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Abstract 

Background:  Lack of functional evidence hampers variant interpretation, leaving a large proportion of individuals 
with a suspected Mendelian disorder without genetic diagnosis after whole genome or whole exome sequenc‑
ing (WES). Research studies advocate to further sequence transcriptomes to directly and systematically probe gene 
expression defects. However, collection of additional biopsies and establishment of lab workflows, analytical pipe‑
lines, and defined concepts in clinical interpretation of aberrant gene expression are still needed for adopting RNA 
sequencing (RNA-seq) in routine diagnostics.

Methods:  We implemented an automated RNA-seq protocol and a computational workflow with which we ana‑
lyzed skin fibroblasts of 303 individuals with a suspected mitochondrial disease that previously underwent WES. We 
also assessed through simulations how aberrant expression and mono-allelic expression tests depend on RNA-seq 
coverage.

Results:  We detected on average 12,500 genes per sample including around 60% of all disease genes—a coverage 
substantially higher than with whole blood, supporting the use of skin biopsies. We prioritized genes demonstrating 
aberrant expression, aberrant splicing, or mono-allelic expression. The pipeline required less than 1 week from sample 
preparation to result reporting and provided a median of eight disease-associated genes per patient for inspection. A 
genetic diagnosis was established for 16% of the 205 WES-inconclusive cases. Detection of aberrant expression was 
a major contributor to diagnosis including instances of 50% reduction, which, together with mono-allelic expression, 
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Background
It is estimated that at least 3.5–6% of the human 
population is affected by a rare disease [1]. Presum-
ably, ~80% of rare diseases have a genetic cause [2]. 
Although not necessarily providing the cure, estab-
lishing the correct and timely diagnosis of a Mende-
lian disease can improve disease management, provide 
prognostic information, and inform genetic counseling 
[3–5]. Clinical implementation of next-generation 
sequencing, especially whole exome sequencing (WES), 
revolutionized genetic diagnostics of individuals sus-
pected of having a Mendelian disorder by improving 
diagnostic yield and accelerating the discovery of novel 
disease genes [6, 7]. Nevertheless, the diagnostic yield 
of WES analysis rarely exceeds 50% and hence leaves 
the majority of patients without a genetic diagnosis 
[8–12]. Inconclusive WES can be partially attributed 
to the challenges concerning variant detection, prior-
itization, and interpretation. Although whole genome 
sequencing (WGS) allows, in principle, the detection 
of all genomic variants, its clinical implementation has 
reported similar diagnostic rates to those of WES [13, 
14]. This indicates that variant prioritization and inter-
pretation are the main challenges in genetic diagnostics 
[15].

So far, variants predicted to have potentially large 
effects on protein function are limited to large copy 
number variations, loss-of-function variants such as 
frameshift, start loss, stop gain, and stop loss, and vari-
ants altering splice acceptor or donor dinucleotides 
[16]. However, it has been suggested that up to 30% of 
pathogenic variants fall within non-coding regions [17, 
18]. Moreover, multiplex splicing assays showed that 
splicing-disturbing variants include about 10% of patho-
genic exonic variants and are difficult to predict [19, 20]. 
Although many in silico tools have been developed to 
predict the effect of a variant on transcription, splicing, 
or RNA stability, their accuracy remains too low to estab-
lish a firm diagnosis. Without the necessary functional 
validation using either a minigene or patient biopsy 
material, splice region and non-coding variants remain as 
variants of uncertain significance (VUS [21]).

By directly probing transcript abundance and sequence 
on a transcriptome-wide basis, RNA-seq allows system-
atic identification of aberrant transcript events, defined 
as genes expressed at aberrant levels, aberrantly spliced 
genes, and mono-allelically expressed (MAE) rare vari-
ants. Detection of such events enables validation of VUS 
potentially affecting the transcript, re-interpretation of 
VUS when linked to an aberrant transcript event, and 
discovery of pathogenic variants not covered by WES. A 
recent study concluded that up to 31% of splicing VUSs 
could reach either a likely pathogenic or likely benign 
classification from RNA-seq analysis [22]. The applica-
tion of RNA-seq has increased diagnostic rates by 8–36% 
across a variety of rare disorders and selected cohorts 
of up to approximately one hundred affected individu-
als [23–28]. Besides increasing the diagnostic yield, 
RNA-seq can improve the understanding of the molec-
ularpathomechanism of the variant(s) and basic genetic 
mechanisms. While these initial studies are promising, 
routine clinical implementation of RNA-seq requires 
robust and efficient computational workflows, estab-
lishment of quality controls, and adequate RNA source 
material and sequencing depth.

Here, we report on our experience on the implemen-
tation of RNA-seq into clinical diagnostics using patient-
derived skin fibroblasts (Fig.  1). We demonstrate the 
application of our validated computational workflow, 
DROP [29], which integrates preprocessing and quality 
control steps, as well as modules for detecting aberrant 
expression, aberrant splicing, and MAE (Fig.  1), and to 
which we have added a new module for RNA-seq-based 
variant calling. We apply this workflow to a compendium 
of WES and RNA-seq samples of 303 individuals sus-
pected of having a mitochondrial or another Mendelian 
disease, the largest such dataset to date. For each type of 
aberrant event, we examine their genetic background and 
provide diagnostic guidance through case studies. While 
our analysis is based solely on fibroblast-derived material 
and with the majority of individuals suspected of having 
a mitochondrial disorder, our study also addresses the 
value of other clinically accessible tissues for the diagno-
sis of Mendelian disorders.

allowed for the diagnosis of dominant disorders caused by haploinsufficiency. Moreover, calling aberrant splicing and 
variants from RNA-seq data enabled detecting and validating splice-disrupting variants, of which the majority fell 
outside WES-covered regions.

Conclusion:  Together, these results show that streamlined experimental and computational processes can acceler‑
ate the implementation of RNA-seq in routine diagnostics.

Keywords:  RNA-seq, Genetic diagnostics, Mendelian diseases
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Methods
Compendium
A total of 303 individuals with a suspected  Mendelian 
disorder were recruited, out of which 263 were clinically 
suspected to suffer from a mitochondrial disease (Addi-
tional file 1: Table S1). The compendium includes 70 indi-
viduals from the Kremer et al. study [23], 152 individuals 
from a multi-omics study [30], and 81 additional individu-
als recruited by the centers participating in this study. 
WES and RNA-seq were performed in all of them. Three 
cases further required WGS as they were candidates from 
RNA-seq, but no conclusive variants were found via WES 
or RNA-seq. For each individual, we report the Interna-
tional Classification of Diseases (ICD version 10) code and 
sex (170 male and 133 female, Additional file 1: Table S1).
Cell culture
Primary fibroblast cell lines obtained from patient skin 
biopsy were cultured in high glucose DMEM (Life Tech-
nologies) supplemented with 10% FBS, 1% penicillin/

streptomycin, and 200 μM uridine at 37 °C and 5% CO2. 
All fibroblast cell lines tested negative for mycoplasma 
contamination.

Whole exome sequencing
DNA was isolated from peripheral blood leukocytes or 
skin-derived fibroblasts using DNeasy Blood & Tissue Kit 
(Qiagen, Hilden, Germany) according to the manufac-
turer’s protocol. DNA concentration was measured using 
the Qubit™ dsDNA BR Assay Kit. In total, 3 μg of DNA 
was used for library preparation. Exonic regions from 
human DNA samples were enriched with the SureSelect 
Human All Exon V5/V6 kits from Agilent (Agilent Tech-
nologies, Santa Clara, CA, USA) and sequenced as 100 
bp paired-end runs on Illumina HiSeq2500 or HiSeq4000 
platforms (Illumina, San Diego, CA, USA). Reads were 
aligned to the human reference genome (UCSC build 
hg19) using Burrows-Wheeler Aligner v0.7.5a [31]. 
Single-nucleotide variants, as well as small insertions 

Fig. 1  Experimental design of an RNA-seq based diagnostic study. First, individuals suspected of a Mendelian disorder are recruited for DNA 
sequencing. In addition, patient biopsy material is collected during the routine medical examination and prepared for RNA extraction. The 
sample preparation process can take from hours for biopsies to weeks for establishing a cell culture. RNA sequencing is then performed followed 
by alignment and quality control. The generated data go through DROP which consists of quality control steps and detection of aberrant RNA 
expression events. The results are then interpreted by sample, including the association of aberrant RNA expression events with rare variant(s) and 
the function of affected genes with the patient phenotype, which can lead to new diagnoses or candidates. Experience-based estimated durations 
are provided for each step
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and deletions (< 200 bp), were detected with SAMtools 
v0.1.19 [32] and GATK v3.8 [33].

Whole genome sequencing
One WGS library was established using a MGIEasy 
DNA Library Prep Kit v1.1, according to the manufac-
turer’s protocol and generated DNA nanoballs. Sequenc-
ing was performed using 100-bp paired-end reads on a 
MGISEQ-2000 using MGISEQ-2000RS High-throughput 
Sequencing Set PE100 v3.0. The other two WGS librar-
ies were prepared with the TruSeq DNA PCR-Free Kit 
(Illumina). DNA was fragmented to an average length of 
350 bp by sonication. Libraries were validated accord-
ing to standard procedures and sequenced via 150 bp 
paired-end on a NovaSeq 6000 platform. After remov-
ing adapter sequences and low-quality reads by Trim-
momatic v0.39 [34], reads were aligned and variants were 
called using the same procedures described in the previ-
ous subsection.

Variant annotation and handling
Variants were annotated for consequence, location, 
minor allele frequencies (from the 1000 Genomes Pro-
ject [35] and gnomAD [36] cohorts), and deleteriousness 
scores using the R interface to the Ensembl Variant Effect 
Predictor (VEP) v1.32.0 [16, 37]. For variants that fell on 
multiple transcripts and had therefore multiple predicted 
consequences, the one with the highest predicted impact 
was selected [38]. We considered a variant to be rare if 
the maximum minor allele frequency across both cohorts 
was lower than 0.001 and the frequency of the variant in 
our cohort was lower than 0.01. Variants are reported 
using the Human Genome Variation Society (HGVS) rec-
ommendations [39].

In order to detect whether a genomic position is 
expressed, we computed the RNA coverage using the 
coverage function from the GenomicAlignments R pack-
age v1.26.0 [40]. We defined a position to be expressed 
if the mean coverage across all samples was greater or 
equal to 10 reads.

RNA sequencing
RNA was isolated from the patient-derived skin fibro-
blasts with the RNeasy mini kit (Qiagen, Hilden, Ger-
many) according to the manufacturer’s protocol. RNA 
integrity number (RIN) was determined using the Agilent 
2100 BioAnalyzer (RNA 6000 Nano Kit, Agilent Technol-
ogies, Santa Clara, CA, USA). Non-strand-specific RNA-
seq was performed in 101 samples as previously described 
[23]. The rest of the RNA samples were sequenced strand-
specifically, where library preparation was performed 
according to the TruSeq Stranded mRNA Sample Prep 

LS Protocol (Illumina, San Diego, CA, USA). Specifically, 
1 μg of RNA was purified using poly-T oligo-attached 
magnetic beads and fragmented. The RNA fragments 
were reverse transcribed with the First Strand Synthesis 
Act D mix. The second-strand cDNA was generated with 
Second Strand Marking Mix that ensures strand specific-
ity by replacing dTTP with dUTP. The resulting double-
stranded cDNA was subjected to end repair, A-tailing, 
adaptor ligation, and library enrichment. The quality 
and quantity of the RNA libraries were assessed with the 
Agilent 2100 BioAnalyzer and the Quant-iT PicoGreen 
dsDNA Assay Kit (Life Technologies, Carlsbad, CA, USA). 
RNA libraries were sequenced as 100 bp paired-end runs 
on Illumina HiSeq2500 or HiSeq4000 platforms. Reads 
from RNA-seq were demultiplexed and then mapped with 
STAR v2.7.0a to the hg19 genome assembly, with default 
parameters plus setting the twopassMode to “Basic” to 
detect novel splice junctions [41].

Variant calling in RNA‑seq data
Variants were called on RNA-seq data using GATK best 
practices for RNA-seq short variant discovery [33]. Vari-
ants with a ratio of quality to depth of coverage < 2 that 
were strand biased (Phred-scaled fisher exact score >30) 
or belonging to an SNP cluster (3 or more SNPs within a 
35 bp window) were filtered out, as suggested by GATK. 
Furthermore, variants not contained in a repeat masked 
region (as defined by RepeatMasker v4.1.0 [42]) and with 
3 or more reads supporting the alternative allele were pri-
oritized. For the benchmark analysis, 210 RNA-seq sam-
ples derived from suprapubic skin of the GTEx project 
were used. Only genomic positions with an RNA cover-
age of at least 3 reads were considered.

Quality control
Reads falling in exonic regions and with low quality were 
quantified using RNA-SeQC v2.4.2 [43]. DROP v1.0.3 
was used to compute the total sequencing depth per 
sample, percentage of mapped reads, and the number of 
expressed genes [29]. DROP was also used to determine 
whether an RNA-seq sample matches its annotated DNA 
sample. A cutoff of 0.7 distinctly separated the matching 
with the non-matching DNA-RNA pairs.

Detection of aberrant expression
Detection of aberrant expression was fully based on 
DROP v1.0.3 [29]. We used as reference genome the 
GRCh37 primary assembly, release 29, of the GENCODE 
project [44] which contains 60,829 genes. We used the 
summarizeOverlaps function from the GenomicAlign-
ments [40] R package to count reads that are paired with 
mates from the opposite strands (singleEnd = FALSE). 
We only considered reads that fell completely within an 
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exon or span two exons from the same gene via splicing 
(mode = intersectionStrict). Reads that overlapped more 
than one feature were assigned to each of those features 
instead of being removed (inter.feature = FALSE). Genes 
with a 95th percentile FPKM < 1 were considered to be 
not sufficiently expressed and filtered out.

Expression outliers were found using OUTRIDER [45], 
which uses a denoising autoencoder to control for latent 
effects and returns multiple-testing corrected p-values 
(FDR) for each gene and sample. Significant events were 
defined as those with a FDR ≤ 0.05. All aberrant events 
were further inspected using the Integrative Genome 
Viewer [46]. The OUTRIDER-corrected biological coeffi-
cient of variation (BCV) was computed per gene as 1/√𝜃, 
where 𝜃 is the fitted dispersion from the negative bino-
mial distribution.

Detection of aberrant splicing
Splicing outliers were obtained using the aberrant splic-
ing DROP module based on FRASER [47], an annotation-
free aberrant splicing detection algorithm. FRASER uses 
a denoising autoencoder to control for latent effects and 
estimates splice-site level and gene-level multiple-testing 
corrected p-values for percent spliced-ins and splicing 
efficiencies. Exon-exon and exon-intron junctions with 
< 20 reads in all samples and for which the total num-
ber of reads at the donor and acceptor splice site is 0 in 
more than 95% of the samples were filtered out. From 
the FRASER output, splicing outlier genes were defined 
as those with Holm’s adjusted p-value across junctions 
of the tested gene < 0.1. Outlier junctions are defined as 
those in splicing outlier genes, with an FDR < 0.1 and an 
effect size larger than 0.3, where the effect size is defined 
as the absolute difference between the observed and 
the predicted percent spliced-in |Δψ|, or between the 
observed and the predicted splicing efficiency |Δθ|.

Detection of mono‑allelic expression
For mono-allelic expression analysis, only heterozygous 
single-nucleotide variants from WES were considered. 
Reads assigned to each allele were counted using the 
ASEReadCounter function from GATK v4.0 [48]. Posi-
tions with less than 10 reads in total were filtered out. 
Afterward, the negative binomial test described in Kre-
mer et al. [23] was performed. This fully corresponds to 
the MAE module of DROP v1.0.3. ANEVA-DOT was run 
using the ANEVADOT_test function from its R package 
and the provided pre-calculated genetic variations from 
fibroblasts from GTEx [49]. Significant variants were 
defined as those with FDR ≤ 0.05.

Association of outlier genes with WES rare variants
Variants were grouped by predicted consequence in a 
similar way as done in Li et al. [50], but with some minor 
modifications. Specifically, the variant categorization 
was as follows: splice: splice acceptor, splice donor, splice 
region; frameshift: frameshift, UTR: 3′ UTR, 5′ UTR, 
start lost; non-coding: downstream, upstream, intron, 
regulatory region, intergenic; coding: coding, deletion, 
insertion, missense, stop lost; stop: stop gained; synony-
mous: synonymous, stop retained. Each sample-gene 
combination was categorized as overexpression, under-
expression, or non-outlier according to the OUTRIDER 
results. Then, for each of them, we searched for a rare 
variant and assigned the variant’s consequence group to 
it. A Fisher’s exact test was performed for each variant 
group against each expression outlier class, thus obtain-
ing a p-value. If rare variants from multiple groups were 
found on a sample-gene combination, the group with 
the lowest p-value (therefore highest association) was 
selected. Afterward, for each outlier class, the propor-
tion of each group of rare variants was computed (e.g., # 
of underexpression outliers with a rare stop variant/total 
# of underexpression outliers). 95% confidence intervals 
were obtained from a binomial test for all proportions. 
The procedure was repeated in a similar way for splicing 
outliers caused by aberrant percent spliced-in. Only pro-
tein-coding genes were considered. Samples with more 
than 20 expression outlier genes were discarded for the 
expression analysis, and samples with more than 40 splic-
ing outlier genes were discarded for the splicing analysis.

Association of WES rare variants with outlier genes
All rare variants in expressed protein-coding genes in auto-
somal chromosomes were considered. For each sample, 
each rare homozygous variant was matched with the cor-
responding outlier class (overexpression, underexpression, 
or non-outlier) of the gene where it is located. Then, for 
each group of rare variants, the proportion of each outlier 
class was computed (e.g., # of rare stop variants in a gene 
that is an underexpression outlier/total # of rare stop vari-
ants). Stop and frameshift variants that were in expressed 
positions and not in the last exon were marked as poten-
tial PTVs. The procedure was repeated in a similar way by 
associating rare variants with splicing outliers, but splitting 
the “splice” category into “splice site” (which includes both 
donor and acceptor dinucleotides) and “splice region.”

MAE was tested on each rare heterozygous SNV in 
genes in autosomal chromosomes. Then, for each group 
of rare variants, the proportion of each MAE category 
(towards the reference or alternative allele, or none) was 
computed (e.g., # of rare stop SNVs with MAE of the 
alternative allele/total # of rare stop SNVs).
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Enrichment of gene classes
We performed pairwise logistic regression where the 
response variable is the outlier class and the predictor 
is the gene category. The odds ratio and 95% confidence 
interval were derived from the estimates and standard 
errors of the coefficients.

GTEx dataset
This dataset consists of 7842 RNA-seq samples from 48 
tissues of 543 assumed healthy individuals of the Geno-
type-Tissue Expression Project V6p [51]. The data were 
downloaded from the GTEx Portal on June 12, 2017, 
under accession number dbGaP: phs00424.v6.p1.

Lists of genes
OMIM genes were downloaded from its portal (www.​
omim.​org). Mitochondrial disease genes are our own 
expansion from the list shared in ref. [52] Hematology, 
neurology, and ophthalmology genes were extracted from 
ref. [25], neuromuscular genes were taken from ref. [26], 
and skeletal dysplasia genes from ref. [28]. Imprinted 
genes were taken from ref. [53]. LoF intolerant genes cor-
respond to the genes with a loss-of-function observed/
expected upper bound fraction < 0.35 from ref. [36].

Results
RNA‑seq analysis workflow
Extending the study of Kremer and colleagues [23] to 
support routine diagnostic testing, we recruited 303 indi-
viduals suspected to be affected by a Mendelian disorder 
with fibroblasts cell lines available within an international 
collaboration and performed WES and RNA-seq on them 
(Additional file 2: Fig. S1, Methods). Almost all individu-
als (87%, 263 out of 303) were clinically suspected to suf-
fer from a mitochondrial disease, presenting with a broad 
spectrum of clinical signs and symptoms. Mitochondrial 
disease represents an attractive class of rare disorders for 
the development and testing of systematic large-scale 
diagnostic screening approaches on account of signifi-
cant clinical and genetic heterogeneity, with pathogenic 
variants described in more than 340 genes [52]. The 
study cohort consists of 106 WES-diagnosed cases used 
to establish a reference dataset of gene expression (some 
of which have been published as single-gene studies [4, 
54–78]) and 197 cases that remained inconclusive after 
WES (Additional file 2: Fig. S1). A single RNA-seq assay 
was performed per individual at a median sequencing 
depth of 90 million reads (range 50–165 million reads, 
Additional file 2: Fig. S2A). A total of 101 samples were 
sequenced following a non-strand-specific protocol and 
202 following a strand-specific one using automated pro-
tocols minimizing sample handling and allowing highly 
reproducible results (Methods). We provide the gene 

expression count matrices, as well as the privacy-pre-
serving count matrices of split and unsplit reads over-
lapping annotated splice sites via Zenodo independently 
for the non-strand-specific (https://​zenodo.​org/​record/​
46468​23 [79]) and the strand-specific datasets (https://​
zenodo.​org/​record/​46468​27 [80]). These matrices can be 
integrated by external users through DROP [29].

After alignment, RNA-seq data were analyzed using 
the computational workflow DROP [29], which ensures 
reproducibility, robustness, and scalability (Fig. 1, Meth-
ods). All the samples had a high percentage of high-qual-
ity reads aligned (> 80% for all samples) and expressed 
more than 11,000 genes (Additional file  2: Fig. S2B-C). 
DROP also computes the percentage of matching DNA-
RNA variants to control for sample mismatches, which 
allowed us to reassign ten RNA-seq samples to their cor-
responding DNA (Additional file  2: Fig. S3, Methods). 
Afterward, through DROP, we called aberrant expres-
sion, aberrant splicing, and MAE using the statistical 
methods OUTRIDER [45], FRASER [47], and a negative 
binomial test [23], respectively. This yielded a median of 
25 aberrant genes per sample, including eight where vari-
ants have been reported to cause a Mendelian disease in 
humans (OMIM [81], Additional file 2: Fig. S4A-B). From 
RNA isolation until candidate identification via data 
analysis, the workflow has been streamlined by apply-
ing standardized protocols and semi-automated analysis 
pipelines which, in principle, allow to call outliers within 
1 week (Fig. 1).

Aberrant events involving known disease-associated 
genes were then inspected manually in a case-by-case 
fashion by comparing patient phenotype information 
with the phenotypes and mode of inheritance associ-
ated with the disease-associated gene, following the flow 
diagram shown in Fig.  2. For plausible candidate genes, 
we next inspected the sequencing data and searched for 
causative variants called by either WES or RNA-seq, and 
in some cases performed WGS followed by segregation 
analysis of the likely pathogenic variants. This procedure 
led to a genetic diagnosis of 32 unsolved cases, repre-
senting 16% (95%-CI 11–22%) of the WES-inconclusive 
cohort (see summarized case-by-case version in Table 1 
and expanded one in Additional file 1: Table  S2). Seven 
of the reported solved cases were previously published 
[23, 47, 82], and nine described in a companion manu-
script [30]. Among the 46 causative variants in these 32 
cases, 13 (28%) were already classified as pathogenic or 
likely pathogenic, 10 (22%) required functional valida-
tion, 11 (24%) were not prioritized during WES analysis, 
and 12 (26%) were not captured by WES. Three (25%) of 
the uncaptured group required WGS to identify the caus-
ative variant, while the other nine (75%) were detected 
using variant calling from RNA-seq (Table 1). In addition 

http://www.omim.org
http://www.omim.org
https://zenodo.org/record/4646823
https://zenodo.org/record/4646823
https://zenodo.org/record/4646827
https://zenodo.org/record/4646827
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to the solved cases, we identified potential candidates in 
12 cases: in 8 we identified a likely pathogenic change at 
the transcript level but have been unable to pinpoint the 
causative variant, and in 4 cases we identified aberrant 
expression and likely deleterious variants in candidate 
genes, representing likely novel disease genes (see Addi-
tional file 1: Table S3 for case-by-case description, Addi-
tional file 2: Fig. S4C). These candidate cases are currently 
being investigated in follow-up studies. Overall, the clini-
cal interpretation of aberrant RNA phenotypes resulted 
in diagnosis for 16% of cases, including validation of sus-
pected and non-suspected variants, and also discovery of 
WES-undetected pathogenic variants. In another 4% of 
cases, we detected likely pathogenic changes which need 
further follow-up studies. We did not find a specific pat-
tern arising between the unsolved patients and the solved 
ones. In the following, we outline each screening step for 
the detection of aberrant events.
Aberrant expression
A total of 14,100 genes were considered in the strand-
specific subset and 14,399 in the non-strand-specific sub-
set (Additional file 2: Fig. S2, Methods). In both cohorts, 
this represented 66% of the OMIM genes and 90% of the 
mitochondrial disease genes (Methods). OUTRIDER 
called a median of two underexpression outliers per sam-
ple, including one known disease gene, and a median 
of one overexpression outlier per sample, at a false 

discovery rate (FDR) less than 0.05 (Fig.  3A). Both over 
and underexpression outliers are also seen in unaffected 
controls, therefore outliers are not necessarily indicative 
of a pathological event [50]. One sample presented a con-
siderably higher number of underexpression outliers than 
the rest (N = 61). Its sequencing depth (61 million reads) 
and high-quality exonic ratio (87%) were not particularly 
different from the rest. It was collected in a center among 
nine others and sequenced in a batch among 95 others, 
discarding a possible center or batch effect. It belongs to 
a neonatal mitochondrial disease patient, which is the 
most recurrent clinical presentation of our cohort. This 
patient was the only one of West Asian origin, suggesting 
ancestry as a potential explanation for the high number 
of outliers.

In agreement with observations in non-affected 
individuals [50, 83], we found enrichment for loss-of-
function rare variants among underexpression outliers 
(Additional file  2: Fig. S5). Also, loss-of-function (LoF) 
intolerant genes were depleted for underexpression out-
liers (Fig.  3B), reflecting constrained expression. Given 
the clinical diagnosis of the individuals in our study, we 
observed an enrichment for OMIM genes (1.25-fold), 
and particularly mitochondrial disease genes (3-fold) 
among underexpression outliers (Fig. 3B).

For candidate gene prioritization, we focused on 
underexpression rather than overexpression outliers 

Fig. 2  RNA-seq-based diagnostic flow chart. Flow diagram showing the diagnostic decision guideline after detecting a gene with an aberrant 
event in RNA-seq data. Identification of an aberrant event can lead to genetic diagnosis (diagnostic setting), lead to the discovery of a candidate 
new disease gene (research setting), or alternatively be of unlikely diagnostic significance, after which the next aberrant event is analyzed following 
the same path
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Table 1  Summary of cases diagnosed via RNA-seq. AE: aberrant expression, AS: aberrant splicing, MAE: mono-allelic expression, Var: 
intronic variant detected via RNA-seq. Variant coordinates and further details are provided in Additional file 1: Table S1

Index Patient ID Sex Age range of onset Primary symptoms Genetic diagnosis Variant RNA level Variant class RNA defects

1 R62943 F Prenatal Neurodevelopmen‑
tal delay, 3-MGA

C19orf70 c.143del Frameshift AE, AS

NM_205767.1 c.29+272G>C Intronic

2 R98254 F Infant Leigh syndrome, 
basal ganglia 
abnormality MRI, 
neurodevelopmental 
delay, intellectual 
disability, seizures, 
encephalopathy, 
brainstem abnormal‑
ity MRI, complex I 
and IV defects

MRPL38 c.770C>G Missense AE

NM_032478.3 c.-174_-148del 5′UTR deletion

3 R86287 M Infant Hypotonia, car‑
diomyopathy, white 
matter abnormality 
MRI, elevated lactate, 
complex I and IV 
defects

DARS2 c.492+2T>C Splice donor AS

NM_018122.4 c.228-12C>G; c.228-
20T>C

Intronic multi-
nucleotide variant 
(MNV)

4 R89912 M Infant Leigh syndrome, 
basal ganglia 
abnormality MRI, 
neurodevelopmental 
delay, speech delay, 
intellectual disability, 
encephalopathy, 
hypotonia, nystag‑
mus, brainstem 
abnormality MRI, 
elevated lactate, 
metabolic acidosis, 
complex I defect

NFU1 c.362T>C Missense AE, MAE

NM_001002755.2 c.485-
2588_545+1655del

Deletion

5 R19100 M Child Myopathic facies, 
exercise intoler‑
ance, muscle 
weakness, motor, 
growth, speech and 
neurodevelopmental 
delay, intellectual 
disability, micro‑
cephaly, hypotonia, 
cardiomyopathy, 
dysmorphic features, 
ragged red fibers, 
elevated lactate

SLC25A4 c.598G>A Splice region AE

NM_001151.3 c.598G>A Splice region

6 R15264 F Infant Muscle weakness, 
myopathy, muscular 
dystrophy, hypotonia

TIMMDC1 c.596+2146A>G Intronic AE, AS, Var

NM_016589.3 c.596+2146A>G Intronic

7 R36605 M Infant Acute liver failure, 
hypotension of the 
muscles, hyper‑
tension of the 
limbs, intermittent 
deficiency of motor 
function of the pupil, 
delayed light reac‑
tion and nystagmus

TWNK c.1302C>G Synonymous AE, AS

NM_001163812.1 c.1302C>G Synonymous

8 R61100 F Infant Encephalopathy, 
respiratory distress

NAXE c.292-12C>G Intron AE, AS

NM_144772.2 c.292-12C>G Intron

9 R77611 F Infant Recurrent acute liver 
failure

DLD c.685G>T Missense AE, MAE

NM_000108.3
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Table 1  (continued)

Index Patient ID Sex Age range of onset Primary symptoms Genetic diagnosis Variant RNA level Variant class RNA defects

10 R16472 M Child Motor developmen‑
tal delay, neurode‑
velopmental delay, 
respiratory distress, 
brainstem abnormal‑
ity MRI, white matter 
abnormality MRI, 
leukoencephalopa‑
thy, elevated lactate, 
complex IV defect

MRPS25 c.329+75G>A Intronic AE, AS, Var

NM_022497.4 c.329+75G>A Intronic

11 R51757 M Infant Motor developmen‑
tal delay, neurode‑
velopmental delay, 
seizures, feeding 
difficulties, elevated 
lactate, complex I 
defect

NDUFA10 c.-99_-75del 5′UTR​ AE

NM_004544.3 c.-99_-75del 5′UTR​

12 R80346 F Birth MDDS, seizures, 
encephalopathy, 
hypotonia, died as 
neonate, elevated 
lactate, complex III, 
IV and V defects

LIG3 c.86G>A Stop AE, Var

NM_002311.4 c.1611+208G>A Intronic

13 R20754 M Neonatal Nystagmus, hearing 
impairment, white 
matter abnormal‑
ity MRI

UFM1 c.-273_-271del Promoter AE

NM_016617.2 c.-273_-271del Promoter

14 R25473 F Adult Usher syndrome, 
immune abnormal‑
ity, neutropenia, 
abnormality 
retina, cataract, visual 
impairment, hearing 
impairment

PEX1 c.1842del Frameshift AE, Var

NM_000466.2 c.1240-1551A>G Intronic

15 R28774 M Infant Myopathy, neurode‑
velopmental delay, 
hypotonia, move‑
ment disorder, failure 
to thrive, feeding 
difficulties, died as a 
young child due to 
recurrent respiratory 
infections, complex 
I defect

TIMMDC1 c.596+2146A>G Intronic AE, AS, Var

NM_016589.3 c.596+2146A>G Intronic

16 R96820 F Neonatal Muscle weakness, 
neurodevelopmental 
delay, hypotonia, 
microcephaly, 
cardiomyopathy, 
hearing impairment, 
elevated lactate, 
metabolic acidosis, 
complex IV defect

CLPP c.661G>A Splice region AE, AS

NM_006012.2 c.661G>A Splice region

17 R21147 M Infant Neurodevelopmen‑
tal delay, feeding 
difficulties, elevated 
lactate, complex I 
defect

NDUFA10 c.-99_-75del 5′UTR​ AE

NM_004544.3 c.-99_-75del 5′UTR​
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Table 1  (continued)

Index Patient ID Sex Age range of onset Primary symptoms Genetic diagnosis Variant RNA level Variant class RNA defects

18 R64921 M Child Ophthalmoplegia, 
speech delay, devel‑
opmental regression, 
ataxia, abnormality 
retina, visual impair‑
ment, complex I 
defect

MCOLN1 c.681-19A>C Intronic AE, AS

NM_020533.2 c.832C>T Stop

19 R52016 M Infant Died as infant, basal 
ganglia abnormality 
MRI, neurodevel‑
opmental delay, 
encephalopathy, 
hypotonia, myo‑
clonus, nystagmus, 
abnormality eye 
movement, neu‑
ropathy, brainstem 
abnormality MRI, 
elevated lactate, 
complex I defect

TIMMDC1 c.596+2146A>G Intronic AE, AS, Var

NM_016589.3 c.596+2146A>G Intronic

20 R46723 F Infant Basal ganglia abnor‑
mality MRI, encepha‑
lopathy, brainstem 
abnormality MRI, 
complex I defect

NDUFAF5 c.2T>C Start loss AE, AS, Var

NM_024120.4 c.223-907A>C Intronic

21 R58859 M Adult Ophthalmoplegia, 
myopathic facies, 
myalgia, diabetes, 
arrhythmias

TAZ c.348C>T Synonymous AS

NM_181313 c.348C>T Synonymous

22 R80184 M Prenatal Muscle weakness, 
myopathy, neurode‑
velopmental delay, 
intellectual disability, 
seizures, hypotonia, 
dystonia, spastic‑
ity, microcephaly, 
growth delay, 
failure to thrive, 
respiratory distress, 
cataract, abnormal‑
ity eye movement, 
delayed myelination, 
hypoplasia of the 
corpus callosum, lack 
of insular opercu‑
larization, died as a 
young child from 
pneumonia, elevated 
lactate, complex I 
and I/III defects

ALDH18A1 c.1982C>A Stop AE, MAE

NM_001017423.1 c.1858C>T Missense

23 R59185 F Child Basal ganglia 
abnormality MRI, 
ophthalmoplegia, 
ataxia, growth 
delay, arrhythmias, 
optic atrophy, 
visual impairment, 
neuropathy, white 
matter abnormality 
MRI, elevated lactate

NDUFS4 c.466_469dup Frameshift AE

NM_002495.2 c.466_469dup Frameshift
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because we presumed LoF to be a more likely patho-
mechanism of congenital metabolic disorders than 
dominant-negative and gain-of-function [52]. Aberrant 
expression was a major contributor to our diagnostic 
success with 25 out of 32 (78%) newly diagnosed cases 
pinpointed as expression outliers (Fig. 3C). In Fig. 3D–
E, we illustrate how expression outlier detection 

supported the identification of a causative variant in 
the case of a male with neonatal-onset leukodystrophy, 
nystagmus, and hearing impairment, whose initial WES 
analysis was inconclusive. RNA-seq analysis revealed 
two underexpression outliers, among which was the 
ubiquitin-fold modifier 1 gene, UFM1 (MIM: 610553, 
Fig.  3D). This sample presented the lowest expression 

Table 1  (continued)

Index Patient ID Sex Age range of onset Primary symptoms Genetic diagnosis Variant RNA level Variant class RNA defects

24 R63087 M Child Basal ganglia abnor‑
mality MRI, muscle 
weakness, myopathy, 
rhabdomyolysis, 
neurodevelopmental 
delay, seizures, infec‑
tion related dete‑
rioration, elevated 
lactate

SLC25A42 c.380+2T>A Splice donor AS

NM_178526.4 c.380+2T>A Splice donor

25 R44456 F Infant MADD, respiratory 
distress, dysmorphic 
features

MRPL44 c.179+3A>G Splice region AE, AS

NM_022915.3 c.179+3A>G Splice region

26 R33391 F Infant Failure to thrive, 
elevated lactate, 
complex I defect

NDUFAF5 c.605dup Frameshift AS, Var

NM_024120.4 c.223-907A>C Intronic

27 R66696 M Young child Muscle weakness, 
myopathy, rhabdo‑
myolysis, infection 
related deteriora‑
tion, died as child, 
complex I, III and IV 
defects

LPIN1 c.2550-865_2667-
34del

Deletion AS

NM_001261427.1 c.2550-865_2667-
34del

Deletion

28 R24289 M Young child Hypotonia, devel‑
opmental delay, 
hearing impairment, 
white matter abnor‑
mality on MRI, lactic 
acidemia, hyperlacta‑
cidemia, proteinuria, 
glycosuria

RRM2B c.328C>T Missense AE, MAE

NM_015713.4 c.? Intergenic

29 R98349 F Infant Clotting defect, lactic 
acidosis

DLD c.685G>T Missense AS

NM_000108.5 c.1046+5G>T Splice region

30 R91273 F Adult MADD during preg‑
nancy

ETFDH c.687_688del Frameshift AE

NM_004453.3 -

31 R60537 M Neonatal Congenital disorder 
of glycosylation, 
seizures, cognitive 
impairment, nose 
abnormalities, large 
fleshy ears, abnormal 
isoelectric focusing 
of serum transferrin

ATP6AP1 c.291-135C>T Intronic AE, Var

NM_00183.4 c.291-135C>T Intronic

32 R70961 M Young child Leigh syndrome, 
optic atrophy, 
parkinsonism, status 
epilepticus, develop‑
mental regression, 
abnormal thalamic 
size, lactic acidosis, 
urinary glycosamino‑
glycan excretion

PTCD3 c.1519-1G>C Splice acceptor AS

NM_017952 c.1918C>G Missense
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of UFM1 among all 303 samples (Fig. 3C). Reinspection 
of WES revealed a 3-bp homozygous deletion located 
in the promoter region (NM_016617.2:c.-273_-271del, 
Fig. 3E), which was initially not prioritized during WES 
analysis due to its location. This variant has recently 
been reported to significantly reduce promoter and 
transcriptional activity and was considered to be patho-
genic in cases of hypomyelinating leukodystrophy [84], 
thus confirming the diagnosis with UFM1. This case 

exemplifies how the detection of aberrant expression 
enables the reprioritization of variants located in the 
non-coding regions.

As in half of our solved cases, the fold change reduc-
tion was around 50% (Fig.  3C), we studied the sensitiv-
ity to detect underexpression outliers of that magnitude. 
We simulated outliers in all genes (in batches of 300 not 
to affect the global FDR estimations) with different fold 
changes (0.1, 0.2, and 0.5) and tested how many of them 

Fig. 3  Aberrant expression. A Distribution of genes per sample that were detected as expression outliers, for all genes and genes known to cause 
a disease (OMIM), stratified by outlier class. B Observed over expected number of overexpression and underexpression outliers (y-axis, log-scale) 
for loss-of-function intolerant genes, OMIM genes, and mitochondrial disease genes (x-axis). Error bars represent 95% confidence intervals of 
pairwise logistic regressions. C Gene expression fold change relative to the OUTRIDER-modeled expected value of all disease-causal genes that 
were aberrantly expressed in their corresponding affected sample. Each dot corresponds to a sample, with the affected ones in red. Data stratified 
by cases diagnosed via RNA-seq (n = 25) and diagnosed via WES (n = 22). Genes with a dominant mode of inheritance are marked with a * (n 
= 3). The two NDUFA10 cases are siblings, as well as the two DNAJC3 cases. The three TIMMDC1 cases are unrelated. D Gene-level significance 
(−log10(P), y-axis) versus Z-score, with UFM1 labeled among the expression outliers (red dots) of sample R20754. E Schematic depiction of the 
NM_016617.2:c.-273_-271del UFM1 deletion (red rectangle) detected by WES in sample R20754. Figure not shown at genomic scale. F Fraction of 
recalled underexpression outliers simulated with different fold changes (depicted in shades of blue) per mean gene expression (measured in raw 
read counts). Recall was computed in 50-wide intervals and dots are depicted in the center of the intervals. At a mean read count of 450 (vertical 
red dashed line), half of the simulated outliers with a fold change of 0.5 are recalled, allowing for investigating dominant genes and compound 
heterozygotes genes with a single downregulated allele. G Proportion of genes expressed at a given mean expression or higher, colored by 
different gene classes. Genes are taken from the GENCODE annotation, release 29 (Methods). A total of 9656 genes (16%), 9325 protein coding 
(46%), and 2098 OMIM genes (55%) have a mean read count higher than 450
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were recalled with respect to the gene mean expression. 
Half of the simulated outliers with drastic fold changes 
were detected in genes with a mean expression of 100, 
but for reduction of 0.5, expected by heterozygous vari-
ants with strong effect, a mean expression of 450 was 
needed (Fig.  3F). Overexpression outliers are less sensi-
tive to mean expression and the majority of simulated 
outliers with a fold change of 2 were recovered at a mean 
expression of 100 read counts (Additional file 2: Fig. S6). 
In our cohort, with a median sequencing depth of 90 mil-
lion, 46% of protein coding and 55% of OMIM genes had 
a mean expression greater than 450 (Fig. 3G). The disper-
sion of a gene, quantified as the biological coefficient of 
variation (BCV [85]), also plays a role in outlier detection. 
Using the same scheme as for mean expression, we found 
that most of the outliers simulated with half reduction 
cannot be detected in genes with an OUTRIDER-cor-
rected BCV greater than 0.12 (Additional file 2: Fig. S7A, 
Methods). Among all genes, 36% protein coding and 42% 
OMIM genes have a mean expression greater than 450 
read counts and a BCV lower than 0.12, thus allowing 
for heterozygous variants with a reduction or increase by 
half to be detected as significant (Additional file  2: Fig. 
S7B). For calling outliers simulated with a more drastic 
fold change of 10-fold, relevant to homozygous and com-
pound heterozygous situations, we found that 50% of 
OMIM genes and 42% of protein-coding genes had suf-
ficient coverage and a low enough BCV. We provide the 
mean expression and dispersion of each gene, as well as 
the fraction of recalled outliers with fold changes of 0.1 
and 0.5 in Additional file 1: Table S5. Of note, over-dis-
persion can be due to technical, but also to biological rea-
sons. If the expression of a gene is naturally very variable 
between individuals, then large fold changes are expected 
and are probably not disease-causing. In this respect, it 
is not a drawback of aberrant expression callers, but a 
desired feature, to not report outliers for genes whose 
expression is very variable in the general population.

Detection of aberrant expression can directly pinpoint 
the causative gene, but it can also reflect downstream 
effects, which provides functional evidence and can guide 
or support diagnostic interpretation. This is exemplified 
by two cases with at least 10 significantly downregulated 
mitochondrial DNA-encoded genes each (Additional 
file 2: Fig. S8). In the first case, a 3-bp homozygous dele-
tion (NM_133259.3:c.2595_2597del, p.Val866del) was 
identified in the LRPPRC gene (MIM: 607544 [63]), 
encoding for a leucine-rich PPR motif-containing protein 
that forms a ribonucleoprotein complex with SLIRP to 
regulate the stability of mature mitochondrial transcripts 
[86]. With RNA-seq data we observed a lower abundance 
of mitochondrial transcripts associated with the dele-
tion of Valine 866 and thereby confirmed the molecular 

diagnosis for this patient by a functional readout directly 
related to LRPPRC. In the second case, stop and intronic 
compound heterozygous variants (NM_013975.4: 
c.86G>A, p.Trp29*; c.1611+209G>A, p.?) were found in 
the LIG3 gene (Table 1), which is critical for mitochon-
drial DNA integrity [87]. The stop variant further caused 
LIG3 to be an expression outlier (Fig.  3B). The high 
number of downregulated mtDNA genes supports the 
functional defect of LIG3, also seen at the protein level 
[30]. These two vignettes indicate that pathway analysis 
of RNA-seq outliers can be helpful to support diagnos-
tics. However, more systematic studies are needed to 
establish the utility of pathway analysis among outliers in 
diagnostics.

In summary, we identified a median of one OMIM 
underexpressed gene per case representing the patho-
genic effect in 16% of all previously diagnosed and 
undiagnosed cases and being the most common RNA 
aberration. Interestingly, in 20% of aberrantly expressed 
cases, the causative variant was non-coding.

Aberrant splicing
Aberrant splicing can be caused by variants in the canon-
ical splice sites, but also by variants in weak splice sites 
or in less clearly mapped splicing regulatory sequences 
such as the exonic and intronic splicing enhancers and 
silencers [88]. The aberrant splicing caller FRASER [47] 
is based on annotation-free intron-centric metrics [89]. 
FRASER uses percent spliced-in of alternative donor 
sites (𝜓5) and alternative acceptor sites (𝜓3) to detect 
exon skipping, exon creation, exon truncation, and exon 
elongation, in addition to splicing efficiency (𝜃) to detect 
intron retention (Methods). After applying FRASER, 
we obtained a median of 18 genes with at least one 
aberrantly spliced junction per sample (junction FDR 
< 0.1 and differential 𝜓5, 𝜓3, or 𝜃 > 0.3 and gene-wise 
FWER across junctions < 0.1), including 6 disease genes 
(Fig.  4A). Three samples had a high number of splicing 
outlier genes, out of which two corresponded to the ones 
with the highest sequencing depth. This indicates that 
sensitivity to splicing outliers could increase with deeper 
sequencing, which is in line with analyses in simulated 
and real datasets [29, 90]. Power analysis for FRASER has 
been described in the original publication on suprapubic 
skin tissue from the GTEx dataset, which has a similar 
sequencing depth to this study’s dataset. In brief, in junc-
tions with low mean coverage (lowest third, mean junc-
tion coverage ≤ 16 reads), FRASER was able to recall 55% 
of simulated outliers that have a differential 𝜓 around 0.5. 
The recall increased to 90% in junctions with higher cov-
erage in the analyzed dataset [47].

Aberrantly spliced genes contained significantly more 
rare variants than non-splicing outlier genes (Additional 
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file  2: Fig. S9). As expected from other studies [83, 91], 
many of these rare variants are located in the splice 
region, but we also observed an enrichment of coding 
and intronic variants, underscoring their role in splicing. 
Although we controlled for multiple testing within genes 
[47], genes with a high number of exons (n > 95th per-
centile) had enrichment of aberrant splicing, while genes 
with a low number of exons (n < 5th percentile) showed 
less aberrant splicing (Fig.  4B). In particular, the neu-
roblastoma breakpoint family (median of 35 exons per 
gene) and collagen genes (median of 54 exons per gene) 

are more frequently aberrantly spliced, probably due to 
the fact that they have more exons compared to a median 
of 17 exons per gene detected by FRASER. In addi-
tion, splicing outliers were found to be 25-fold enriched 
among underexpression outliers (Fig. 4C), some of which 
could be explained due to the creation of an aberrantly 
spliced isoform containing a premature termination 
codon (PTC) ultimately resulting in transcript degrada-
tion by NMD.

Aberrant splicing was considered disease-causative in 
18 out of 32 cases (56%), 11 of which were in combination 

Fig. 4  Aberrant splicing. A Distribution of genes per sample that had at least one splicing outlier, for all genes and genes known to cause disease 
(OMIM). B Observed over expected number of splicing outliers on different gene categories. Neuroblastoma breakpoint family (NBPF) and collagen 
genes were chosen due to their high number of exons and due to collagen genes alternative splicing in a developmental-stage manner and 
NBPF genes having a repetitive structure, which exposes them to illegitimate recombination. Error bars represent 95% confidence intervals of 
pairwise logistic regressions. C Split-read counts (y-axis, gray junction on panel E) of the first annotated junction of TWNK against the total split-read 
coverage (x-axis, gray and red junctions on panel E) of the first donor site of TWNK. Many samples are not exclusively using the annotated junction 
(scattered below the diagonal), leading to a reference 𝜓5 for the annotated junction of 87%. The observed 𝜓5 for the first acceptor site of TWNK in 
the outlier sample is 20% (obtained by dividing the junction reads by the total junction coverage, 4/20). D Gene-level significance (−log10(P), y-axis) 
versus differential splicing effect (observed minus expected usage proportion of the tested donor site, Δ𝜓5, x-axis) for the alternative splice donor 
usage in sample R36605. Gene-level significance was obtained after multiple-testing correction across junctions. Outliers are marked in red and 
the gene TWNK is explicitly labeled. The Δ𝜓5 value for the first donor site of TWNK in this sample is − 0.67 = 0.2–0.87. E Schematic depiction of the 
synonymous NM_001163812.1:c.1302C>G (p.Ser434=) TWNK variant and its consequence on the RNA level, activating a new acceptor site (ACGG 
in red) and leading to the creation of a premature termination codon (red rectangle) in sample R36605. The percentage of each transcript isoform is 
shown next to it. Figure not shown at genomic scale
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with supportive aberrant expression data (Additional 
file  2: fig. S4C). In Fig.  4C–E, we showcase how aber-
rant splicing detection helped identify the disease-caus-
ing gene defect in a male patient with early-onset acute 
liver failure. In this sample, 27 aberrantly spliced genes 
were identified by FRASER, 12 of them on disease-causal 
genes. Among them was aberrant splicing and expression 
of TWNK (MIM: 606075). This gene encodes the twinkle 
mtDNA helicase that is critical for the efficient mtDNA 
replication and synthesis of the nascent D-loop strands 
[92]. Autosomal recessive pathogenic variants in TWNK 
are associated with disorders of mtDNA maintenance, 
including a hepatocerebral presentation associated with 
mtDNA depletion [93]. FRASER called a significant 
deviation from the canonical junction usage of the first 
intron (Fig. 4C), whereby an alternative acceptor within 
exon 2 was utilized, resulting in a frameshift and creation 
of a premature termination codon (p.416Glyfs*7, Fig. 4E), 
leading to aberrant expression (fold change: 0.43). Rea-
nalysis of WES data revealed a rare homozygous variant 
(NM_001163812.1:c.1302C>G) in the second exon, which 
is predicted to have a synonymous effect (p.Ser434=). 
The variant is positioned four nucleotides upstream of an 
alternative splice junction (Fig. 4E), which corresponds to 
a weak splice site in controls (𝜓5 = 9%). This variant is 
predicted (using the Human Splicing Finder in silico tool 
[94]) to disrupt the plausible exonic splicing enhancer 
sequences tgttcCca and ccCagg (Fig. 4E), thereby activat-
ing the weak splice site. The activation of weak splice sites 
is a likely disease-causing phenomenon and is known to 
be recurrent, as we reported in an earlier study [23].

To assess the added value of RNA-seq over DNA 
sequencing only, we retrospectively analyzed the per-
formance of two sequence-based algorithms (SpliceAI 
[95] and MMSplice [96]) in two ways. First, we evaluated 
their prediction in the 21 pathogenic aberrant splicing 
variants (18 from the RNA-seq-diagnosed cohort, 8 from 
the WES-diagnosed one, minus 5 that were either large 
deletions, stop, or frameshift). SpliceAI recovered 12 of 
these 21 variants (57%) using the recommended cutoff 
(SpliceAI: delta score > 0.5). MMSplice recovered only 8 
(38%), using a cutoff to capture percent spliced-in psi dif-
ferences of 30% (|Δlogit(Ψ)| > 1.24). For both methods, 
most of the recovered variants were in the splice region 
and performed poorly with coding and intronic variants 
(Additional file  2: Fig. S10A). Second, we applied these 
two methods genome-wide to our WGS samples (n = 
23). This yielded a manageable number of predicted rare 
variants (median MMSplice = 23 and SpliceAI = 12 per 
sample, Additional file 2: Fig. S10B). However, only 12.5% 
of SpliceAI and 10% of MMSplice predicted variants in 
expressed genes were supported with an aberrant splic-
ing call. Altogether, direct experimental observations 

of aberrant splicing by RNA-seq are still far from being 
accurately predicted by variant annotation tools. Moreo-
ver, besides scoring a junction, RNA-seq reveals the con-
sequence of the splicing defect on the resulting transcript 
isoform (e.g., frameshift or exon truncation), which is 
crucial for diagnostics.

A particular value of RNA-seq lies in the quantification 
of different transcript isoforms. This is especially use-
ful for transcripts with physiological presence of several 
alternative isoforms and in cases of aberrant splicing with 
a complex pattern, exemplified by a case with a homozy-
gous splice region variant (NM_022915.3:c.179+3A>G) 
in the gene MRPL44 (MIM: 611849). This variant led to 
transcript depletion and three alternative isoforms with 
a PTC in each, in addition to the main transcript isoform 
that was present in less than 18% of all reads (Additional 
file 2: Fig. S11).

Overall, a pathogenic splice defect was found in 9% 
of the cases. Compared to aberrant expression analysis, 
aberrant splicing analysis yielded nearly ten-fold more 
outliers per sample and less frequently led to pinpointing 
the causative variant. Aberrant splicing analysis was par-
ticularly useful to identify pathogenic intronic, missense, 
and synonymous variants.

Mono‑allelic expression
For heterozygous loci, the expression of only one of 
the two alleles is referred to as mono-allelic expres-
sion (MAE). Possible causes for MAE include one allele 
being transcriptionally silenced or post-transcriptionally 
degraded and can have genetic or epigenetic grounds [97, 
98]. As heterozygous variants alone are discarded when 
investigating autosomal recessive disorders, the detection 
of MAE of a rare variant indicates that both alleles are 
affected and enables their prioritization. We call MAE on 
heterozygous single-nucleotide variants (SNVs) with at 
least 10 reads (median: 6,901 per sample, Fig. 5A) using 
the negative binomial test of Kremer et al. ([23], FDR < 
0.05, and allelic imbalance >80%, Methods) and ANEVA-
DOT ([49], FDR < 0.05). ANEVA-DOT requires an esti-
mate of each gene expression variation per tissue, which 
for fibroblasts is precomputed and provided for 6364 
genes, including 40% of OMIM genes. This restricts the 
method to 72% of heterozygous SNVs with a coverage of 
at least 10 reads (median of 5043 per sample, Fig.  5A). 
The negative binomial test called 6% of the tested vari-
ants significant and ANEVA-DOT 4.7%. We observed 
that MAE was more frequent towards the reference 
than towards the alternative allele using both methods 
(Fig. 5A). Subsetting to rare variants, we found a median 
of 6 to 8 mono-allelic expression events of the reference 
allele and 1 of the alternative (Fig. 5A).
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As expected from their biology, MAE was enriched 
among HLA, X-chromosomal, and imprinted genes 
(when using the negative binomial test only as ANEVA-
DOT does not provide an estimate for the variation 
in X-chromosomal genes and most imprinted genes, 
Fig.  5B). Moreover, we found a high enrichment of 
underexpression outliers (Fig. 5B), indicating that loss of 
expression of a single allele can be detected as an aber-
rant expression of the gene itself.

Detection of MAE helped to diagnose four cases, 
detected by both methods, all coupled with aberrant 
expression (Additional file  2: Fig. S4). In one case, an 
infant male with severe Leigh syndrome and complex I 

deficiency, MAE of NFU1 (MIM: 608100) was identified 
(97% of the alternative allele) in combination with aber-
rant expression (fold change: 0.63, only outlier in NFU1 
in Fig. 3C). NFU1 encodes a scaffold protein that facili-
tates the insertion of iron-sulfur clusters into the subu-
nits of the respiratory chain complexes and lipoic acid 
synthase [99, 100]. Individuals harboring pathogenic 
biallelic NFU1 variants present with early-onset failure 
to thrive, pulmonary hypertension, encephalopathy, and 
neurological regression [101, 102]. The mono-allelically 
expressed missense variant NM_001002755.2:c.290A>G 
(p.Val91Ala) with a CADD score of 28.6 was absent from 
gnomAD. Following this observation, we initiated WGS, 

Fig. 5  Mono-allelic expression. A Distribution of heterozygous SNVs per sample for successive filtering steps from left to right: Heterozygous SNVs 
detected by WES with an RNA-seq coverage of at least 10 reads, where MAE is detected, where MAE of the reference is detected, where MAE of the 
alternative is detected, and subsetted for rare variants. MAE expression detected using ANEVA-DOT and a negative binomial test (Methods). B Odds 
ratio of MAE in genes with common variants only and with at least one rare variant across different gene categories. Results shown for the negative 
binomial test only. Error bars represent 95% confidence intervals of pairwise logistic regressions. C Schematic depiction of the disease-causing 4.3 
kb deletion and the c.290A>G SNV in NFU1, and their consequence on the RNA level in sample R89912. The percentage of each transcript isoform 
is shown next to it. Figure not shown at genomic scale. D Fraction of recalled MAE events (FDR < 0.05 on each method) with simulated allelic ratios 
of 0.85 and 0.95 as function of RNA-seq coverage. E Proportion of exonic heterozygous WES SNVs detected in all genes as a function of minimal 
RNA-seq coverage. ANEVA-DOT is able to detect only a subset of SNVs. Vertical lines correspond to RNA-seq coverage needed to recall 90% of 
simulated allelic ratios of 0.85 and 0.95 as inferred from panel D. REF: reference, ALT: alternative, rare: minor allele frequency < 0.1%
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which revealed a 4.3 kbp heterozygous deletion affecting 
exon 6 of the second allele, explaining the detected MAE 
(Fig. 5C). Proteomic analysis also found a severe reduc-
tion of NFU1 (fold change: 0.13), finally confirming the 
diagnosis [30]. This case presents the first association of 
pathogenic NFU1 variants with Leigh syndrome, thus 
expanding the clinical phenotype. Interestingly, patho-
genic variants in another iron-sulfur cluster scaffold 
gene, BOLA3 (MIM: 613183), and in a gene involved in 
iron-sulfur cluster biosynthesis, FDXR (MIM: 103270), 
have previously been reported to cause Leigh syndrome 
[103, 104].

Haploinsufficiency has been reported as a pathomech-
anism for more than 660 genes [105, 106]. It appears 
especially important for neurodevelopmental disorders, 
where de novo variants are often found in haploinsuffi-
cient genes or regulatory non-coding regions [107, 108]. 
Hence, although the majority of mitochondrial diseases 
are inherited in an autosomal recessive mode [52], we 
also considered the possibility of haploinsufficiency, 
which can be detected by a combination of underexpres-
sion and MAE. Three samples in our cohort were solved 
with known haploinsufficient genes (MEPCE (MIM: 
611478, ref. [67]), SON (MIM: 182465), and CHD1 (MIM: 
602118), Additional file 1: Table S4). They were all called 
outliers with close to 50% reduction in expression levels 
(fold change: 0.56, 0.61, and 0.64, respectively, Fig.  3C). 
Each of these genes had heterozygous protein-truncating 
variants suggesting that NMD acted on the transcript 
originating from the alternative allele. This hypothesis 
was confirmed by MAE of the reference alleles (88%, 
91%, 75%, respectively). Moreover, segregation analysis in 
each case confirmed that the protein-truncating variants 
occurred de novo. Altogether, these results demonstrate 
that aberrant expression callers controlling for hidden 
confounders such as OUTRIDER [45] are sufficiently 
sensitive to detect aberrant expression when only one 
allele is affected and may discover the pathological vari-
ant in autosomal dominant disorders, particularly those 
presenting haploinsufficiency.

We identified MAE in nine disease-associated SNVs 
with a median alternative allelic ratio of 0.95. We next 
explored the minimum coverage of an SNV to detect 
MAE by simulating allelic counts. Using the negative 
binomial method, we found that an allelic ratio of 0.95 
can be detected in more than half of the SNVs with cover-
age of at least 24 reads (Fig. 5D). This coverage is met by 
28% of all heterozygous exonic WES SNVs from our sam-
ples (Fig. 5E). To detect an alternative allelic ratio of 0.85 
in the majority of the cases, a coverage of at least 33 is 
needed, a coverage met by 25% of all heterozygous exonic 
WES SNVs. In comparison, ANEVA-DOT required 
lower coverage for calling MAE (11 reads for recalling 

allelic ratios of 0.95 and 18 reads for allelic ratios of 0.85). 
However, as ANEVA-DOT is limited to a subset of genes, 
this translated into similar proportions of variants which 
can be effectively analyzed as with the negative binomial 
test (26% for allelic ratio of 0.95 and 24% for allelic ratio 
of 0.85, Fig. 5D).

Altogether, ANEVA-DOT and the negative binomial 
appear as complementary methods, with a similar pro-
portion of assessable variants. Both methods led to the 
identification of the same pathogenic variants in our 
cohort. ANEVA-DOT performs better at lower coverage. 
However, it considers only a subset of genes leaving out 
all X-linked and most OMIM imprinted genes which are 
relevant for molecular diagnostics.

Variant calling in RNA‑seq data
Currently, the application of WGS is still emerging within 
a diagnostic setting, largely limiting the sequence analy-
sis to coding variants detected by WES. Advantageously, 
RNA-seq is able to contribute to variant discovery [26] by 
covering UTRs and even, with a lesser sequencing depth, 
intronic regions, which are not well covered by exome-
capturing kits [109]. We called variants in our RNA-Seq 
data following GATK’s best practices (Methods). To 
identify filtering criteria with a useful balance between 
recall and precision, we performed a benchmark using 
210 RNA-seq samples derived from suprapubic skin of 
the GTEx project (Methods), considering their corre-
sponding WGS-based variants as the ground truth. This 
benchmark suggested the exclusion of regions with three 
or more variants within a 35-bp window, repeat masked 
regions [42], and variants with less than three reads sup-
porting the alternative allele. Filtering these variants 
yielded a precision of 95% (97%) and a recall of 40% (54%) 
for heterozygous (homozygous) variants, in genomic 
positions with an RNA coverage of at least three reads 
(Additional file 2: Fig. S12A, Methods). While a precision 
of 95% would not be recommended for genome-wide 
variant prioritization, we found it to be reasonable for 
variant detection in candidate genes identified by aber-
rant expression and splicing analyses. When applied to 
our rare disease cohort, these filters yielded a median of 
44,154 variants per RNA-seq sample, in comparison to 
a median of 63,666 variants found by WES (Additional 
file  2: Fig. S12B), including a median of 19,252 variants 
not called by WES. As expected, RNA-seq was particu-
larly helpful in revealing variants in the untranslated 
regions (40% RNA-seq only in 5′UTR and 75% in 3′UTR, 
Fig.  6A). Coverage of intronic regions increased by one 
third by using RNA-seq based calling, which was spe-
cifically helpful for detecting deep intronic splice-altering 
variants (Fig. 6A).
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RNA-seq variant calling identified the causative vari-
ant in nine cases missed by WES, all deep intronic 
(Table  1), thereby negating in some cases  the need to 
perform WGS. All of these cases were already candi-
dates identified via aberrant expression and/or splicing 
analyses. One was a female suspected mitochondrial 
disease patient, presenting early in infancy with fail-
ure to thrive, complex I deficiency, and elevated lactate. 
FRASER detected aberrant splicing in the NDUFAF5 
gene (MIM: 612360), encoding a complex I assembly fac-
tor, highlighting a cryptic exon in intron 1, present in 28% 
of the transcript (Fig. 6B). This 258-nt cryptic exon is in-
frame and predicted to lead to an extension of the open 
reading frame by 31 amino acids before encountering a 
PTC (Fig.  6B). RNA-seq variant calling revealed a rare 
intronic variant (NM_024120.4:c.223-907A>C) within 
the cryptic exon (Fig. 6B). This variant has recently been 
described in a single patient, with cDNA studies sup-
porting the creation of a new exonic splicing enhancer 
and the same aberrant splicing [110]. Moreover, WES 
had identified an unreported start-loss heterozygous 
variant (NM_024120.4:c.2T>C). This variant disrupts 
the start codon, with the next available ATG out-of-
frame at position c.30. Pathogenic variants in NDUFAF5 
have been associated with an early-onset complex I defi-
ciency, characterized by developmental delay, failure to 
thrive, hypotonia, and seizures [110], in agreement with 
the clinical presentation of the investigated individual. 

This intronic variant was also found associated with 
the inclusion of the same cryptic exon in another unre-
lated RNA-seq diagnosed case from our compendium, 
where it is in trans with a heterozygous frameshift 
(NM_024120.4:c.605dup) which causes aberrant expres-
sion. Notably, variant calling in RNA-seq data fails in 
intergenic and intronic regions, as well as in genes that 
are not expressed. Thus, the increased power of WGS in 
calling all genetic variation is still unquestionable, though 
the interpretation of cumbersome WGS datasets could 
be streamlined through the incorporation of RNA-seq 
data.

Overview of the diagnosed cases
In a diagnostic setting, the value of RNA-seq lies in the 
functional assessment of often unpredictable effects of 
variants, leading to their validation and (re)prioritization, 
or shedding light on the non-coding regions and more 
complex pathomechanisms. As seen from the 32 cases 
diagnosed using RNA-seq, this application enabled the 
detection of a broad spectrum of molecular pathomecha-
nisms driven by rare variants, including aberrant expres-
sion caused by variants in the promoter, deep intronic 
variants generating cryptic exons, and the combined del-
eterious effect of two common variants in cis (Fig. 7).

Returning to our reference set, of the 106 WES-diag-
nosed cases, 32 contained at least one rare protein-
truncating variant (PTV, case-by-case description in 

Fig. 6  RNA-seq variant calling. A Median across samples of the proportion of variants called only by WES, only by RNA-seq, and by both 
technologies, in total and stratified by variant classes. Of note, over 50% of variants in coding regions are called only by WES, probably because of 
RNA-seq limitations including that not all the genes are expressed in fibroblasts, the uneven read coverage along the transcript, and because the 
expression level of variant-carrying alleles must be high enough to yield sufficient RNA-seq read coverage. B WES (row 1) and RNA-seq (row 2) 
coverage of the affected sample (R46723) and a representative control (row 3) using IGV. The created exon and a variant are seen in the affected 
RNA profile, but not covered in the corresponding WES and not present in the control. Bottom row: schematic depiction of the NM_024120.4 
c.2T>C and c.223-907A>C variants and their consequence on the RNA level with an out-of-frame ATG (in green), and a cryptic exon with the PTC 
(bright red rectangle) on NDUFAF5. The percentage of detected transcript isoform is shown next to it. Figure not shown at genomic scale
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Additional file  1: Table  S4). Our RNA-seq-based work-
flow was able to reidentify the causal gene in 84% (27 
out of 32) of them. In the five remaining cases, RNA-seq 
failed to detect the aberrant transcripts for various rea-
sons. In two cases, the causal genes (CCDC40, MIM: 
613799; and F11, MIM: 264900) were not expressed in 
skin fibroblasts. Nine other disease-causal genes from 
our full cohort (CYP4X1, GNAO1, GPD1, HMGCS2, 
KCNA2, MT-TL1, SCN1A, SLC7A2, and UNC80) were 
also not expressed in fibroblasts, representing in total 
10% of all disease-causal genes. In another two cases, 
both involving the TXNIP gene (MIM: 606599), the fold 
change was low (0.1 and 0.22), but a high dispersion of 
the gene’s expression led to the cases not being detected 
as outliers. In the last case, the patient harbored a hete-
rozygous pathogenic missense variant in trans with a het-
erozygous PTV located in the first exon of the GFER gene 
(MIM: 600924) that leads to a frameshift and a PTC after 
16 amino acids. The clinical presentation of the patient 
and his sibling (not included in our cohort) include exer-
cise intolerance, elevated lactate, and cataracts, which 
matched those described in other cases harboring bial-
lelic GFER variants [111], arguing in favor of pathogenic-
ity. This case exemplifies that the functional impact of a 
PTC is not always explained by NMD [112].

We further inspected all rare homozygous variants 
and found that most of the rare stop and frameshift vari-
ants that occur outside the last exon and are expressed 

in fibroblasts (Methods) indeed caused an expres-
sion outlier (Additional file 2: Fig. S13A). Only one rare 
homozygous frameshift in the last exon led to aberrant 
expression, which corresponded to the NDUFS4 case 
(Figs. 3C and 7), thus providing functional validation to 
solve the case. Similarly, most homozygous splice-site 
variants caused aberrant splicing (Additional file  2: Fig. 
S13B), with the exception of one case where normal splic-
ing was observed (variant NM_004336.4:c.1876+2A>G 
in BUB1, Fig.  7, Additional file  2: Fig. S13C). In this 
respect, RNA-seq can also help to prevent a false assign-
ment of pathogenicity. Finally, we tested the impact of all 
rare stop heterozygous SNVs that are not located in the 
last exon and found that more than 70% led to MAE of 
the reference allele (using the negative binomial distribu-
tion to assess all variants, Additional file  2: Fig. S13D), 
which was a significantly higher proportion than the rest 
of variant classes and is in agreement with the results 
obtained from GTEx [91, 113]. This highlights the need 
for functional validation, such as RNA-seq, for PTVs 
without reported pathogenicity.

Reanalysis of the cohort published in 2017 [23] pro-
vided a genetic diagnosis to an additional five cases (two 
NDUFAF5, LPIN1, TAZ, NDUFA10; Table 1). The splic-
ing defect in NDUFAF5 was not detected by the previ-
ously used LeafCutter method [114] but was found with 
FRASER. LeafCutter did find aberrant splicing in the 
LPIN1 and TAZ genes, but no variants were found to 

Fig. 7  RNA-seq captures a broad spectrum of mechanisms of action of pathogenic variants. Summary of variants and their effect on transcript 
across 33 cases from our cohort, where the capture of a transcript event by RNA-seq enabled establishing a genetic diagnosis in 32 and rejecting 
a candidate gene in one case, highlighting the value of transcriptomics as a tool in diagnostics. Each gene represents one case, except for 
NFU1, which belongs to two categories. Highlighted in orange are the nine cases where the intronic variant was missed by WES but called by 
RNA-seq. Both large deletions were missed by WES and RNA-seq, therefore requiring WGS to be identified. PTV: protein-truncating variant. MNV: 
multi-nucleotide variant
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be conclusive. For the LPIN1 case, the causative variant 
(a 1,759 bp deletion) was detected in a follow-up study 
via WGS. For the TAZ case, the causative variant was 
initially not prioritized because of its predicted conse-
quence [47]. In the NDUFA10 case, the previously used 
method to detect aberrant expression, DESeq2 [115], 
did find it to be an expression outlier, but the homozy-
gous causal variants in the 5′UTR were not initially prior-
itized until later when the same aberrant expression was 
identified in an affected sibling (two outlier samples in 
NDUFA10 in Fig. 3C). This shows the importance of data 
reanalysis by considering updates of the disease course 
and family segregation, applying state-of-the-art meth-
ods, and follow-up studies.

Tissue‑specific gene expression
An important limitation of the application of RNA-seq 
in a clinical setting is that the causal gene may not be 
expressed in the sampled tissue. To assess the impact of 
source material on the transcriptome, we compared the 
expression of disease-associated genes for major disease 
categories (Fig. 8, Methods) across 49 tissues from healthy 

donors from the GTEx Consortium (Methods). The 
majority of genes of each disease category are expressed 
in any given tissue (except for ophthalmology and skel-
etal dysplasia genes in whole blood, Fig.  8A). Excep-
tionally, mitochondrial disease genes are ubiquitously 
expressed in all tissues, but other disease genes have a 
more pronounced tissue-specific expression profile, such 
as neurological genes in the brain (Fig. 8A). As in clinical 
practice biopsy of the least invasive tissue is desirable, we 
next focused on the clinically accessible tissues (CATs)—
whole blood, Epstein-Barr virus (EBV)-transformed lym-
phocytes, skeletal muscle, and skin-derived fibroblasts 
[116]. Fibroblasts were the CAT expressing the highest 
number of Mendelian disease genes (2564; 67%; Fig. 8B). 
Although obtaining a skin biopsy is more invasive, skin-
derived fibroblasts appear as a more useful resource than 
blood, showing a higher number of expressed genes in 
each disease category (which is significant for OMIM, 
neurology, ophthalmology, and skeletal dysplasia, Fisher’s 
test P < 0.05). Fewer genes are also expressed in muscle 
for all disorders, except for the neurology and neuromus-
cular disorders, confirming its utility for these disorders 
(Fig. 8B). Overall, thoughtful disease-specific selection of 

Fig. 8  Tissue-specific gene expression. A Proportion of expressed genes from different categories across 49 GTEx tissues with the CATs delineated 
in red. B Proportion of expressed genes from different categories across CATs from GTEx, alone or in combination with another CAT. “All” refers to all 
the 49 tissues, not just the CATs. B: blood, M: muscle: F: fibroblasts, CAT: clinically accessible tissue
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the biosample is increasing the sensitivity of RNA-seq-
based diagnostics. Among the biosamples, fibroblast cell 
lines represent a good compromise between the number 
of expressed genes and the invasiveness of the sampling 
procedure. Moreover, fibroblast cell lines allow func-
tional follow-up studies.

Discussion
The clinical significance of any given genetic variant 
falls along a gradient, ranging from those in which the 
variant is almost certainly pathogenic for a disorder to 
those that are almost certainly benign [21]. The clini-
cal interpretation of variants is based on cumulative 
evidence from population-wide frequencies, computa-
tional predictions, functional data, and segregation pat-
terns. Findings from RNA-seq contribute evidence and 
may validate predicted pathogenic or likely pathogenic 
variants, reclassify VUS or benign variants, and lead to 
the detection of variants undetected by WES or over-
looked by WES data inspection. Specifically, the value of 
RNA-seq is to provide functional evidence on variants 
affecting gene expression and splicing. Loss-of-function 
variation in disease genes represents the strongest evi-
dence for pathogenicity. RNA-seq allows the detection of 
non-coding loss-of-function variation, including splice 
defects leading to the non-functional mRNA isoforms 
and variants abolishing transcription, which remains a 
challenge to predict from DNA sequence alone. More-
over, RNA-seq allows the validation or invalidation of 
(computational) predictions including splice-site dinu-
cleotide and NMD by providing quantitative measures of 
the actual fraction of affected transcripts. In this respect, 
RNA-seq could become the first step in the systematic 
inclusion of functional data together with genetic and 
phenotypic information which can relatively easily be 
implemented in the diagnostic workflow. In addition, 
splice defects uncovered by RNA-seq can potentially 
be targeted by oligo-based therapies for which there is 
an increasing number of precedents (e.g., in Duchenne 
muscular dystrophy [117], amyotrophic lateral sclero-
sis—ALS [118], and an N-of-1 study of milasen in a neu-
rodegenerative patient [119]).

RNA-seq relies on taking additional patient biopsies 
in addition to a sample for DNA extraction and requires 
early consideration in the diagnostic process. Specifically, 
for severe life-threatening diseases with fast progression, 
we recommend establishing skin biopsies in the routine 
process in parallel to genome-based diagnostics. As we 
demonstrate, fibroblast cell lines express the majority of 
OMIM disease genes. Moreover, fibroblast cell lines can 
be differentiated into other cell types to more closely 
reflect the disease-affected tissue [26] or into pluripotent 

stem cells, where as many as 27,046 genes are expressed 
[120, 121]. Importantly, patient-derived cell lines not only 
allow functional studies of the disease of the patient but 
also provide a DNA resource for emerging sequencing 
technologies such as long-read sequencing [122]. One 
limitation of cell lines, in contrast to direct biopsies such 
as whole blood samples, is the time and effort needed for 
their growth. Therefore, in urgent situations (e.g., neona-
tal cases), blood sampling is preferred as it can be pro-
cessed immediately.

There have been concerns regarding the use of a biolog-
ical material that does not represent the affected tissue. 
One concern is that the gene or its relevant isoform may 
not be expressed in the tissue of choice. This issue might 
be particularly relevant for genes with highly specific spa-
tiotemporal expression, which can include genes impli-
cated in developmental disorders [123]. Resources such 
as GTEx, Panel Analysis of Gene Expression (PAGE [26]), 
or MAJIQ-CAT [116] allow checking the expression of 
candidate genes and isoforms in clinically accessible tis-
sues and cell types. Here, using GTEx, we demonstrate 
skin-derived fibroblasts to capture the majority of disease 
genes for major disease categories. Moreover, so long as 
the potential causal genes are expressed, non-affected 
tissues have the advantage that the transcriptome-wide 
consequences of the diseases are limited and hence the 
causal defects can more clearly stand out. Another con-
cern is that pathogenic variants affect tissue-specific 
regulatory elements such as transcription factor bind-
ing sites or binding sites of tissue-specific splicing fac-
tors. However, strong regulatory effects, which one could 
expect for monogenic disorders, may rather be con-
stitutive. This is the case for NMD [113]. Also, a minor 
proportion of variants found in GTEx associated with 
splicing show tissue-specific effects [124].

The sample with the highest number of expression out-
liers was the only one of West Asian ancestry. Similar 
to the genome, the transcriptome seems to be variable 
across ancestries [125]. Sequencing more individuals of 
non-European ancestry will be beneficial as it can help to 
distinguish between aberrant and ancestry-specific gene 
expression and splicing.

With the increasing adoption of RNA-seq in Mende-
lian disease diagnostics, we foresee the need for extended 
clinical guidelines, akin to the update of the ACMG/AMP 
guidelines necessitated by the uptake of WES as a stand-
ard diagnostic approach [21]. These extended guidelines 
will need a concerted discussion across the community, 
regarding effect sizes and statistical cutoffs to define a 
pathological expression phenotype. Moreover, commu-
nity-accepted criteria will be needed to assign the likeli-
hood of pathogenicity for genomic variants, integrating 
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RNA-seq-based evidence with current features including 
annotations of genetic variants, computational predic-
tions, frequency, and segregation patterns.

Conclusions
We reported the outcome of RNA-seq implementation 
as part of routine diagnostics for Mendelian diseases 
alongside WES in our center for more than 300 individ-
uals. We demonstrated the application of the automated 
computational workflow DROP, showcased detailed 
diagnostics successes including instances of dominant 
mode of inheritance, and provided a diagnostic deci-
sion workflow integrating WES, WGS, and RNA-seq. 
The computational analysis time for RNA-seq is com-
parable to the genome pipelines, typically requiring 
less than a week from sample preparation to reported 
results. RNA-seq is based on the same technology as 
WES/WGS, which is another favorable feature to con-
sider when deciding to expand the diagnostic spectrum 
beyond the DNA sequence. Stringent p-value-driven 
results yielded a manageable number of OMIM genes 
with aberrant RNA events (median = 8), similar to the 
average number of biallelic rare non-synonymous vari-
ants inspected during diagnostic WES analysis of auto-
somal recessive disorders. In this study, cumulative 
evidence from WES and RNA-seq supported the genetic 
diagnosis in 16% of WES-inconclusive cases. This num-
ber falls within the range of other RNA-seq studies with 
unrestricted inclusion criteria ranging from 7.5 to 18% 
(Additional file 2: Fig. S14), and a hypothetical yield of 
13.5% after retrospectively analyzing a cohort of WES-
diagnosed patients [126], thereby reflecting the likely 
expected additional value of RNA-seq as a complement 
to WES. Altogether, we foresee that our streamlined 
experimental and computational processes will help 
accelerate the implementation of RNA-seq in routine 
diagnostics.
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