like synonymous and deep 
intronic variants are often filtered out by prioritization 
pipelines unless they have been previously associated 
with a disease. Such variants can lead to aberrant splicing 
events and it is possible to re-prioritize them using tran-
scriptomic data [134, 158]. Lee et  al. [142] have shown 
how RNA sequencing helped to identify the second vari-
ant in a 2-year-old girl who had an inconclusive trio ES, 
which reported a paternally inherited frameshift muta-
tion in SEPSECS gene (OMIM 613009), associated with 
autosomal recessive pontocerebellar hypoplasia, type 2d 
[159]. GS did not reveal any pathogenic maternally inher-
ited coding variant. However, transcriptomics data from 
the proband and the mother showed that half of their 
reads in the SEPSECS gene skipped exon 7, which carried 
a synonymous variant. This was missed earlier because 
typically, synonymous variants are filtered during variant 
prioritization of genomic data unless they are previously 
reported to be pathogenic.

Allele‑specific expression
Allele-specific expression (ASE) is a phenomenon in 
diploid or polyploid genomes, where one allele has sig-
nificantly higher expression than the other allele [160, 
161]. When prioritizing variants from ES/GS data using 
recessive mode of inheritance, single heterozygous rare 
variants are filtered out. However, some of these het-
erozygous rare variants may exhibit ASE. Gonorazky 
et  al. [141] reported that the allele imbalance approach 
provided diagnostic leads in three monogenic neuromus-
cular disorder patients, who previously had non-diag-
nostic ES and/or gene panel results. Kremer et  al. [11] 
discuss how their ASE pipeline helped to establish the 
genetic diagnosis in a patient with mucolipidosis, who 
had tested negative for the enzymatic tests available for 
mucolipidosis type 1, 2, and 3 in blood leukocytes. They 
detected borderline non-significant low expression in an 
intronic variant in MCOLN1 gene that was filtered by 
their ES pipeline as it was intronic. Therefore, along with 
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identifying expression outliers and splicing variants, ASE 
analysis should be performed as part of regular RNA-seq 
analysis, especially when genomic data identifies only 
one heterozygous variant for a recessive disorder.

Transcriptomic structural variants
Structural variants (SVs) like translocations, duplications, 
inversions, and deletions join different genomic regions 
together or separate one region into pieces. Transcription 
of such regions can result in gene fusions (exons from 
two or more distinct genes are transcribed together) or 
cause a previously non-transcribed region to be included 
into a gene, often leading to altered gene function in both 
the cases. Such modifications in the transcribed mRNA 
that are caused by genomic SVs are known as transcrip-
tomic structural variants (TSVs) [162, 163].

Fusion genes are well documented in hematologi-
cal and solid tissue cancers and are used as biomarkers 
for early diagnosis and therapeutic targets [164]. Inde-
pendent case studies have reported fusion transcripts in 
many non-cancer diseases like brain malformation [165, 
166], intellectual disability [167, 168], spastic paraplegia 
[169], and Gille de la Tourette Syndrome [170]. Oliver 
et  al. [136] tailored a fusion identification pipeline for 
rare disease patients and applied it to a cohort of 47 indi-
viduals who previously had negative or partial diagnoses 
through exome sequencing. They identified eight fusion 
events that were confirmed using orthogonal methods, of 
which 2 provided clinical diagnoses for patients’ pheno-
types. They identified a paternally inherited pathogenic 
frameshift INDEL in ATM in an infant with T cell lym-
phopenia using trio exome sequencing. Pathogenic ATM 
variation causes ataxia-telangiectasia in an autosomal 
recessive manner but the patient’s exome data did not 
reveal a second trans variant in ATM. RNA sequencing 
of the patient’s fibroblasts identified reciprocal ATM-
SLC35F2 and SLC35F2-ATM fusion transcripts suggest-
ing chromosomal inversion that was later confirmed by 
targeted long-read sequencing of the putatively affected 
introns [136]. Recently, Cmero et  al. showed how using 
RNA sequencing alone allowed discovery of an inter-
chromosomal translocation in the DMD gene in a patient 
with muscular dystrophy [171]. Thus, integrated analysis 
of transcriptomic and genomic data should be consid-
ered to detect structural variants that may result in gene 
fusions.

Long‑read transcriptomics
Short-read RNA sequencing is a well-established and 
superior technique for gene expression quantification 
compared to microarray. However, the fragmented, 
short-length reads makes computational reconstruction 
of transcripts challenging, especially for complex genes 

or gene families containing many similar isoforms [79, 
81]. Long-read technology can determine the sequence 
of full-length RNA transcripts by sequencing the cDNA 
(Pacific Biosciences and ONT) or the native RNA (ONT). 
The longer reads can span the sequence of the entire 
transcript and thus determine the underlying exon com-
binations [79, 81]. Therefore long-read RNA sequencing 
can improve the analysis of alternate splicing, potentially 
leading to discovery of novel isoforms and novel gene 
fusions. Recent studies have identified many new relevant 
isoforms using long-read RNA sequencing in healthy 
[172–174] and disease states [175, 176]. Long-read RNA 
sequencing also allows identification of allele-specific 
expression through haplotype phasing [177, 178].

The high depth required for clinical long-read RNA 
sequencing currently makes it cost inefficient for regular 
genetic diagnoses. Like DNA sequencing, targeted long-
read RNA sequencing is a good alternative to investigate 
disease-relevant genes. Dainis et al. [179] performed tar-
geted long-read genome and transcriptome sequencing 
to interrogate a putative splice-site-altering mutation in 
MYBPC3 gene in a hypertrophic cardiomyopathy (HCM) 
patient. Comparing long-read transcriptomics data for 
MYBPC3 from this HCM patient to that in three addi-
tional HCM patients and six control hearts, they identi-
fied two isoforms that were exclusively seen only in the 
patient under question. This study exemplifies how LRS 
can easily characterize alternatively spliced isoforms and 
link the improperly spliced transcripts to variant-associ-
ated alleles.

To summarize, transcriptome-wide long-read sequenc-
ing allows detection of full-length transcripts, alternative 
spliced isoforms, gene fusions, transcript-based haplo-
type phasing, allele-specific expression, and base modifi-
cations in RNA. Although, to the best of our knowledge, 
long-read RNA sequencing is yet to solve an undiagnosed 
disease, the technology holds the promise for rare Men-
delian disorders, especially when the only one heterozy-
gous variant is identified in a recessive disease.

Single‑cell transcriptomics
Although bulk RNA sequencing has the potential to 
identify the molecular cause and disease mechanism in 
rare disorders, it only captures average expression signal 
in the sample, which may comprise different cell types. 
In comparison, single-cell RNA sequencing (scRNA-
seq) measures expression of genes within each cell, 
allowing researchers to study the sample heterogene-
ity and cell-to-cell variation. This enables discovery of 
new and rare cell types, improving our understanding 
of the disease mechanism. Montoro et  al. used scRNA-
seq on mouse tracheal epithelium to study cellular het-
erogeneity and identified a new and extremely rare cell 
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type—pulmonary ionocyte [180]. They showed that these 
ionocytes expressed CFTR gene at much higher levels 
than any other cell type in both mouse and human air-
way tissue. Mutations in CFTR have been extensively 
reported in cystic fibrosis disease, and for years, the gene 
was thought to be expressed at low levels in ciliated cells 
that are common and distributed throughout the airway.

However, like most new technologies, scRNA-seq is 
associated with technical challenges (low capture effi-
ciency and extremely sparse data) and high cost as com-
pared to bulk RNA-seq [181, 182]. scRNA-seq data is 
sparse, with many observed zeros, indicating that a given 
gene in a particular cell has no unique molecular iden-
tifiers or reads mapping to it. This could represent real 
biology (truly silent gene) or a technical artifact (gene is 
expressed but was not detected by the scRNA sequenc-
ing) [181, 183]. One alternative approach to scRNA-seq 
is to extrapolate cellular components of the sample from 
bulk RNA-seq using deconvolution methods. There are 
more than 50 deconvolution methods published to date, 
that can be broadly categorized as marker-based (uses 
marker gene list for deconvolution), reference-based (for 
the deconvolution process, it uses cell type specific gene 
expression profiles and list of differentially expressed 
genes across the cell types in the reference), and refer-
ence-free (uses reference profiles for cluster annotation 
after the deconvolution step) [184–187].

scRNA-seq has enabled discovery of many rare, novel 
cell types or sub-cell populations or markers in many 
different tissues—like blood [188], brain [189, 190], pan-
creas [191], and cancer [192, 193] to list a few, and with 
continued improvement in the single-cell sequencing 
technology and algorithms, we anticipate its application 
to be extended to rare disease research in future. Com-
prehensive characterization of transcriptome in each 
cell may allow discovery of new cellular and molecular 
components in rare disease patients’ tissues and can be 
instrumental in elucidating the disease mechanism.

Complementary technologies
Integrating sequencing data with other technologies can 
also provide leads to discover the underlying mutation 
in undiagnosed diseases where sequencing is inconclu-
sive [194, 195]. Here, we provide examples from metabo-
lomics [12, 196], methyl profiling [197], proteomics [194], 
and immunology [198–200] that assisted in a patient’s 
genetic diagnosis. The choice of assay is often driven by 
the patient’s phenotype.

Methylation profiling
Epigenetic modifications like DNA methylation and his-
tone modification have shown to have important implica-
tions in rare diseases like Immunodeficiency Centromeric 

instability Facial syndrome 1, Rett syndrome, and Rubin-
stein-Taybi [201–203]. Methylation profiling should be 
considered when there is suspicion of a genomic imprint-
ing disorder or a VUS in a known methylation gene. 
Genomic imprinting is a phenomenon where a subset 
of autosomal genes is preferentially expressed from only 
one of the two parental chromosomes. This results from 
parental-specific methylation of cytosine at CpG dinu-
cleotides of genes during gametogenesis [204, 205]. DNA 
methylation defects can be divided into two groups — 
epi-variants [206] and epi-signatures [207, 208]. Epi-var-
iants involve a change in DNA methylation pattern of a 
small number of CpGs at a specific region of the genome 
whereas epi-signatures are unique combinations of DNA 
methylation changes at multiple loci across the genome 
and are specific for different genetic syndromes.

Technologies like RRBS, WGBS, and long-read 
sequencing can be used to assess genome-wide DNA 
methylation. Aref-Eshghi et  al. [197] developed a 
machine learning model using genome-wide DNA meth-
ylation data from blood to predict 14 different Mendelian 
syndromes with neurodevelopmental presentations and 
congenital anomalies (ND/CA) that are associated with 
epi-signature. By applying this model to a cohort of 965 
ND/CA patients, who previously had unrevealing con-
ventional genetic testing including CNV microarray or 
ES, they identified 15 cases with one of the 14 Mendelian 
syndromes. They also identified 12 patients with imprint-
ing and trinucleotide repeat expansion disorder and 106 
cases with rare epi-variants in this cohort. This work led 
to development of EpiSign, a clinical-grade genome-wide 
DNA methylation assay for patients with developmen-
tal delay or suspicion of imprinting, trinucleotide repeat 
expansion, or one of the 50 methylation-related disor-
ders [209]. In a recent study, Sadikovic et  al. evaluated 
the clinical utility of EpiSign in a cohort of 207 patients 
that was divided into two subgroups — a targeted cohort, 
which included patients with inconclusive VUS and a 
screening cohort that comprised of patients with clinical 
findings consistent with hereditary neurodevelopmental 
syndromes but no previous conclusive genetic findings 
[210]. EpiSign enabled diagnoses for 35.3% (48/136) of 
participants in the targeted cohort and 11.3% (8/71) of 
those in the screening cohort.

Clinical interpretation of rare epi-variants remains 
challenging, especially those in intragenic regions or in 
genes not yet associated with the patient’s phenotype. 
Another limitation of this approach is the lack of large-
scale databases of epi-variants in Mendelian diseases and 
population epigenome data that can be used as a refer-
ence and to differentiate between tolerant versus patho-
genic epi-variants. Moreover, some of the disorders may 
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not exhibit epi-signatures or epi-variants in blood and 
may be tissue specific.

Metabolomics
For many rare unexplained metabolic disorders in chil-
dren, where the causative variant was identified by ES, 
functional metabolomic studies have helped to uncover 
the disease mechanism [211–213] and even led to bet-
ter disease management or treatment in some cases [24]. 
Tarailo-Graovac et al. [24] used targeted metabolomics to 
confirm the causality of mutations detected by ES in sev-
eral individuals among a cohort of 41 patients with intel-
lectual development disorder and unexplained metabolic 
phenotype. Splinter et  al. [25] demonstrated how find-
ings from metabolomics in an undiagnosed patient with 
multi-system disorder prompted re-analysis of exome 
sequencing data, followed by RNA sequencing, and led 
to the diagnosis. They identified consistently high levels 
of urinary organic acids in the patient, suggesting a defi-
ciency in 3-hydroxy-3-methylglutaryl coenzyme A lyase 
(encoded by HMGL gene). Re-evaluation of the ES data 
identified a deletion in exon 1 of HMGL. RNA sequenc-
ing the patient’s fibroblast revealed a 50% lower level of 
HMGL expression as compared with fibroblasts from 
eight unaffected individuals. Although metabolomics 
and lipidomics can potentially provide diagnostic leads, 
the metabolic changes in rare and undiagnosed diseases 
may be subtle or confounded by a patient’s special diet or 
medication, making the analysis challenging.

Proteomics
Proteins are the final component of central dogma and 
the effector molecules of a cell. Proteomics has a lower 
throughput as compared to other ‘omes, yet it can reveal 
impairment in protein synthesis, stability, degradation, 
and signaling, which may result in a disease state. Two 
broad categories of methods commonly used to study 
proteome are mass spectrometry-based and antibody-
based techniques. In 2019, Grabowski et al. [194] demon-
strated that mass spectrometry-based proteome analysis 
guided targeted genetic diagnostics and uncovered the 
underlying genomic mutations in two patients, which 
were initially missed by ES due to sequencing limitations. 
They studied the proteome of three rare monogenic 
diseases of neutrophil granulocytes — severe congeni-
tal neutropenia (SCN), leukocyte adhesion deficiency 
(LAD), and chronic granulomatous disease (CGD). They 
interrogated 4154 proteins from 16 patients with one 
of the three monogenic diseases of neutrophil granulo-
cytes and 68 healthy controls. ES was unable to provide 
molecular diagnoses for two patients in this cohort, one 
with CGD and another patient with congenital neutro-
penia associated with albinism. For both the cases, top 

10 deregulated proteins from the proteome analysis pro-
vided hints for the causative mutations — NCF1 for CGD 
case and RAB27A for the second case with congenital 
neutropenia and albinism. These were missed by ES anal-
ysis because sequencing the NCF1 gene is challenging as 
it shares 99% homology with two pseudogenes while re-
examination of second’s patients sequencing data showed 
that the last part of exon2 in RAB27A was not covered by 
sequencing reads.

Antibody-based cytometry techniques — flow and 
mass cytometry — allow to study cellular heterogeneity 
and phospho-signaling within each cell. Although cytom-
etry has not yet led to diagnosis in rare disease patients, 
they can provide molecular clues and improve our under-
standing of the disease, especially for inborn errors of 
immunity [214, 215]. Kanolkar et  al. [200] showed how 
findings from flow cytometry (reduced phosphoryla-
tion of STAT1 in B cells upon IFN-ɣ stimulation and 
attenuated STAT5 phosphorylation in T cells upon IL-2 
stimulation) in a patient prompted genomic analysis of 
132 immunologically relevant genes that revealed a com-
pound heterozygote mutation in IFNGR1 in the proband.

Many of the aforementioned technologies complement 
each other, fill the missing gaps, and better inform about 
the molecular pathophysiology of the disease. Although 
there are several successful examples of the integration 
of ES/GS with either transcriptomics [134, 142], metab-
olomics [25, 213], or proteomics [216], a single frame-
work integrating different omics is lacking. Existing tools 
[217–220] for combining and analyzing multiple omics 
data were designed for the standard case-control studies 
and are not suitable for outlier-based analysis. Taking a 
systems biology approach by integrating results from sev-
eral omics may further improve the diagnostic yield and 
our understanding of the disease’s molecular mechanism.

Functional studies
Unraveling the molecular mechanisms of a putative 
disease-causing gene can help strengthen the case for 
causality and may provide insights for developing thera-
peutics. This can be achieved by modeling patients’ dis-
ease-causing variant or strong candidate variants in vivo 
using model systems like fruit flies (Drosophila mela-
nogaster), nematode worm (Caenorhabditis elegans), 
zebrafish (Danio rerio), mouse (Mus musculus)) [221–
224], or in  vitro (disease-relevant mouse or human cell 
lines, primary cells or induced pluripotent stem cell mod-
els, iPSCs). Such models can be a fast and cost-effective 
way to mirror complex rare genetic disorders. The choice 
of the model system depends on the cost, time, and the 
ability to model and assess the patient’s phenotype in the 
animal [223].
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Several groups have used organisms like Drosophila, 
C. elegans, and zebrafish to model patient’s mutations 
to (i) validate novel disease-gene associations [225], (ii) 
provide functional data [226], (iii) generate new bio-
logical insights [227], and (iv) even identify potential 
therapeutic targets [228, 229]. Splinter et al. [25] demon-
strated that modeling candidate variants in Drosophila 
and zebrafish played an important role in the diagnoses 
of eight patients in a cohort of 382. Functional studies 
in Drosophila confirmed causation of a de novo variant 
in NR5A1 gene in a patient with a 46,XX genotype and 
male sex characteristics [230], which later led to charac-
terization of a new syndrome. Similarly, Kanca et al. [231] 
performed functional studies in Drosophila to establish 
that de novo variants in WDR37 gene cause a novel syn-
dromic neurological disorder and Ferreira et  al. [232] 
used zebrafish to model variants causing Saul-Wilson 
syndrome.

Another useful resource to recapitulate the unique 
aspects of patients’ disease pathology is their own cells, 
which can be grown into fibroblasts or induced pluri-
potent stem cells (iPSCs) [233]. iPSCs can be poten-
tially differentiated into virtually any cell type with the 
appropriate environmental stimuli. iPSCs are especially 
valuable for rare disorders that affect inaccessible tis-
sues such as neurons [234] and cardiomyocytes [235]. 
Modeling of disease-relevant cell types has allowed bet-
ter understanding of disease pathogenesis in many rare 
diseases [233] like those involving neurons (ALS [236], 
Friedreich’s ataxia [237], ataxia-telangiectasia [238]), car-
diomyocytes (long QT syndrome [239], Fabry disease 
[240], Jervell and Lange-Nielsen syndrome [241, 242]), 
blood (Fanconi anemia [243], Glanzmann thrombasthe-
nia [244]), connective tissue (Fibrodysplasia ossificans 
progressiva [245]), and eye (Retinitis pigmentosa [246, 
247]). Yamashita et al. [248] used iPSCs to model mono-
genic skeletal diseases like Thanatophoric Dysplasia type 
1 (TD1) and achondroplasia (ACH) and to identify clini-
cally effective treatment for these diseases. The authors 
converted fibroblasts from TD1 and ACH patients into 
iPSCs and demonstrated that the chondrogenic differ-
entiation of TD1 iPSCs and ACH iPSCs resulted in the 
formation of degraded cartilage. Next, they showed that 
statins, a class of drugs already approved for lowering 
lipids, could correct the degraded cartilage in both chon-
drogenically differentiated TD1 and ACH iPSCs. These 
results were then reproduced in mice, suggesting that 
statins might be an effective drug for patients with TD1 
and ACH.

ES and GS yield numerous VUS, non-coding variants 
within functional regulatory elements and variants that 
disrupt splicing. Existing computational prediction algo-
rithms have had limited success in prioritizing them. 

Functional screening assays are a powerful platform to 
assess the impact of variants in thousands of genes in a 
single experiment. Such screening approaches include 
germline mutagenesis, CRISPR/CAS9, plasmid-based 
reporter assays, RNA interference, chemical screens 
[249], and multiplexed assays of variant effect [250, 251]. 
Advancements in CRISPR/Cas9 technology make it a 
robust tool to profile cellular phenotypes resulting from 
each of the thousand genetic perturbations in a high-
throughput manner [252]. The underlying principle 
behind CRISPR screens [253, 254] is to introduce thou-
sands of variants in a large cell population but only one 
gene is perturbed per cell. This results in a population of 
cells with a different gene disrupted in each cell. Then, 
sequencing is performed on the mixed population of cells 
to identify genetic sequences necessary for the cell’s sur-
vival or a specific cellular phenotype of interest. CRISPR 
screens target multiple sites per gene and thus introduce 
random variants in the gene of interest that may not rep-
resent the exact mutation observed in the patient. How-
ever, this approach informs whether a particular genomic 
region may have a functional role in the disease and can 
narrow down to a few promising candidates for follow-up 
studies. CRISPR screens can be implemented to study the 
effect of knockout (CRISPRko), inhibition (CRISPRi), or 
activation (CRISPRa) of many protein-coding genes [253, 
255] or non-coding regulatory elements [256, 257].

CRISPR screens have recently been used to link new 
genes to rare diseases [258], to understand the molecu-
lar mechanism through which different variants in a gene 
contribute to a disease [259] and to explore potential 
therapeutic targets [260]. Rao et al. [259] used a pooled 
CRISPR screen in human hematopoietic stem and pro-
genitor cells (HSPCs) to study mutations in ELANE 
which is known to cause severe congenital neutropenia 
(SCN), a rare genetic disorder characterized by low cir-
culating neutrophils caused by impaired neutrophil mat-
uration. Missense and frameshift mutations in ELANE 
account for 50% of SCN cases. The authors performed 
a dense mutagenesis CRISPR screen in primary human 
HSPCs to identify ELANE variants associated with neu-
trophil maturation defects. Although CRISPR screens 
hold great promise for prioritization of variants identi-
fied by ES and GS, there are some practical limitations 
including the need to study a large number of cells (108) 
and the fact that current CRISPR screens may not model 
the specific prioritized variants from the patient.

Therefore, functional studies including model organ-
isms, fibroblasts, iPSCs, and CRISPR/CAS9 screens can 
play a vital role in diagnosis, understanding the molecu-
lar mechanism of rare and undiagnosed diseases and 
exploring potential therapeutic strategies. However, each 
model system has its own limitations. This process is 
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time consuming, and moreover, none of the model sys-
tems can completely replicate human disease.

Case matching
A major challenge faced by rare disease researchers 
is the lack of phenotypically similar patients to estab-
lish the molecular cause of the disease and to conduct 
statistical analysis. Several algorithms and platforms 
[261–264] have been developed to discover cases with 
common phenotypes and disrupted genes. However, 
there was a lack of a federated network that would facili-
tate interaction between various rare disease databases in 
a streamlined and continuous manner. To address this, 
Matchmaker Exchange (MME) was launched in 2015 
[265] to identify unrelated cases with a potentially path-
ogenic variant in the same candidate gene and overlap-
ping phenotype. It performs genomic matching across 
several databases (like DECIPHER [266], GeneMatcher 
[267], PhenomeCentral [264]) in a scalable, secure, and 
automated fashion through a standardized application 
programming interface (API). As of October 2021, MME 
contains information from more than 150,000 cases from 
88 countries [268]. It has facilitated identification of 
cases with similar phenotypic and genotypic profiles for 
many rare diseases including 25 novel gene-disease asso-
ciations and phenotype expansions. MME also allows 
queries against published animal models that match a 
patient’s phenotype, connecting the clinician with model 
organism researcher.

Some rare mutations can cause dysmorphic and unique 
facial features. Integrating the patients’ variant and phe-
notypic data with their facial features (images) can sig-
nificantly narrow down the search for potential rare 
syndromes. Using 17,000 images representing more than 
200 syndromes, Gurovich et  al. [269] developed a deep 
neural network to classify distinctive facial features in 
photos of patients with congenital and neurodevelop-
mental disorders. Machine learning is also being applied 
to large electronic health record (EHR) databases to iden-
tify rare as well as common disease patients [270–272]. 
This can help to find patients who have similar disease 
trajectories (like symptoms, age, medications, labs, or 
procedures) but may not have a definite diagnosis.

Automated re‑analysis
It is important to periodically re-analyze sequenc-
ing data with latest analytical pipelines, variant fre-
quency databases, literature [273–275], and updates in 
patient’s phenotype that can potentially identify recent 
associations between the causative gene and patient’s 
symptoms. Several groups have demonstrated that re-
evaluation of genomic data can increase the diagnostic 
yield: by 5–26% in case of ES [276–279] and by 4–11% 

for GS [280, 281] re-analysis. Use of standard ontologies 
like Human Phenotype Ontology (HPO) [282] can help 
to prioritize candidate genes that have been previously 
linked to the patient’s phenotype. Tools like exomiser 
[283], amelie [284], and Xrare [285] search for the gene-
phenotype associations in human diseases (documented 
in databases like OMIM [286], Orphanet [287], or Pub-
Med) and also in other models like mouse, zebrafish, and 
protein-protein interaction networks. Using ES from 134 
diagnosed rare retinal diseases, Cipriani et al. [288] dem-
onstrated that exomiser tool ranked the causative variant 
as top hit in 74% of the dataset and among top 5 in 94%. 
Deeply phenotyping undiagnosed patients and identi-
fying the most relevant symptoms is critical. However, 
these patients have an extensive, complex medical his-
tory, and their symptoms are documented in long clinical 
records. Tools like ClinPhen [289] and CLiX [290, 291] 
can extract relevant phenotypes from clinical notes or 
EHR data and convert them to HPO terms, thus enabling 
development of an automated pipeline for phenotype-
based prioritization of variants.

Along with improving the diagnostic yield for rare 
disease patients, clinicians and rare disease research-
ers would like to reduce the diagnosis time frame for all 
patients. It is obvious that delay in accurate diagnosis 
leads to inappropriate disease management and some-
times even unnecessary treatments that can have severe 
side effects. To scale genomic analysis and implement it 
at a clinical level in a secure fashion, many groups are 
leveraging the power of cloud computing (like Ama-
zon Web Services [https://​aws.​amazon.​com/], Google 
Cloud Platform [https://​cloud.​google.​com/]), and even 
new hardware like DRAGEN (Dynamic Read Analysis 
for Genomics) has been designed for faster turnaround 
of results. DRAGEN implements FPGA (Field Program-
mable Gate Array) technology, an alternative to conven-
tional CPU-based systems to expedite the execution of 
genome pipelines. Recently, some groups have demon-
strated record-breaking fast implementation of GS using 
optimized SR/LR sequencing, DRAGEN/multiple cloud 
computing machines, and semi-automated downstream 
analysis to diagnose children with suspected Mende-
lian disorder, who were critically ill and admitted to ICU 
(fastest, 7 h, 18 min) [292, 293].

Challenges
Accurately diagnosing rare disease patients involves chal-
lenges at technical, financial, and policy levels. Some of 
the technical obstacles include interpretation of non-
coding variants and VUS. This requires use of advanced 
technologies (like LRS, RNA-seq, epigenomics) and algo-
rithms (like SplicsAI, genomiser) to decipher the role of 
non-coding regions in healthy and disease conditions. 

https://aws.amazon.com/
https://cloud.google.com/
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Periodic and automated re-analysis of genomic data can 
help to resolve some of the VUS and intronic variants as 
new disease-gene discoveries are being made at an accel-
erated pace. There is also a need for specialized meth-
ods to analyze and integrate multiomics data for rare 
diseases.

In 2016, Kessler et al. [294] demonstrated ancestry spe-
cific bias in genomic datasets and its impact on diagnos-
tic accuracy and cost. Human variant databases like 1000 
Genomes [295], ESP [296, 297], and Exac [298] catalogs 
the frequency of variants from large populations. Muta-
tions absent or present at very low frequency in these 
databases are prioritized as potential causes of rare Men-
delian diseases, based on the assumption that variants 
common in the general population are unlikely to cause 
a rare or undiagnosed disease. However, these databases 
are skewed towards European ancestry populations 
[299–301] which makes interpretation of ES/GS from an 
individual with non-European inheritance more difficult, 
expensive, and time consuming. Recent efforts like gno-
mAD [302], GenomeAsia 100 K [303], and All of Us [304] 
have been initiated to sequence more diverse and under-
represented populations. Thus, it is critical to query the 
allele frequencies of non-European patients from their 
respective ancestry and for the scientific community to 
fill the ethnicity gaps in the current genomic databases. 
A complementary approach is the use of the aforemen-
tioned pan-genome reference. Encoding the genetic 
diversity in the reference genome would benefit genomic 
analysis of non-European ethnicities by reducing the ref-
erence bias during alignment and thereby resulting in a 
more accurate variant calling [119, 124, 125].

One of the biggest challenges in the road to diagnos-
ing rare disease patients is the cost. The technologies 
mentioned in this manuscript are often not available 
clinically or covered by patients’ medical insurance [305] 
and are provided by few research programs in devel-
oped nations. Dimmock et  al. [306] reported that rapid 
GS improved the disease management in 58 children in 
a cohort of 184 critically ill infants, who were admitted 
to ICU and reduced the hospital costs in 31 cases, by 
$12,000–$15,700 per child. Splinter et al. [25] compared 
the health care cost before and during the diagnosis eval-
uation period and found the latter to be only 6–7% of the 
total cost. Recently, Tisdale et al. [307] performed a pilot 
study on 14 rare diseases within four different healthcare 
system databases to estimate direct medical costs. They 
found that per patient direct medical costs of rare dis-
eases are about 3–5 times higher than age matched con-
trols, highlighting the urgent need for early and accurate 
diagnosis for rare disease patients that may reduce the 
costs associated with misdiagnosis or missed opportuni-
ties for intervention at an appropriate time. More of such 

cost-effectiveness analyses are required to justify the cost 
of whole genome SRS or LRS to be covered by insurance 
and to bring a change in the policy. Also, there is a need 
for continuous funding to the existing research programs 
dedicated for diagnosing rare and yet-to-be-discovered 
diseases. With continued advancement in the technolo-
gies, we anticipate a decline in their cost will make them 
more affordable. Meanwhile, targeted sequencing and 
latest computational algorithms should be considered 
to address the challenges of detection and interpreta-
tion of genomic variants, along with machine learning 
approaches to identify similar patients.

Conclusions
In the past two decades, gene panels, microarrays, and ES 
have identified the underlying causal mutations for many 
rare disease patients; however, still a significant propor-
tion of them remain undiagnosed. In this review, we sum-
marize different approaches that can further improve the 
diagnostic yield and elucidate the molecular mechanism 
of the disease. We share examples where these technolo-
gies played a significant role in deciphering the causative 
mutation in undiagnosed patients.

These approaches include complementing short-read 
genome sequencing with RNA sequencing, metabo-
lomics, proteomics, and methyl profiling. For patients 
with unrevealing short-read GS, long-read technology is 
a promising alternative. It is also important to function-
ally validate the candidate or causative variants identified 
through genomics using in vitro and in vivo model sys-
tems to improve our understanding of molecular mech-
anisms and to allow better disease management, even 
opening avenues towards therapeutics.

It is also critical to periodically implement fast, auto-
mated computational pipelines to identify new gene-
disease associations or to find similar patients across 
the globe. Lately, the medical and genomics community 
has recognized and acknowledged the ancestry specific 
bias in the genomic datasets and in the haploid linear 
reference genome. Inclusion of diverse ethnicities in fre-
quency databases and use of a pan-genome reference will 
help to improve the diagnostic accuracy for underrepre-
sented populations.

A major bottleneck in the diagnosis of rare patients is 
the cost involved in the investigation: most of the assays 
mentioned in this review are research based and not yet 
available through health care systems. We anticipate that 
continuous improvements in accuracy and affordability 
of the high-throughput technologies will enable us to fill 
the diagnostic gap for undiagnosed patients, often with 
actionable findings. We envision that successful imple-
mentation of complementary multidisciplinary studies 
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will lead to a paradigm shift in how undiagnosed patients 
are diagnosed and treated.
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