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Abstract

Background: Multimorbidities greatly increase the global health burdens, but the landscapes of their genetic risks
have not been systematically investigated.

Methods: We used the hospital inpatient data of 385,335 patients in the UK Biobank to investigate the
multimorbid relations among 439 common diseases. Post-GWAS analyses were performed to identify
multimorbidity shared genetic risks at the genomic loci, network, as well as overall genetic architecture levels. We
conducted network decomposition for the networks of genetically interpretable multimorbidities to detect the hub
diseases and the involved molecules and functions in each module.

Results: In total, 11,285 multimorbidities among 439 common diseases were identified, and 46% of them were
genetically interpretable at the loci, network, or overall genetic architecture levels. Multimorbidities affecting the
same and different physiological systems displayed different patterns of the shared genetic components, with the
former more likely to share loci-level genetic components while the latter more likely to share network-level
genetic components. Moreover, both the loci- and network-level genetic components shared by multimorbidities
converged on cell immunity, protein metabolism, and gene silencing. Furthermore, we found that the genetically
interpretable multimorbidities tend to form network modules, mediated by hub diseases and featuring
physiological categories. Finally, we showcased how hub diseases mediating the multimorbidity modules could
help provide useful insights for the genetic contributors of multimorbidities.

Conclusions: Our results provide a systematic resource for understanding the genetic predispositions of
multimorbidities and indicate that hub diseases and converged molecules and functions may be the key for
treating multimorbidities. We have created an online database that facilitates researchers and physicians to browse,
search, or download these multimorbidities (https://multimorbidity.comp-sysbio.org).
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Background
Multimorbidity, the coexistence of more than one dis-
ease in a patient not by chance, presents great challenges
for disease diagnosis and treatment [1, 2]. Compared
with single disease, multimorbidities are usually associ-
ated with more adverse health outcomes, such as lower
life quality and higher mortality rate, and with higher
economic burden [3–5]. Understanding the mechanisms
of multimorbidities may be helpful for their early
diagnosis, treatment, and management, thereby helping
reduce the global disease burdens associated with
multimorbidities.
During the last decade, large-scale genome-wide as-

sociation studies (GWASs) have found overlapped
genetic risks for a few frequently multimorbid dis-
eases at the genomic loci level, i.e., single-nucleotide
polymorphisms (SNPs) or genes, suggesting that there
might be a molecular basis of multimorbidity. For ex-
ample, GWASs have uncovered 38 SNPs associated
with both asthma and allergic diseases [6], and 187
genome loci associated with at least two of ankylosing
spondylitis, Crohn’s disease, psoriasis, primary scleros-
ing cholangitis, and ulcerative colitis [7]. Additionally,
Sánchez-Valle et al. found that disease interactions in-
ferred from similarities between patients’ gene expres-
sion profiles have significant overlaps with
epidemiologically documented multimorbid relations
[8], further supporting the genetic basis of multimor-
bidity. Moreover, several studies pointed out that dis-
eases with higher probability of concurrency tend to
share more associated genes [9, 10]. These findings
have accumulated useful information to inform the
biological etiology of multimorbidity [10, 11].
The malfunctions caused by disease risk loci can

spread via cellular networks owing to molecular inter-
actions among genes. To this end, some studies cap-
tured the genetic overlaps between multimorbidities
by network-level evidence, such as protein-protein in-
teractions (PPIs) and molecular pathways [9, 12, 13].
For example, Park et al. found a significantly positive
correlation between the number of shared PPIs and
the extent of disease concurrency by integrating infor-
mation of cellular interactions, disease–gene associa-
tions, and Medicare data [9]. Moreover, a significantly
increased number of shared pathways between can-
cers and multimorbid Mendelian diseases have also
been observed [10]. These results indicate that dys-
functional entanglement in molecular networks might
contribute to the existence of multimorbid diseases in
patients. Additionally, some multimorbidities have
also been reported to be similar in their overall gen-
etic architectures measured by genetic correlations,
such as the widespread genetic correlations among
multimorbid psychiatric disorders [14–17].

Due to the limited access to the matched epidemio-
logical and genomic data of the same population group,
existing studies either used matched data for a limited
number of diseases [6, 7, 11, 14–17], or collected large-
scale genomic data and epidemiology data from different
sources [9, 10]. However, the separation of genetic and
epidemiological data makes it tricky to decide whether
the shared genetic risks identified from one group can
actually explain multimorbidity identified in another
group. In the past few years, the UK Biobank (UKB) has
collected hospital inpatient data and genetic data for
about four hundred thousand individuals, providing a
unique opportunity for investigating the genetics under-
lying multimorbid relationships among hundreds of
common diseases [18].
In this study, we take advantage of the large-scale,

matched epidemiological and genetic data hosted in the
UKB to systematically investigate the multimorbid rela-
tionships among 439 common diseases as well as their
shared genetic factors. We have identified the multimor-
bidity shared genetic components at the loci and net-
work levels, and performed functional analyses on them
to uncover the converged biological functions. Further-
more, the shared genetic patterns of the multimorbid-
ities affecting the same and different physiological
systems have been explored. Finally, we have con-
structed and decomposed two multimorbidity networks
to find the hub diseases that mediate multimorbid rela-
tionships in multimorbidity modules and to highlight
the corresponding molecular mechanisms. Our results
provide a systematic resource of multimorbidities among
common diseases, as well as their shared genetic risks
(online database at https://multimorbidity.comp-sysbio.
org). The converged biological molecules and functions
identified in this study are responsible for many multi-
morbidities, which may serve as the key factors for the
management and treatment of multimorbidities.

Methods
Population data
Population data used in this study is collected from the
UKB [18]. More than 500,000 individuals aged 40–69
living in the UK were recruited to the assessment cen-
ters and signed an electronic consent to allow a broad
range of access to their anonymized data for health-
related research.

Disease selection and classification
In the UKB, field-41270 is the summary diagnoses of
410,293 patients across all their hospital inpatient re-
cords, which are coded according to the International
Classification of Disease version 10 (ICD10). For a de-
tailed list of the ICD10 codes, see https://www.icd1
0data.com/. A total number of 11,727 ICD10 codes are
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recorded with affected patients. We define common dis-
eases as the level 2 ICD10 codes (the three-character
ICD10 codes used by the UKB) with prevalence > 0.1%,
since most of the publicly available GWAS summary sta-
tistics of the UKB diagnoses are based on the level 2
codes [19, 20]. Patients diagnosed with codes at or under
level 2 are considered as suffering from the correspond-
ing level 2 diseases. Only the ICD10 codes within the
range of chapter I ~ XIV are considered, which can be
found on the website of the UKB (https://biobank.ndph.
ox.ac.uk/showcase/field.cgi?id=41270). Due to the too-
detailed phenotype descriptions of the ICD10 codes,
such as F20 (Schizophrenia) and F25 (Schizoaffective
disorders), we further aggregate the highly similar
ICD10 codes into one disease according to the phecodes
[21]. Phecode is a collection of manually curated pheno-
types by experts with the advantage of better aligning
with diseases mentioned in clinical and genomic re-
search [21]. Finally, the diseases are manually classified,
mostly according to their affected physiological systems
while also considering their origins [22].

Identification of multimorbidities
In this study, we define multimorbidities as disease pairs
coexisting in one person not by chance [1]. For each dis-
ease pair (disease i and j), we quantify the relative risk
(RR) between them by

RR ¼ N � Cij

I i � I j
; ð1Þ

where N denotes the total number of patients (i.e.,
410,293) recorded in field-41270 (summary diagnoses);
Ii(Ij) denotes the number of patients who suffered from
disease i(j); Cij denotes the number of patients who were
diagnosed with both disease i and j [9]. As RR is a
monotonically increasing function of Cij, the one-sided P
value is equal to the sum of the probabilities when Cij is
greater than or equal to the actual value. Therefore, we
calculate the P value by approximating the binomial dis-
tribution as a Poisson distribution

P ¼ Σ
k¼Cij

N exp −C�
ij

� �
� C�

ij

� �k

k!
; ð2Þ

where C�
ij ¼ IiI j=N .

Field-41280 in the UKB records the diagnosis date cor-
responding to each diagnosis in field-41270. We denote
Csimul(ij) as the number of patients who were diagnosed
with both disease i and j at the same date. The diagnosis
summary data in the UKB only includes 410,309 partici-
pants, which is relatively small when compared with
other electronic health record datasets (usually more
than tens of millions) [9, 23, 24]. Besides, we argue that

the more often two diseases are diagnosed within 1 day,
the more likely they will be multimorbid (Additional
file 1: Supplementary Methods and Results). Therefore,
to get a more credible collection of multimorbidities,
only disease pairs with a high proportion of patients di-
agnosed within 1 day are considered, namely, disease
pairs with Csimul(ij)/Ii > 1% or Csimul(ij)/Ij > 1%. Then, dis-
ease pairs with RR > 1 and P value <0.05/ the total num-
ber of disease pairs with RR > 1 are selected as
multimorbidities (Bonferroni correction).

Validation of the multimorbidities in the UKB
We compare the multimorbidities identified by us to
that identified by Jensen et al. [25], Blair et al. [24], and
Hidalgo et al. [23]. Jensen et al. studied the disease tra-
jectories and found 4014 significantly directional multi-
morbidities among 681 level 2 ICD10 diseases [25]. We
extract the diseases used by both us and Jensen et al.
[25]. We take all disease pairs among the commonly
used diseases as background, and use Fisher exact test to
examine the significance of overlaps of multimorbidities
in the UKB and Jensen et al [25]. Blair et al. reported
2909 multimorbid relationships among 95 Mendelian
diseases and 65 complex diseases in over 110 million pa-
tients [24]. One Mendelian or complex diseases corres-
pond to one or more ICD10 codes. We treat the ICD10
codes below level 2 as their corresponding level 2 ICD10
diseases. We extract the diseases that are used by both
us and Blair et al. [24]. Fisher exact test is used to exam-
ine the significance of multimorbidity overlaps between
us and Blair et al. [24], with all disease pairs between the
commonly used Mendelian and complex ICD10 diseases
as background. Hidalgo et al. constructed a Phenotypic
Disease Network based on 995 three-digit ICD9 codes
[23]. The ICD9 codes can be found in https://www.
icd9data.com. For comparison, the three-digit ICD9
codes are mapped to the level 2 ICD10 codes by Unified
Medical Language System (UMLS) [26]. We download
the MetamorphoSys software from UMLS and install the
UMLS Knowledge Sources of ICD9CM and ICD10
metathesaurus [26]. Then, we construct the mappings
between the ICD9 and ICD10 codes through their com-
mon UMLS identifiers. We consider four types of map-
ping relationships: (1) the three-digit ICD9 codes can be
directly mapped to the level 2 ICD10 codes; (2) the
three-digit ICD9 codes can be mapped to the child
nodes of the level 2 ICD10 codes; (3) the child nodes of
the three-digit ICD9 codes can be mapped to the level 2
ICD10 codes; (4) the child nodes of the three-digit ICD9
codes can be mapped to the child nodes of the level 2
ICD10 codes. For the last three types, the mapping rela-
tionships of the child nodes are considered as the map-
pings of their parent three-digit ICD9 codes and level 2
ICD10 codes. The resulted mappings are many-to-many.
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In total, 786 three-digit ICD9 codes from Hidalgo et al.
[23] can be mapped to 1230 level 2 ICD10 codes. Since
one ICD9 code may map to multiple ICD10 codes, the
two ICD9 codes of one multimorbidity from Hidalgo
et al. [23] may map to two sets of level 2 ICD10 codes.
We treat any combinations of diseases between the re-
sulted two ICD10 sets as multimorbidities of Hidalgo
et al. We extract the commonly used diseases by us and
Hidalgo et al. [23]. Fisher exact test is used to examine
the significance of multimorbidity overlaps between us
and Hidalgo et al. [23] with all disease pairs between the
commonly used diseases as background. Since not all
disease pairs provided by Hidalgo et al. [23] are multi-
morbidities, we compare our multimorbidities with two
sets of disease connections from Hidalgo et al.: one set
including diseases-pairs with RR > 1 and primary P
values < 0.05, the other set including diseases-pairs with
RR > 1 and FDR-corrected P values < 0.05.

Multimorbidity tendency of intra- and inter-categories
To investigate whether there are pairs of categories (in-
cluding the same category combination) wherein the dis-
eases in one category tend to be multimorbid with
diseases in the other category, we firstly construct a mul-
timorbidity network where the nodes represent diseases
and edges represent the multimorbid relationships be-
tween disease pairs. We then randomly shuffle the node
labels in the network while keeping the structure of the
network unchanged, and repeat the randomization
process 106 times. For each randomized multimorbidity
network, we count the number of multimorbid relation-
ships (Lmn) between category m and n, and calculate an
empirical P value between each pair of categories as
follows:

P ¼

X106

i¼1

Indi

106
; ð3Þ

where Indi is an indicator function, with value 1 when
Lmn≥L�mn and value 0 when Lmn < L�mn . L

�
mn is the actual

number of multimorbidities between category m and n
in the original multimorbidity network.

GeneAtlas of the UKB
Canela-Xandri et al. published a batch of GWAS sum-
mary statistics including > 30 million genetic variants as-
sociated with 778 traits of 452,264 UKB participants
(http://geneatlas.roslin.ed.ac.uk) [19]. Out of the 778
traits, 657 were binary phenotypes generated from mul-
tiple fields in the UKB including ICD10 codes from hos-
pital diagnoses (field-41202 and field-41204, which are
the primary and secondary diagnoses recorded in field-
41207), ICD10 codes from cancer register (field-40006),

self-reported diseases (field-20002), and 3 other traits.
We choose the GWAS summary statistics of the level 2
ICD10 codes to explore the genetic basis of multimor-
bidities. The detailed quality controls of the GWAS are
described in the original publication. We further remove
variants with minor allele frequency (MAF) < 0.01, HEW
< 1e−50, and INFO score < 0.9. The remained 7,423,311
variants are used in our analysis.

Shared genetic components of multimorbidities
We dissect the shared genetic components of multimor-
bidities from five aspects, i.e., SNP, gene, PPI, pathway,
and the overall genetic architecture.

SNP
For each disease, we firstly select the SNPs with P values
< 0.05 / (variant counts × disease counts) from the
GWAS summary statistics as significant, and then ex-
pand these significant SNPs to their linkage disequilib-
rium (LD) blocks with LD score r2 > 0.8 and LD window
1MB. The reference LD scores between SNPs are calcu-
lated by plink (--ld-window 100 --ld-window-kb 1000)
[27] based on individuals of European ancestry from the
1000 Genomes Project (GRCh37) [28]. We take the LD
expanded SNPs as disease-associated SNPs and calculate
the multimorbidity shared SNPs as those associated with
both diseases of the multimorbidity. Fisher exact test is
used to test the significance of SNP overlaps between
multimorbidities with the 7,423,311 variants used in this
study as background.

Gene
We identify disease-associated genes from the GWAS
summary statistics by three methods—direct mapping,
eQTL, and MAGMA [29]. (1) Direct mapping: the
disease-associated SNPs are mapped to genes based on
genomic coordinates of genes annotated in GRCh37.p13
(within 2 kb upstream and 500 bp downstream of gene
body). The gene location file is obtained from NCBI
website (https://www.ncbi.nlm.nih.gov, GRCh37.p13). (2)
eQTL: the identified loci of GWAS may exert their ef-
fects on phenotypes via regulating gene expressions, so
we leverage the eQTL data from GTEx (https://
gtexportal.org/home/datasets, v7) to find genes whose
expressions are related to the disease-associated SNPs
(adjusted P value<0.05, FDR corrected) [30]. (3) MAGM
A: MAGMA is a tool for aggregating multiple genetic
markers in gene based or gene-set based ways to esti-
mate their joint effects on phenotypes, based on GWAS
summary statistics or individual genotype data [29]. We
identify genes by aggregating the effects of SNPs by
MAGMA based on GWAS summary statistics. The
SNPs are mapped to genes according the gene location
file (build 37) provided by the MAGMA website
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(https://ctg.cncr.nl/software/magma), and the window
size is set to 2 kb upstream and 0.5 kb downstream. The
European panel of the 1000 Genomes is used as refer-
ence data to estimate LD between SNPs [28]. For the
SNPs of synonym, only the first one is reserved accord-
ing to the synonym file in the MAGMA website. We de-
fine the multimorbidity shared genes as those associated
with both diseases of the multimorbidity. Fisher exact
test is used to test the significance of gene overlaps be-
tween multimorbidities with all human genes as
background.

PPI
We download PPIs from BioGRID [31] and select 41,980
human physical PPIs for analysis. For each PPI (consist-
ing gene1 and gene2) and multimorbidity combination,
if gene1 is associated with one disease of the multimor-
bidity and gene2 is associated with the other disease of
the multimorbidity, we consider this PPI as the multi-
morbidity shared PPI. For a PPI, if one of its genes is re-
lated to both diseases of the multimorbidity, we do not
consider it as the multimorbidity shared PPI. To test the
significance of PPI overlaps of multimorbidities, we ran-
domly select the disease genes from all human genes
while keeping the number of disease genes unchanged,
and then identify the multimorbidity shared PPIs with
the same method. We repeat this process 104 times and
calculate the P value as the frequency of the random
number equal to or greater than the real number of
shared PPIs.

Pathway
MSigDB database compiles 1329 canonical pathways,
where several pathways are extremely large (Additional
file 2: Fig. S1) [32]. We remove 29 KEGG disease path-
ways and 43 large pathways (6 KEGG, 5 NABA, and 32
REACTOME pathways) with more than 200 genes. The
remained 1257 pathways are used for enrichment ana-
lysis of disease-associated genes. Fisher exact test is used
to determine the enrichment P values. Pathways with ad-
justed P values < 0.05 (FDR corrected) are considered as
associated with disease. We define the multimorbidity
shared pathways as those enriched by the gene set of
one disease and containing at least one gene of the other
disease. To test the significance of pathway overlaps of
multimorbidities, we randomly select the disease genes
from all human genes while keeping the number of dis-
ease genes unchanged, and then identify the multimor-
bidity shared pathways with the same method. We
repeat this process 104 times and calculate the P value as
the frequency of the random number equal to or greater
than the real number of shared pathways.

Overall genetic architecture
The genetic architecture similarity between disease pair
is measured by the genetic correlation. We estimate the
genetic correlation of liability scale from GWAS sum-
mary statistics by LD score regression (LDSC) [33].
LDSC evaluates the genetic correlation between two dis-
eases from GWAS summary statistics based on the fact
that the effect size of a given SNP incorporates the ef-
fects of all SNPs in its LD region [34]. SNPs with high
LD will have higher χ2 statistics on average than those
with low LD. A similar relationship remains if the χ2 sta-
tistics for a single study are replaced by the product of
the Z scores from two studies of traits with nonzero
genetic correlation [33, 34]. LDSC is not biased by sam-
ple overlap and is fast to compute. The LD score com-
puted from 1000 Genomes European data is used as
reference [28], which is suitable for the GWAS summary
data of the UKB population.

Genetic association pattern of multimorbidities
To explore the genetic association pattern of multimor-
bidities at specific levels of genetic components, i.e.,
SNP, gene, PPI, pathway, or genetic correlation, we focus
on the multimorbidities with genetic information avail-
able. For each type of genetic components, we permutate
its interpretable multimorbidities and non-interpretable
multimorbidities, and then compare the number of the
interpretable multimorbidities after permutation (Nperm)
to the actual number (Nreal) between any pair of categor-
ies (including between the same categories). We repeat
this permutation 105 times and calculate P value as the
frequency of Nperm ≥Nreal. P values are adjusted by FDR
method for multiple hypothesis testing. Through this
process, we can find category pairs where the multimor-
bidities are significantly interpreted by SNP, gene, PPI,
pathway, and genetic correlation, respectively.

Comparison with Park et al
Park et al. have reported 2239 disease pairs with shared
genes, PPIs, or co-expressed genes [9]. We use Fisher
exact test to examine whether these 2239 disease pairs
are significantly overlapped with the genetically inter-
pretable multimorbidities identified in our analysis. To
perform Fisher exact test, we use the 8212 UKB multi-
morbidities with available genetic information as back-
ground. As the diseases used by Park et al. is coded by
ICD9CM, we mapped ICD9 codes to ICD10 codes ac-
cording to UMLS [26].

Functional analysis of SNPs
We examine the function properties of SNPs from three
aspects—genome-wide distribution, deleteriousness, and
impacts on splicing. (1) We annotate the SNPs to gen-
omic categories by ANNOVAR [35]. The categories are
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further merged into three groups—genic (including ex-
onic, intronic, and splicing), noncoding RNA, and inter-
genic. (2) The deleteriousness of SNPs is quantified by
CADD scores [36]. (3) The impacts of SNPs on splicing
are quantified by dbscSNC scores [37]. For each gen-
omic category, we perform Fisher exact test to examine
whether the multimorbidity SNPs (SNPs shared by
multimorbidities) are enriched in this category by tak-
ing the disease SNPs (SNPs associated with at least one
of the 439 diseases) and SNPs used in this study (7,423,
311) as background, respectively. t test is used to evalu-
ate whether the CADD and dbscSNC scores of multi-
morbidity SNPs are different from those of other
disease SNPs (SNPs associated with diseases but not as-
sociated with multimorbidities), and non-disease SNPs
(all SNPs used in this study that are not associated with
diseases).

Functional analysis of genes
We explore the function properties of genes from three
aspects—essentiality, pLI, and active tissue. (1) To pre-
dict the essentiality of human genes, we use the
genotype-phenotype information in the Mouse Genome
Informatics (http://www.informatics.jax.org). One hu-
man gene is considered essential if the knockout of its
ortholog gene of mouse confers risks of lethality. We
firstly extract the mouse phenotypes related to embry-
onic, prenatal, and postnatal lethality and identify the
mouse gene list associated with these phenotypes. Then,
the genes without knockout experiment supporting for
lethality are dropped from this gene list. Finally, we take
the human orthologous genes corresponding to these
mouse genes as the human essential genes. Fisher exact
test is used to evaluate whether multimorbidity genes
(gene associated with multimorbidities) or disease genes
(genes associated with at least one of the 439 diseases)
are enriched in human essential genes by taking all hu-
man genes as background. (2) The pLIs of human genes
are obtained from the Exome Aggregation Consortium
(ExAC) [38]. We use t test to compare the pLIs of multi-
morbidity genes with that of other disease genes (genes
associated with diseases but not associated with multi-
morbidities), and non-disease genes (all human genes
that are not associated with diseases), respectively. (3)
To count the number of active tissues per gene, we ob-
tain the gene expression profiles for 53 tissues from
GTEx v.7 [30]. For one gene, we define it as active in a
given tissue if the average transcripts per kilobase mil-
lion is > 1. We then group genes into 4 categories, that
is, genes expressed in single tissue, 2–5 tissues, 6–42 tis-
sues, 43–53 tissues. Mann–Whitney U test (two-sided)
is used to evaluate whether the numbers of active tissues
of multimorbidity genes are different from that of other
disease genes and non-disease genes.

GO enrichment analysis
We obtain 7530 gene sets related to GO biological pro-
cesses from MSigDB (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp) [32]. GO terms with more than
200 genes are removed, and the remained 6631 GO
terms are used for the following enrichment analysis.
Fisher exact test is used to identify enriched GO terms.
FDR is used for multiple testing correction, and GO
terms with adjusted P values < 0.05 are considered as
significant.

Small worldness of multimorbidity network
To evaluate the small worldness of the multimorbidity
network, we firstly investigate whether the distribution
of the node degrees in the network obeys the power law
distribution. We fit the node degrees to power law distri-
bution and obtain the parameters α and Xmin. If 2 < α <
3, we select the nodes with degrees > Xmin to fit the log
relationship between the degree and the number of
nodes by Ordinary Least Square (OLS). If the fitting
goodness (Adj. R2) of OLS > 0.1 and P value < 0.05, we
consider the degree distribution of the network obeys
the power law distribution. Secondly, we calculate the
small-world coefficient (sigma) by comparing the aver-
age clustering coefficient and shortest path length of the
network against the same quantities of its equivalent
random networks. If the network is with sigma > 1 and
degrees following power law distribution, we consider it
has the property of small worldness.

Identification of multimorbidity modules
We use the Louvain algorithm to detect the modules in
the multimorbidity network [39]. Louvain algorithm is a
heuristic method based on modularity optimization. It
has good quality in community detection and works in a
computationally fast way. When detect modules, we set
the parameter resolution to 1, as this parameter pro-
duces the largest modularity (Q).

Results
Multimorbidities among common diseases in the UKB
In total, 439 common diseases (prevalence > 0.1%) are
selected for the multimorbidity analysis from the UKB
hospital inpatient data (see “Methods;” Additional file 3:
Table S1), covering 385,335 patients. The average age of
the patients at their first hospital diagnosis is 54, and
there are more female patients than male patients (55%
VS. 45%).
In all, 11,285 multimorbidities are identified, involving

438 out of the 439 diseases (RR > 1, P value < 4.1e−6
with Bonferroni correction for all disease pairs with RR
> 1, Fig. 1a, Additional file 3: Table S2; see “Methods”),
with D21 (other benign neoplasms of connective and
other soft tissue) being the only exception. Most diseases
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have fewer than 100 multimorbid partners (average of
51, Fig. 1b). We observe that diseases with high preva-
lence tend to have more multimorbid partners (Pear-
son’s correlation, r = 0.69, P value = 3.3e−64, Additional
file 2: Fig. S2). For example, the top three diseases with
the most multimorbid partners—hypertension (I10),

hyperlipidemia (E78), and type 2 diabetes (E11), have
prevalence of 27.5%, 13.1%, and 7.1% in the UKB,
respectively.
To validate the credibility of the multimorbid relation-

ships found through our analysis, we compare them to
the multimorbid relationships identified by Jensen et al.

Fig. 1 Multimorbidities identified in the UKB. a Schematic illustration of how RR is calculated for each pair of diseases. b The distribution of the
number of multimorbidities for the UKB diseases. c Multimorbidity tendency of intra- and inter-physiological categories. Color and size of the
circles represent the proportions of multimorbidities in all disease pairs within a category or between two categories. The deeper the color and
the larger the size of a circle, the higher the proportion is. Star represents adjusted P value < 0.05 (FDR corrected). d The high-confidence
multimorbidity network constructed by only including multimorbidities with RR > 15. Each node represents a disease, and each edge represents a
multimorbid relationship between two diseases. The color code of a node represents the category of the disease. The size of each node is
proportional to the number of its multimorbidities (not restricted to RR > 15)
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[25], Blair et al. [24], and Hidalgo et al. [23]. Jensen et al.
reported 4014 significantly directional multimorbidities
between 681 diseases [25]. In total, 384 diseases are
commonly used by us and Jensen et al. (Table 1) [25].
The comparison results show that the multimorbidities
identified by us and Jensen et al. [25] have a significant
overlap (OR = 6.8, P value = 0, Fisher exact test). We
confirm a relatively high proportion (49%) of Jensen’s
multimorbidities, compared to 13% of our results
confirmed by Jensen et al. [25]. This might be because
Jensen et al. [25] only provided the directional multi-
morbidities and ignored the multimorbidities without di-
rections. When we only compare the directional
multimorbidities in the UKB to Jensen et al. [25], the
overlap is still significant (OR = 14.6, P value = 4.0e
−212), and the proportion of the UKB multimorbidities
confirmed by Jensen et al. increases to 32%. Studying the
directionality of multimorbidities requires a very large
sample size and a long follow-up time. The diagnosis
data in the UKB has a long follow-up time (25 years,
compared to 15 years by Jensen et al. [25]), but a rela-
tively small sample size (about 0.4 million, compared to
6.2 million by Jensen et al. [25]). Despite this, the com-
parison with Jensen et al. [25] confirms the reliability of
our multimorbidities. Blair et al. reported 2909 signifi-
cant multimorbidities between 95 Mendelian diseases
and 65 complex diseases [24]. Among these diseases, 14
Mendelian diseases and 62 complex diseases are com-
monly used by us and Blair et al. (Table 1) [24]. The
overlap of multimorbidities in the UKB and Blair et al.
[24] is also highly significant (OR = 3.1, P value = 1.8e
−7). Hidalgo et al. constructed a Phenotypic Disease
Network using the medical claims of more than 30 mil-
lion patients [23]. This network contains the RRs among
995 three-digit ICD9 diseases as well as the correspond-
ing P values. The ICD9 codes are mapped to ICD10
codes by the UMLS (see “Methods”) [26]. A total of 397
ICD10 diseases are commonly used by us and Hidalgo
et al. (Table 1) [23]. The comparison shows that our

multimorbidities have significant overlaps with the
highly possible multimorbidities of Hidalgo et al. (P
values = 2.3e−189 and 4.6e−187, based on original and
FDR corrected P values, respectively) [23]. Taken to-
gether, we consider that our results can be confirmed by
previous results and are of high reliability. Importantly,
benefiting from the long follow-up time (25 years) and
the extensive coverage of diseases provided by the UKB
hospital inpatient data, the collection of multimorbidities
reported here is the largest one for common disease
multimorbidities by far, and thus provides an atlas of
multimorbidities valuable for further analysis.

Prevalent multimorbidities of intra- and inter-
physiological systems
In the classic Human Disease Network (HDN) by Goh
et al., diseases are connected if they share at least one
disease-associated gene [22]. We have observed several
clusters in HDN formed by diseases affecting the same
physiological systems, such as cardiovascular diseases
and nutritional diseases. This inspires us to explore
whether diseases affecting the same physiological system
tend to be multimorbidities. We divide the 439 diseases
into 24 categories, mostly according to their affected
physiological systems while also considering their origins
(e.g., “Neoplasm”) (Additional file 3: Table S1), and cal-
culate the disease multimorbidity tendency among the
24 categories (see “Methods”). As expected, we find sig-
nificantly prevalent multimorbidities within 19 out of 24
categories (Fig. 1c). For example, 89% (32/36) of all dis-
ease pairs within the “Spine” category are multimorbid-
ities (adjusted P value = 5e−5), and all the 4 nutritional
diseases are multimorbid with one another (adjusted P
value = 8.9e−3). To get a visual and more confident ob-
servation, we have constructed a high-confidence multi-
morbidity network comprised of multimorbidities with
RR > 15 (Fig. 1d) and observed small and large clusters
of multimorbidities affecting the same physiological sys-
tems, many of which are supported by previous

Table 1 Multimorbidity comparison with Jensen et al., Blair et al., and Hidalgo et al.

Shared diseases Multimorbidities
in the UKBa

Multimorbidities
in the referencea

Overlapping
multimorbidities

Odds ratio P values

Jensen et al. [25] 384 10,144 2595 1278 6.8 0

Jensen et al. [25] 384 989 (directional) 2595 318 14.6 4.0e−212

Blair et al. [24] 62 complex diseases, 14
Mendelian diseases

175 622 152 3.1 1.8e−7

Hidalgo et al. (RR > 1 and original P
values < 0.05) [23]

397 8791 54,542 7242 2.2 2.3e−189

Hidalgo et al. (RR > 1 and FDR
corrected P values < 0.05) [23]

397 8791 54,528 7234 2.2 4.6e−187

aThe “Multimorbidities in the UKB” and “Multimorbidities in the reference” denote the multimorbidities formed by the shared diseases in the results of the UKB
and reference, respectively
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studies—for examples, multimorbidity clusters affecting
the “Cardiovascular” [40], the “Ophthalmological” [41],
the “Ear, Nose, Throat” [42], and the “Psychiatric” [43]
categories. These findings suggest the existence of
shared mechanisms for diseases affecting the same
physiological systems.
Interesting, apart from the intra-category multimor-

bidities, we also find significantly more multimorbid re-
lationships between 41 pairs of different categories
(Fig. 1c). Diseases from the “Respiratory” category are
significantly more likely to be multimorbid with diseases
from 11 other categories, followed by diseases from the
“Metabolic” category which tend to coexist with diseases
from 10 other categories, both suggesting the existence
of shared etiologies beyond the boundaries of physio-
logical systems. Moreover, metabolic diseases have the
overall highest rate of inter-category multimobidities,
which is consistent with many reports on the involve-
ment of altered metabolisms in a wide range of diseases
[44, 45]. It is noteworthy that sometimes the significant
inter-category multimorbidity patterns are mediated by a
small number of diseases that have a large number of
multimorbid partners. For example, in the high-
confidence multimorbidity network (Fig. 1d), psychiatric
disorders are multimorbid with neurological disorders
predominantly through F05 (delirium, not induced by al-
cohol and other psychoactive substances) and F06 (other
mental disorders due to brain damage and dysfunction
and to physical disease). In fact, for 33 out of the 41 sig-
nificant category pairs, more than 50% of the inter-
category multimorbid relationships are mediated
through no more than three “hub” diseases. Take one of
the most centered hubs as an example, E66-Obesity me-
diates more than half of the multimorbid relationships
between the “Nutritional” category and three other cat-
egories—“psychiatric,” “spine,” and “joint.” This is con-
sistent with previous findings that obesity is usually
associated with mental, joint, and spinal diseases, such
as depressive disorders, anxiety disorders, gout, and
spondylosis [46–48]. As a result, understanding the
mechanisms underlying multimorbidities, especially
those mediated by the “hub” diseases, may provide a way
forward to understand how they happen, and to seek to
manage or treat them simultaneously.

46% of the multimorbidities are genetically interpretable
Previous studies have shown that disease pairs sharing
more genes or PPIs are more likely to be multimorbid-
ities [9, 10]. However, it still remains unclear that how
many multimorbidities share genetic components
(deemed as genetically interpretable), and whether there
are any specific patterns in the shared genetic compo-
nents for different types of multimorbidities. To explore
these two questions, we capture the genetic associations

of multimorbidities at 3 levels, i.e., the loci level (SNP
and gene), the network level (PPI and pathway), and the
overall genetic architecture level (genetic correlation)
(see “Methods”).
All available GWAS summary statistics based on the

UKB subjects are collected from geneAtlas [19], covering
332 out of the 439 diseases used in this study and com-
prising 8212 multimorbidities. We find 46% (3766) of
these multimorbidities have shared genetic components:
147, 1463, 1803, and 1959 multimorbidities share SNPs,
genes, PPIs, and pathways, respectively; and 1970 multi-
morbidities have significant genetic correlations (Fig. 2a,
Additional file 3: Tables S3, S4, S5, S6, S7, see
“Methods”). Multimorbidities are significantly more
likely to share genetic components, compared with non-
multimorbidities, across all genetic levels as well as their
aggregation (Fig. 2a, see “Methods”). Additionally, we
also find that 98%, 70%, and 100% of the genetically in-
terpretable multimorbidities share significantly more
SNPs, genes, and pathways than expected, respectively
(see “Methods”). Only 5% of multimorbidities share sig-
nificantly more PPIs than expected, possibly due to the
incompleteness of PPI collections. Moreover, the genet-
ically interpretable multimorbidities have a significant
overlap with disease pairs reported by Park et al., which
have shared genes, PPIs, or co-expressed genes (P value
= 2.4e−6, Fisher exact test), further confirming our find-
ings [9]. As the genetic information and the epidemio-
logical information come from the same subjects, we
consider our results relatively robust against the usual
confounding factors for the genetic analysis of multi-
morbidities, such as differences in genetic background.
Thus, our results strongly support the existence of gen-
etic predispositions for almost half of the multimorbid
relationships. We have created an online database to fa-
cilitate researchers and physicians to browse, search or
download the multimorbidities (https://multimorbidity.
comp-sysbio.org).
We then explore whether there are any specific pat-

terns in shared genetic components for different types of
multimorbidities, i.e., exploring the differences in the
levels of genetic components mediating intra- and inter-
category multimorbidities. Overall, we find that multi-
morbidities of 9 out of 24 (37.5%) intra-categories and
52 out of 276 (18.8%) inter-categories significantly share
genetic components, suggesting a relatively high prob-
ability of genetic involvement for multimorbidities af-
fecting the same physiological systems (Fig. 2b).
Interestingly, as in Fig. 2b and c, intra-category multi-
morbidities are slightly more likely to share loci-level
genetic components (P value = 4.6e−4 for SNPs; differ-
ence not significant for genes after Bonferroni correc-
tion; Fisher exact test) compared to inter-category
multimorbidities, while the latter are more likely to
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share network-level genetic components (P values = 4.6e
−17 and 8.3e−17 for PPIs and pathways, respectively).
There is no significant difference in how likely multi-
morbidities of intra- and inter-categories have genetic

correlations. These results suggest that multimorbidities
affecting the same and different physiological systems
may have different biological origins—the former tends
to directly originate from pleiotropic loci and the latter

Fig. 2 Multimorbidities interpreted by genetic components. a Ratios of multimorbidities and non-multimorbidities interpretable through SNP,
gene, PPI, pathway, and genetic correlation. b Intra- and inter-category multimorbidities that can be significantly interpreted through the five
types of genetic components. Each circle is divided into five parts, representing the five types of genetic components. Color-filled parts of each
circle represent the types of genetic components that can significantly interpret the corresponding intra- or inter-category multimorbidities. No
circle is drawn where none of the five types of genetic components is significant. c Ratios of multimorbidities of intra- and inter-categories
interpretable through SNP, gene, PPI, pathway, and genetic correlation
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tends to indirectly originate from converged biological
functions.
The above statistical observation is best illustrated by

the diseases from “Male genital organs” category
(Fig. 2b). The multimorbidities within the “Male genital
organs” category tend to share genes (adjusted P value =
4.1e−2, FDR corrected). In fact, 50% (8/16) of the multi-
morbidities within this category share disease-associated
genes. A total of 20 genes are involved in these intra-
category multimorbid relationships and are mainly re-
lated to the human leukocyte antigen (HLA) complex
(such as HLA-DQA1 and HLA-DRB1), histone clusters
(such as HIST1H1B and HIST1H2AJ), and tumors (such
as TERT and NOTCH4 for prostate cancer) [49, 50]. In
contrast, multimorbid relationships of inter-categories
involving the “Male genital organs” category tend to
share pathways (72/142, 51%). The KEGG pathway “cell
adhesion molecules cams” is shared by half (36/72) of
these inter-category multimorbid relationships, followed
by “antigen processing and presentation,” which is
shared by 32 of these multimorbidities.
To summarize, based on matched genetic and epi-

demiological data, we find that almost half (46%) of the
multimorbidities identified in this study are genetically
interpretable, indicating a strong genetic role in the ori-
gin of multimorbidities. Among these genetically inter-
pretable multimorbidities, the intra-category and inter-
category ones tend to share genetic components at dif-
ferent levels (loci VS. network), suggesting their different
biology origins.

Genetically interpretable multimorbidities converge on
cell immunity, protein metabolism, and gene silencing
To enhance the understanding on the biological mecha-
nisms of multimorbidities, we conduct functional ana-
lyses of the loci and network-level genetic components.
The overall genetic architecture is not analyzed here, as
it reflects statistical correlations but not detailed func-
tions (see “Discussion”).
We firstly examine the genome-wide distribution and

the deleteriousness of the multimorbidity SNPs (see
“Methods”). We find that multimorbidity SNPs tend to
be located in noncoding RNA (P values = 1.2e−44 and
4.1e−147) and intergenic regions (P values = 1.7e−54
and 2.9e−48) (Fig. 3a), but with slightly higher CADD
scores (P values = 9.8e−129 and 0) than other disease
SNPs and non-disease SNPs (see “Methods”; Fig. 3b).
These results suggest that multimorbidity SNPs are
slightly more deleterious, possibly through playing im-
portant roles in gene transcriptional regulations [51].
We have also examined the effects of multimorbidity
SNPs on splicing by the dbscSNC splicing scores [37],
but found no difference among the multimorbidity
SNPs, other disease SNPs and non-disease SNPs

(Additional file 2: Fig. S3). Additionally, we find that
73% of the multimorbidity SNPs locate in a small region
of the genome—the HLA region (chr6:29,691,116–33,
054,976), and 51% of the multimorbidities interpretable
through SNPs share at least one HLA-region SNP. The
HLA region is well known for its high degree, long-
ranged LD blocks, which may help explain the pleiotropy
of these SNPs in multimorbidities [52]. SNPs in this re-
gion have been previously predicted to be relevant for
multiple autoimmune diseases through disrupting the
regulation of immune-related genes [51]. Consistent
with this, most of the top multimorbidities with the lar-
gest number of shared HLA-region SNPs involve auto-
immune diseases or diseases with a significant
autoimmune-related origin, such as E03 (Other
hypothyroidism), J45 (Asthma), K90 (Intestinal malab-
sorption), E10 (Insulin-dependent diabetes mellitus), and
G35 (Multiple sclerosis). Finally, we test whether the
genomic location and the CADD score distributions of
multimorbidity SNPs are mainly determined by the
HLA-region variants. After removing the HLA-region
SNPs, multimorbidity SNPs are still overrepresented in
noncoding RNA regions (P values = 3.5e−47 and 1.2e
−61) and still have significantly higher CADD scores (P
values = 0.02 and 1.5e−15) than other disease SNPs and
non-disease SNPs, but are no longer overrepresented in
intergenic regions (Additional file 2: Figs. S4A, S4B). We
conclude that multimorbidity SNPs, no matter whether
in the HLA region or not, are slightly more deleterious
and more likely to locate in noncoding RNA regions
than other SNPs.
Goh et al. reported that most (78%) disease genes re-

corded in Online Mendelian Inheritance in Man are not
essential genes critical for survival, and these disease
genes are less likely to be housekeeping genes that ex-
press in all tissues [22]. We then test whether our multi-
morbidity genes behave similarly or differently. Here, we
obtain 2852 essential genes, which are human orthologs
of mouse genes whose disruptions are embryonically or
postnatally lethal (see “Methods”). We find that only
17% of the disease genes and 17% of the multimorbidity
genes are essential genes (Fig. 3c), although the disease
genes and the multimorbidity genes are more enriched
in essential genes (P values = 2.9e−38 and 8.8e−15, re-
spectively). Essential genes are reported to have a ten-
dency to encode hub proteins in the human interactome
and play important roles in maintaining normal develop-
mental and/or physiological functions [22]. These results
indicate that most multimorbidity genes are functionally
peripheral in the human interactome, and their muta-
tions are compatible with survival into reproductive
years so that these multimorbidity phenotypes are pre-
served in a population. Although most multimorbidity
genes are not essential genes, we observe a higher
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probability of loss of function intolerances (pLIs) for
multimorbidity genes, compared to other disease genes
as well as non-disease genes (P values = 0.01 and 3.6e
−11, respectively, t test; Fig. 3d). Removing the essential
genes, this trend remains unchanged, suggesting that the
higher pLIs distribution of multimorbidity genes is not
just due to the essential genes (Additional file 2: Fig. S5).
To examine whether multimorbidity genes tend to be
housekeeping genes, we summarize the number of tis-
sues each gene is expressed in based on the gene expres-
sion data of 53 tissues in GTEx [30]. We find that
multimorbidity genes tend to be expressed in more tis-
sues, compared to other disease genes and non-disease
genes (P values = 4.7e−4 and 8.1e−44, respectively, two-

sided Mann–Whitney U test; Fig. 3e). Considering the
high pleiotropy of HLA regions, we recalculate the prop-
erties of the multimorbidity genes after removing the
HLA variants. In this case, we find that multimorbidity
genes are still mostly nonessential, and they still tend to
have higher pLIs (P values = 0.04 and 2.9e−10) and ex-
press in more tissues (P values = 4.4e−3 and 1.2e−32)
compared with other disease genes and non-disease
genes (Additional file 2: Figs. S4C, S4D, S4E). As a re-
sult, we consider that multimorbidity genes are import-
ant for normal biological mechanisms, though most of
them are not essential for survival, and disrupted multi-
morbidity genes may have clinical consequences affect-
ing slightly more tissues than other genes.

Fig. 3 Characteristics of the genetic components shared by multimorbidities. a The ratios of SNPs located in genic region, intergenic region, and
noncoding RNA region for multimorbidity SNPs, other disease SNPs, and non-disease SNPs. b CADD score distributions for multimorbidity SNPs,
other disease SNPs, and non-disease SNPs. c Overlaps between multimorbidity genes and essential genes, and between disease genes and
essential genes. d The pLI distributions of multimorbidity genes, other disease genes, and non-disease genes. e The ratios of genes expressed in
certain numbers of tissues, for multimorbidity genes, other disease genes, and non-disease genes. f Top ten pathways that are shared by the
largest numbers of multimorbidities

Dong et al. Genome Medicine          (2021) 13:110 Page 12 of 20



For the network-level genetic components, the genes
involved in the top 10 PPIs shared by the most numbers
of multimorbidities are significantly enriched in GO
terms related to biological processes of gene silencing
and protein metabolism (localization, acetylation, ubi-
quitination, and catabolism) (see “Methods”). These 10
PPIs account for 18% of the multimorbidities interpret-
able through PPIs. Moreover, as shown in Fig. 3f, the
top 10 pathways shared by the largest numbers of multi-
morbidities are predominantly immune-related pro-
cesses and correspond to 56% of the multimorbidities
interpretable through pathways. Most of the multimor-
bidities interpretable through these 10 top pathways are
autoimmune or inflammatory diseases, such as J45
(Asthma), K20 (Oesophagitis), M06 (Other rheumatoid
arthritis), L40 (Psoriasis), and E10 (Insulin-dependent
diabetes mellitus). The findings based on the network-
level genetic components suggest a phenomenon that a
significant portion of genetically interpretable multimor-
bidities may converge on a handful of biological mecha-
nisms, with the most common mechanisms related to
cell immunity, gene silencing, and protein metabolism.
This phenomenon is further supported by the loci-level
genetic components: the top 10 genes can interpret as
much as 41% of the gene interpretable multimorbidities
and are enriched in immune-related GOs, such as “inter-
feron gamma mediated signaling pathway,” “antigen pro-
cessing and presentation of peptide antigen,” and
“regulation of T cell mediated cytotoxicity.” Moreover,
after removing HLA-region SNPs, we still observe that a
few genetic components can interpret many multimor-
bidities (the top 10 SNPs, genes, PPIs, and pathways can
interpret 23%, 30%, 15%, and 34% of multimorbidities
interpretable through SNP, gene, PPI, and pathway, re-
spectively). The top enriched GO terms by the genes
and PPIs are “protein localization to chromosome telo-
meric region” and “beta-catenin-tcf complex assembly,”
and the top enriched pathways are “rna pol i rna pol iii
and mitochondrial transcription” and “meiosis” (Add-
itional file 2: Fig. S4F).

“Hub” disease-mediated genetically interpretable
multimorbidity modules
The fact that a small number of genetic components can
interpret a large portion of the genetically interpretable
multimorbidities, inspires us to examine whether the
“small world” property exists in these genetically inter-
pretable multimorbidities. Therefore, we construct two
multimorbidity networks by connecting multimorbid
diseases that share the loci-level genetic components
(denoted as the LG network) and the network-level gen-
etic components (denoted as the NG network), respect-
ively. As expected, for the LG and NG networks, their
node degrees follow the power law distribution

(Additional file 2: Fig. S6), and they have the attributes
of small worldness based on the average clustering coef-
ficients and average shortest path lengths (sigma = 1.15
and 1.03, respectively; see “Methods”). In previous sec-
tions, we have shown that many of the inter-category
multimorbidities are mediated through hub diseases.
Given the “small world” properties of the LG and NG
networks, we hypothesize that there are multimorbidity
modules in the two networks, possibly featured by hub
diseases and specific genetic components. In order to
test this hypothesis, we perform network decomposition
to detect multimorbidity modules by the Louvain algo-
rithm [39].
We first arbitrarily define nodes (diseases) con-

nected with more than 25% of all nodes in each net-
work as “universal hub diseases.” It is not appropriate
to assign the “universal hub diseases” into any single
multimorbidity module, as each module usually con-
tains far fewer than 25% of all nodes. Seven and thir-
teen “universal hub diseases” are found for the LG
network and the NG network, respectively (Fig. 4,
Additional file 3: Table S8). These “universal hub
diseases” are usually known to co-occur with many
diseases. For example, I10 (Essential (primary) hyper-
tension) connect to 235 (80%) diseases in the NG
network and is well known for having heavy multi-
morbidity burdens [53].
Next, based on the remained nodes that are not “uni-

versal hub diseases,” we have detected 11 multimorbidity
modules for the LG network and 10 multimorbidity
modules for the NG network (Modularity Q = 0.40 and
0.32, respectively) (Fig. 4a, b, Additional file 3: Tables
S9, S10). Overall, the module sizes (number of nodes in
a module) range from 2 to 49, and the LG and NG net-
works have 8 and 9 multimorbidity modules whose sizes
are larger than 5, respectively. Each multimorbidity
module is assigned with “featured categories,” which are
the categories that the diseases in this module signifi-
cantly overrepresent (Fisher exact test, adjusted P values
< 0.05, FDR corrected). Within each module (size > 5), if
more than half of the within-module edges can be medi-
ated by three or less top-degree diseases, we define them
as “local hub diseases” of the module. As shown in
Table 2, we have identified “featured categories” for all
multimorbidity modules in the LG and NG networks,
and “local hub diseases” for 7 and 7 multimorbidity
modules in the LG and NG networks, respectively. We
find that most local hub diseases belong to the featured
categories of their modules, highlighting the prevalence
of genetically interpretable multimorbidities within the
same physiological system. Nonetheless, most modules
have more than one featured category, showing that gen-
etically interpretable multimorbidities are not limited by
physiological boundaries.
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We next describe several cases to illustrate how the
network and module structures can help us understand
the genetics underlying the large numbers of

multimorbid relationships. First, some categories are
consistently grouped together in modules. In both net-
works, we identify modules that feature the “Male

Fig. 4 Loci-level (a) and network-level (b) genetically interpretable multimorbidity networks. a, b Each circle represents a disease. Colors of the
circles (diseases) correspond to the categories of the diseases. “Universal hub diseases” are located at the center of each network, and diseases
that belong to the same multimorbidity module are grouped close to each other. For each module, the featured categories are annotated. The
black borders of the nodes indicate that they are the local hub diseases of the multimorbidity modules. Diseases that belong to neither universal
hub diseases nor a multimorbidity module are not included in this figure
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genital organs-Urinary,” the “Dermatological-Neoplasm,”
and the “Neurological-Spine” categories, confirming the
genetic associations between the involved multimorbid-
ities from multiple genetic levels (Table 2). Second,
modules can help distinguish different multimorbidity
tendencies and the corresponding genetic mechanisms
among diseases of the same category. In the LG network,
the “Neoplasm” category is in two modules—LG-mod-
ule2 (“Male genital organs-Neoplasm-Urinary”) and LG-
module8 (“Dermatological-Neoplasm”). Neoplasm dis-
eases in LG-module2 are mainly prostate (C61), bladder
(C67), urinary organs (D41), and intestinal (C18, C19;
C20) cancers, while neoplasm diseases in LG-module8
are all skin cancers (C43, C44, D04) (Fig. 5a, Additional
file 3: Table S9). Except for TERT and CLPTM1L, genes
shared by neoplasm diseases and other diseases in the
two modules are different, reflecting diverse mechanisms
underlying neoplasms of different tissues and their mul-
timorbidities. Third, hub diseases may provide a new

perspective for understanding multimorbidities among
diseases from different categories. For example, as
shown in Fig. 5b, the “Psychiatric” disorder F17 (Mental
and behavioral disorders due to use of tobacco) is a hub
disease of LG-module5 (“Cardiovascular-Respiratory”)
and is multimorbid with 5 respiratory diseases (emphy-
sema (J43), pyothorax (J86;J93), respiratory failure (J96),
chronic obstructive pulmonary disease (COPD, J42;J44),
pneumonia (J18)), 3 cardiovascular diseases (atheroscler-
osis (I70), aortic aneurysm and dissection (I71), periph-
eral vascular diseases (I73)), and neoplasm disease of
lung cancer (C34). The most common genes shared by
these multimorbidities are IREB2 and CHRNA3, located
in 15q25, a well-known region for association with
COPD, lung cancer, and smoking [54]. IREB2 encodes
an iron-responsive element-binding protein (IRP) that
regulates the iron metabolism [54]. CHRNA3 encodes
the neuronal nicotinic acetylcholine receptor, and its
mutation is associated with lung function and COPD

Table 2 Genetically interpretable multimorbidity modules and their hub diseases

Multimorbidity
modulea

Module
size

Featured categories Hub diseases

LG-module1 33 Neurological-Spine Obesity (E66) | Dorsalgia (M54)

LG-module2 33 Male genital organs-
Neoplasm-Urinary

Hyperplasia of prostate (N40) | Other disorders of urinary system (N39) | Other disorders of
bladder (N32)

LG-module3 31 Gastrointestinal-
Immunological

/

LG-module4 29 Endocrine-Hematological-
Ophthalmological

Angina pectoris (I20) | Chronic renal failure (N18) | Pulmonary embolism (H26)

LG-module5 20 Cardiovascular-Respiratory Mental and behavioral disorders due to use of tobacco (F17) | Other chronic obstructive
pulmonary disease (J42;J44) | Pneumonia, organism unspecified (J18)

LG-module6 16 Hepatobiliary pancreas Cholelithiasis (K80) | Fibrosis and cirrhosis of liver (K74) | Other diseases of liver (K76)

LG-module7 14 Joint Phlebitis and thrombophlebitis (I80) | Other arthrosis (M19) | Gonarthrosis [arthrosis of knee]
(M17) | Other soft tissue disorders, not elsewhere classified (M79) | Pulmonary embolism
(I26)

LG-module8 10 Dermatological-Neoplasm Other malignant neoplasms of skin (C44)

NG-module1 49 Bone-Joint-Muscular-
Neurological-Spine

/

NG-module2 41 Hematological-Infectious /

NG-module3 39 Male genital organs-
Urinary

Hyperplasia of prostate (N40) | Other disorders of urinary system (N39)

NG-module4 33 Cardiovascular-
Ophthalmological

Mental and behavioral disorders due to use of tobacco (F17) | Insulin-dependent diabetes
mellitus (E10) | Acute myocardial infarction (I21;I22) | Other systemic involvement of con-
nective tissue (M35)

NG-module5 27 Gastrointestinal Diaphragmatic hernia (K44) | Gastritis and duodenitis (K29) | Other diseases of digestive
system (K92) | Other diseases of anus and rectum (K62)

NG-module6 12 Hepatobiliary pancreas Cholelithiasis (K80)

NG-module7 10 Female genital organs Carcinoma in situ of cervix uteri (D06;N87) | Excessive, frequent and irregular menstruation
(N92) | Female genital prolapse (N81)

NG-module8 9 Dermatological-Neoplasm Other malignant neoplasms of skin (C44)

NG-module9 6 Ear, Nose, Throat Nasal polyp (J33)
aThe “LG-module” and “NG-module” denote the multimorbidity modules identified by the Louvain algorithm in the LG-network and NG-network, respectively. The
LG-network is constructed by connecting the multimorbid diseases that share the loci-level genetic components, and the NG-network is constructed by
connecting the multimorbid diseases that share the network-level genetic components
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severity in ever-smokers [55]. Though there are many
other possible pathways individually associated with the
above diseases, our analysis indicates that iron metabol-
ism and the neuronal nicotinic acetylcholine receptor
pathways may be the top candidates to examine when
study the multimorbidities of these diseases with F17.
Lastly, “universal hub diseases” connect to multiple

modules, sometimes through different genetic compo-
nents. In the NG network, the universal hub disease E66
(Obesity) have multiple connections to NG-module1
(“Bone-Joint-Muscular-Neurological-Spine”) and NG-
module6 (“Hepatobiliary pancreas”) (Fig. 4b). Pathways
shared by obesity and “Hepatobiliary pancreas” diseases
are mostly related to the lipoprotein metabolism, such as

Fig. 5 Case studies for genetically interpretable multimorbidity networks. a–c Circles, triangles, and squares represent diseases, genes, and
pathways, respectively. Colors of the circles (diseases) correspond to the categories of the diseases, following the same color codes as in Fig. 1. a
Multimorbidities of neoplasms and their shared genes in LG-module2 and LG-module8. b Multimorbidities of the hub disease F17 (Mental and
behavioral disorders due to use of tobacco) in LG-module5, and their shared genes. c Pathways shared by the universal hub disease E66 (Obesity)
and its multimorbidities in NG-module1 and NG-module6. Only the top 5 pathways shared by the largest numbers of multimorbidities are shown
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“lipid digestion mobilization and transport,” “fatty acid
triacylglycerol ketone body metabolism,” “cytosolic sul-
fonation of small molecules,” and “mitochondrial protein
import,” while also related to biological oxidations, myo-
genesis etc. (Fig. 5c). In comparison, pathways shared by
obesity and “Bone, Joint, Muscular, Neurological, Spine”
diseases from NG-module1 are mostly related to im-
munity, cell adhesion, and transcription. In summary,
the genetically interpretable networks and modules can
provide insights through hub diseases for understanding
the molecular mechanisms underlying multimorbidities
and may help prioritize target genes and pathways for
designing new treatment.

Discussion
In this study, we have profiled the multimorbid rela-
tionships among the common diseases in the UKB
and systematically investigated the genetic risks
shared by multimorbidities. We report an atlas of 11,
285 multimorbid disease pairs among 438 common
diseases, which is by far the largest in scale. We find
that 46% of the multimorbidities with available gen-
etic information share genetic components in at least
one of the three levels—loci, network, or overall gen-
etic architecture, and show that multimorbidities af-
fecting the same and different physiological systems
tend to share different levels of genetic components.
Functional analyses show that the loci-level genetic
components shared by multimorbidities tend to be
deleterious (for SNPs) and affect multiple tissues (for
genes), and both loci- and network-level genetic com-
ponents mainly converge on cell immunity, protein
metabolism, and gene silencing related functions. We
have also constructed two multimorbidity networks of
genetically interpretable multimorbidities and show
that hub diseases mediating the majority of within-
module connections can provide useful insights into
the genetic contributors for multimorbidities affecting
different physiological systems. Therefore, our results
provide a detailed multimorbid and genetic landscapes
of common diseases, which may be valuable for guid-
ing the early diagnosis, management, and treatment
of multimorbidities.
Our results highlight shared genetic predispositions or

mechanisms underlying multimorbidities, which may
provide useful information for drug discovery. Theoret-
ically, it is plausible to repurpose existing drugs that tar-
get the shared genetic components of a pair of
multimorbid diseases, to treat the multimorbidity of the
two diseases. In an exploratory test, we are able to iden-
tify 8458 drug-multimorbidity relationships where the
drugs are known to target the multimorbidity genes
(Additional file 3: Table S11). Interestingly, some of
these drugs have been indeed used in the population

with the corresponding multimorbidities. For example,
the gene EDNRA, a known target of aspirin, is shared by
the multimorbidity of I20 (Angina pectoris) and
I25(Chronic ischaemic heart disease), and we find that
65% of the people suffering from both diseases report
usage of aspirin in the UKB. Moreover, the indication of
aspirin for I20 (Angina pectoris) and I25 (Chronic is-
chaemic heart disease) individually have been reported
by the Comparative Toxicogenomics Database (CTD;
http://ctdbase.org/; Additional file 3: Table S11) [56]. Be-
sides this encouraging case, we also find a surprising
case concerning Lansoprazole, a drug that targets
MAPT, a gene shared by the multimorbidity of E66
(Obesity) and J84 (Other interstitial pulmonary diseases).
16.7% of the people suffering from both diseases used
lansoprazole according to the UKB. We find the indica-
tions of lansoprazole only include E66 (Obesity) in CTD
(Additional file 3: Table S11) [56], but lansoprazole was
reported to be able to induce interstitial lung disease
[57], suggesting that some patients with the multimor-
bidity of E66 (Obesity) and J84 (Other interstitial
pulmonary diseases) could be due to the use of lansopra-
zole. Though very preliminary, these initial results shed
light on the possibility that our resource of multimorbid-
ities and their shared genetic components may help with
drug discovery as well as avoid severe side-effects for
treating multimorbidities in the future.
We have found a significant correlation between the

number of genes associated with a disease and the num-
ber of its multimorbidities (r = 0.44, P value = 2.4e−17,
Pearson correlation). Notably, as much as 1970 out of
the 8218 (24%) multimorbidities have significant genetic
correlations, supporting the polygenic architecture of
complex diseases, while nearly half of them cannot be
readily interpretable at either the loci or the network
level (Additional file 2: Fig. S7). This indicates unidenti-
fied genetic information within the genetic architecture
that may require further investigation, such as the copy
number variants (CNVs). CNVs are the structural
chromosomal variants greater than 1 kb in size, and usu-
ally have dosage effects on genes. Several common dis-
eases have been reported to be associated with rare
CNVs, such as autism and schizophrenia [58, 59]. In
addition, we find that genetic correlation is positively
and significantly correlated with RR (r = 0.39, P value =
1.9e−72, Additional file 2: Fig. S8A), and with phenotype
similarity of multimorbid diseases (r = 0.22, P value =
0.03, Additional file 2: Fig. S8B, phenotype similarity
pre-calculated by van Driel et al. [60]). Phenotype simi-
larity and RR also have a positive and significant correl-
ation (r = 0.27, P value = 1.5e-8, Additional file 2: Fig.
S8C). These results suggest that genetic architecture
might interpret multimorbidities by contributing to simi-
larities in symptoms.
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One possible limitation with our study is the sample
size. Though the overall sample size is not small, there
are not many cases for each disease or each multimorbid
disease pair. As such, we may fail to identify some multi-
morbid disease pairs that are disproportionally repre-
sented in our dataset. Also, the GWAS analyses might
miss variants with very small effects. Nevertheless, our
study is the first and largest study that combines the epi-
demiological and genetic information of the same sub-
jects to explore the genetic components underlying
multimorbidities. The matched phenotype and genotype
data makes our results less affected by population-
related confounding factors. Based on our current find-
ings, one interesting future direction is to integrate more
samples from other studies and incorporate more types
of data, such as the medical images and the quantitative
traits, in order to analyze the endophenotypes that
bridge disease pairs and deepen our understanding of
the mechanisms of multimorbidities.

Conclusions
In summary, we have performed, for the first time, a sys-
tematic analysis of multimorbid relations among com-
mon diseases as well as their shared genetic components
based on the matched epidemiological and genetic data
of the same subjects from the UKB. Our results illustrate
the multimorbidity tendency and the genetic association
patterns of multimorbidities of intra- and inter-
physiological systems and indicate that the hub diseases
and converged biological molecules and functions may
be the key for managing multimorbidities. We have cre-
ated an online database that facilitates researchers and
physicians to browse, search, or download these multi-
morbidities (https://multimorbidity.comp-sysbio.org).
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