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Abstract

Background: The interleukin (IL)-1 pathway is primarily associated with innate immunological defense and plays a
major role in the induction and regulation of inflammation. Both common and rare genetic variation in this
pathway underlies various inflammation-mediated diseases, but the role of rare variants relative to common variants
in immune response variability in healthy individuals remains unclear.

Methods: We performed molecular inversion probe sequencing on 48 IL-1 pathway-related genes in 463 healthy
individuals from the Human Functional Genomics Project. We functionally grouped common and rare variants, over
gene, subpathway, and inflammatory levels and performed the Sequence Kernel Association Test to test for
association with in vitro stimulation-induced cytokine responses; specifically, IL-1β and IL-6 cytokine measurements
upon stimulations that represent an array of microbial infections: lipopolysaccharide (LPS), phytohaemagglutinin
(PHA), Candida albicans (C. albicans), and Staphylococcus aureus (S. aureus).

Results: We identified a burden of NCF4 rare variants with PHA-induced IL-6 cytokine and showed that the
respective carriers are in the 1% lowest IL-6 producers. Collapsing rare variants in IL-1 subpathway genes produces
a bidirectional association with LPS-induced IL-1β cytokine levels, which is reflected by a significant Spearman
correlation. On the inflammatory level, we identified a burden of rare variants in genes encoding for proteins with
an anti-inflammatory function with S. aureus-induced IL-6 cytokine. In contrast to these rare variant findings which
were based on different types of stimuli, common variant associations were exclusively identified with C. albicans-
induced cytokine over various levels of grouping, from the gene, to subpathway, to inflammatory level.
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Conclusions: In conclusion, this study shows that functionally grouping common and rare genetic variants enables
the elucidation IL-1-mediated biological mechanisms, specifically, for IL-1β and IL-6 cytokine responses induced by
various stimuli. The framework used in this study may allow for the analysis of rare and common genetic variants in
a wider variety of (non-immune) complex phenotypes and therefore has the potential to contribute to better
understanding of unresolved, complex traits and diseases.

Keywords: Rare variants, SKAT, Common variants, Region-based analysis, Interleukin-1 pathway, Immunological
mechanisms, Systems biology

Background
The innate immune system is our first line of defense
against invading pathogens and is shaped by a well-
maintained balance in stimulatory and inhibitory mecha-
nisms [1]. The interleukin (IL)-1 family of cytokines and re-
ceptors is primarily associated with innate immunity and
plays a major role in the induction and regulation of host
defense and inflammation [2]. The IL-1 family comprises
pro-inflammatory cytokines (e.g., IL-1α/β, IL-36α/β/γ),
anti-inflammatory cytokines (e.g., IL-37, IL-38), activating
receptors (e.g., IL1-R1, IL-36R), decoy receptors (e.g., IL-
1R2, IL-18BP), and additional regulators, kinases, and
phosphatases that together are responsible for the IL-1-
mediated response [3]. Next to core IL-1 family effectors,
members of the inflammasome and autophagy pathway are
important contributors to the regulation of IL-1-induced
inflammation. For instance, activation of the inflammasome
allows for cleavage and activation of CASP-1, with subse-
quent activation and release of pro-inflammatory cytokines
IL-1β and IL-18. Conversely, autophagy is able to directly
inhibit the inflammatory response by removing inflamma-
some components and damaged mitochondria [4].
Defects in IL-1 pathway signaling and its specific

members have been linked to various inflammation-me-
diated diseases [2, 5, 6]. Generally, the clinical presentation
of dysregulated activity of the IL-1 pathway is clearly ex-
plained by the causal genetic defect. For example, patients
with CAPS (cryopyrin associated periodic syndromes)
present with excessive innate inflammation exacerbations
that appear to be caused by an activating mutation in
NLRP3 resulting in an overproduction of IL-1β [5]. In an-
other example, deleterious mutations in IL1RN were
underlying excessive IL-1α/β activity in patients with
DIRA (deficiency of IL-1 receptor antagonist [7]. Con-
trastingly for some diseases, like adult-onset Still’s Disease
(AoSD), Behcet’s disease, and Schnitzler disease, only sub-
sets of patients have presented with mutations in related
genes [7]. Taken together, this underlines the observation
that no causal genetic defect has been identified that ex-
plains all patients, despite clinical similarities with other
inflammation-mediated diseases, like CAPS.
While the IL-1 pathway has been associated with

disease, not much is known about genetic factors that
can explain immune variability in healthy individuals. In

general, immune responses are highly variable between
individuals. Determining the genetic factors that underlie
these variations in immunological response could be in-
strumental in the generation of targeted hypotheses for
genetic studies in inflammatory diseases that are outside
the spectrum of healthy immune variability. For this
reason, in the past few decades, various studies have
assessed the separate and shared contribution of host
and environmental factors to an immunological response
after a specific stimulus [8–12]. However, a considerable
percentage of “healthy immune response variation”
between individuals remains unexplained, with one im-
portant shortcoming being that most studies to date
have focused on common genetic variants. Unfortu-
nately, this has left the impact of rare or private variants
on healthy immune variability poorly understood. With
recent advancements in sequencing technologies, the
ability to study the role of rare variants has remarkably
improved, and its value has been proven in several
studies. Increasing evidence shows that variability in
phenotypic presentation can be explained by an interplay
between variants of variable frequencies [13, 14], or ag-
gregation of genetic variants in genes underlying dysreg-
ulated biological mechanisms, or even over genes that
are more distantly involved [15]. The relatively small-to-
moderate effects of common variants can be significantly
modified by the presence or absence of (multiple) rare
variants [16]. We therefore hypothesize that studies on
the genetic basis of inflammatory diseases or healthy im-
mune variability might also benefit from these concepts.
In this study, we aimed to identify and characterize

rare and common genetic variants in 48 genes related to
the IL-1 pathway-mediated immune response and deter-
mine their impact on the inter-individual variability of
cytokine responses in healthy individuals. A complete
overview of the study workflow can be found in Fig. 1.

Methods
Study cohort
Cohort characteristics
The study was conducted using healthy individuals from
the Human Functional Genomics Project (HFGP; 500FG
cohort) [17]. The entire 500FG cohort consists of 534
healthy individuals from the Netherlands (296 females

van Deuren et al. Genome Medicine           (2021) 13:94 Page 2 of 17



Fig. 1 Flowchart of the study. Figure orientation from top to bottom. a Blood was extracted from 520 healthy individuals on which (b) extensive
immunophenotyping was performed and simultaneously (c) molecular inversion probe sequencing data was produced from the coding regions
of 48 Interleukin-1 pathway-related genes. d The resulting cytokine production after stimulation was measured and log-transformed prior to
analysis. e The identified variants were grouped over three different levels into sets based on gene-encoded protein function: I. Gene level, with
48 genes; II. Subpathway level, grouping genes into 6 subpathways that represent an immunological cascade in the IL-1-mediated inflammatory
response; and III. Inflammatory level, with two groups that distinguish between pro- and anti-inflammatory roles of the respective gene-encoded
proteins. f Variants within each set were appropriately weighed based on minor allele frequency (MAF), and common and rare variants were
classified based on cohort allele frequency (AF) threshold of 5%. g Finally, variant analysis was performed by the Sequence Kernel Association
Test (SKAT) on only common variants (I.SKAToC); common and rare variants combined (II.SKATjoint); and only rare variants using the best
combination of the SKAT and burden test (III.SKATO)
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and 237 males) with an age range 18–75, from which we
were able to obtain DNA from 520 individuals for
sequencing. For more details on cohort characteristics,
see previous publications on the 500FG cohort [8, 9, 11].

Immunophenotyping
Here, we made use of the publicly available extensive
immunophenotyping data that was generated as part of
the Human Functional Genomics Project [18]. Specific-
ally, interleukin-1β (IL-1β) and interleukin-6 (IL-6)
production by whole blood (consisting mainly of poly-
morphonuclear cells (PMNs)) from 471 individuals,
stimulated with either lipopolysaccharide (LPS, 100 ng/
mL), phytohaemagglutinin (PHA, 10 μg/mL), heat-killed
Candida albicans (C. albicans 106 CFU/mL), or
Staphylococcus aureus (S. aureus 1 × 106/mL). A detailed
description of these experiments can be found elsewhere
[9]. In brief, blood was drawn from participants and
100 μL of heparin blood was stimulated with 400 μL of
stimulus, subsequently incubated for 48 h at 37 °C and
5% CO2 and supernatants were collected and stored in −
20 °C until cytokine measurements were performed by
ELISA. Cytokine production by whole blood (consisting
of a mix of immune cell subtypes) is most comparable
to the in vivo situation, as the cross-regulation between
different cell types is very important in determination of
the final immune response. The investigated stimuli
were chosen as representatives for an array of microbial
infections, specifically, LPS is expressed on the bacterial
cell wall of Gram-negative bacteria, PHA is synthesized
by Bacillus Rhodococcus and Pseudomonas species, and
C. albicans and S. aureus are major invading pathogens
representative of fungi and Gram-positive bacteria,
respectively.

Sequencing
MIP panel design
We sequenced all coding exons of 48 genes of the IL-1
pathway in 520 healthy individuals by Molecular Inver-
sion Probe (MIP) sequencing, a targeted resequencing
technology that allows for the identification of both
common and rare genetic variation in regions of interest.
A detailed description of MIP probe design and sequen-
cing methods can be found elsewhere [19–21]. In short,
1285 MIP probes were designed to cover all coding
exons of 48 genes related to the IL-1 pathway and
sequencing was performed using the Illumina NextSeq500
system. These 48 IL-1 pathway-related genes were chosen
for their effector (e.g., IL1A/B, IL36A/B/G, IL38), regulatory
(e.g., IL1RN, IL18BP), and modulatory (e.g., NLRP3, NCF4,
ATG16L1) roles in the innate immune response. They can
be further functionally subclassified into six subpathways
that represent a specific modulatory mechanism or im-
munological cascade in the IL-1-mediated inflammatory

response: IL-1 subpathway, IL-18 subpathway, IL-30s
subpathway, inflammasome, reactive oxygen species (ROS)
production, and autophagy. In addition, distinguishing be-
tween pro- and anti-inflammatory roles of the respective
gene-encoded proteins resulted in a third sub-classification
of two inflammatory groups. A full explanation on the sub-
classifications can be found in Additional file 1: Table S1.

Data processing
A carefully developed filtering pipeline, validated by
Sanger sequencing, was applied to ensure high sensitivity
and specificity in our final variant set. First, the reads
were aligned using BWA-MEM [22] and subsequently
filtered on Mapping Quality ≥ 60, no soft-clipping,
properly paired and less than five mismatches from the
reference per read, with the exception of multi-basepair
insertions and deletions. Variants were then called using
the Genome Analysis Toolkit (GATK) unified genotyper
[23], which uses a Bayesian genotype likelihood model
to estimate the most likely genotypes. Rare variants (here
defined as absent in dbSnp build 150 common [24], or
defined as rare by our custom annotator as explained
below), were further filtered on the QUAL parameter ≥
1000 in the vcf. Additionally, the percentage of alterna-
tive alleles for each variant position was determined
using samtools mpileup [25], with maximum read depth
10,000, no BAQ, a minimal mapping quality of 20, and a
minimal base quality of 30. Homozygous rare variants
required an alternative allele percentage of ≥ 90%,
heterozygous an alternative allele percentage of ≥ 25%
and < 90%, and an alternative allele percentage of < 25%
was considered false positive. The final variant set was
annotated using our custom annotator, which makes use
of several annotation sources, among others the Variant
Effect Predictor from Ensembl [26], Combined Annota-
tion Dependent Depletion score [27], SpliceAI [28], and
several population-based variant databases (e.g., dbSnp,
ExAc and gnomAD [29]) and an “inHouse” database
consisting of > 25,000 clinical exomes run at the diag-
nostic division of the Department of Human Genetics of
the Radboud University Medical Center (Radboudumc).
We used within-cohort allele frequencies (AFs) to separ-
ate rare and common variants, based on a common vari-
ant cut-off of ≥ 5%. Samples with an average coverage
depth of all MIPs ≥ 100× were included for analysis.

Variant analysis
Continuous trait analysis
A rare variant burden analysis (RVBA) was performed
on the log-transformed cytokine levels by using the
Sequence Kernel Association Test (SKAT) [14, 30] in R
version 3.5.2. The SKAT is a kernel-based test method
that aggregates weighted individual variant-score test
statistics while allowing variant-variant interactions and
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is extremely powerful when a genetic region has both
protective and deleterious variants or many non-causal
variants [14, 30, 31]. The SKAT was performed over
three levels of grouping: (I) gene level, where all variants
in a gene region are combined into a set (Fig. 1e.I), (II)
subpathway level, where all variants in genes that belong
to the corresponding subpathway are combined into a
set (Fig. 1e.II), and (III) inflammatory level, where based
on gene-encoded protein function genes are classified
with either a pro- or anti-inflammatory phenotype and
all variants from genes in either groups are combined
into a set (Fig. 1e.III). All variant sets were pruned for
linkage disequilibrium (LD) based on within-cohort met-
rics and the commonly used R2 cut-off of > 0.8, using
the snpStats package in R [32]. For each region, we used
the SKAT_CommonRare function with default weights
to determine the effect of only common (I.SKAToC) and
combined common and rare variants (II.SKATjoint), and
the SKAT-O algorithm with default weights (III.SKATO)
to determine the effect of only rare variants, where com-
mon and rare variant classification was based on a co-
hort MAF of 5% (Fig. 1f,g). The SKAT-O algorithm uses
a linear combination of the SKAT and Burden Test,
making it slightly more powerful than the “normal”
SKAT when rare variants in a set are truly causal or in-
fluencing the phenotype in the same direction [31].
SKATO accompanying rho-values can be used to assess
the contribution of SKAT versus Burden Test for signifi-
cant sets, reflecting the proportion of bi- and unidirec-
tionality of an association. In the case of rare and joint
tests, output based on > 1 variant was considered, and in
the case of joint tests, the presence of both rare and
common variants in the set was an additional require-
ment. P values were Bonferroni-adjusted for each previ-
ously defined test separately, based on the number of
groups tested within one level of grouping for each
cytokine. For data wrangling and visualizations, we used
a variety of R packages, e.g., dplyr, reshape2, ggplot2,
scales, ggpubr, ggrepel, hash, ggpmisc, and devtools, all
of which are freely available online [33, 34].

Validation
We applied stringent Bonferroni adjustment within each
analysis group; due to this stringency, we did not apply
additional corrections over the different grouping levels
(i.e., gene level, subpathway level, inflammatory-phenotype
level), nor for the different variant frequency tests (i.e.,
SKAToC, SKATjoint, SKATO). Instead, we performed 10,
000 permutations on all of our significant results to pro-
vide additional substantiation for our findings, using the
resampling option built into the SKAT package with
method “bootstrap.”
In addition, to rule out possible detection bias

concerning rare variants due to gene size, gene-specific

coverage or sequencing context, we retrospectively
assessed the association between synonymous variants
and cytokine production upon stimulation, and similarly
applied Bonferroni adjustment based on the number of
groups tested within one level of grouping for each cyto-
kine separately.
Finally, we performed a binary association analysis on

outlier individuals, here defined as extreme cytokine
producers. As research has shown that individuals with
outlier expression patterns are likely to be enriched in
rare variants [35, 36], we hypothesized that outlier indi-
viduals with extreme cytokine levels could similarly be
enriched in rare variants in specific genes, thereby favor-
ing the identification of stimulus-specific mechanisms.
For this purpose, we defined for each cytokine stimulus,
the 1% extreme cytokine producers (rounded up, so gen-
erally ± 5 individuals), resulting in two groups that were
subjected to binary trait association. Specifically, for each
cytokine-stimulus combination, the SKATO was applied
twice: (1) 1% highest cytokine producers versus all other
individuals, and (2) 1% lowest cytokine producers versus
all other individuals. In two cases, C. albicans-induced
IL-1β production low-producers and LPS-induced IL-6
production high-producers, no distinctive categories
could be created due to equal cytokine measurements at
the 1% cut-off, and as such, the groups were extended to
7 and 9 respectively. Bonferroni adjustment based on
the number of groups tested within one level of group-
ing for each cytokine separately was applied.

Follow-up of significantly associated sets
In order to give meaning to our detected associations,
we extracted the residual (corrected for covariates age
and sex) cytokine production from the SKAT null-
model and correlated those to the genotype categories,
where applicable. For set-based unidirectional rare
variant associations, we correlated the residual cytokine
production to rare variant carrier status, whereas for bi-
directional associations, we calculated a set-based allelic
score based on the rare variants from the respective set.
An allelic score is a way to collapse multidimensional
genetic data associated with a risk factor into a single
variable [37]. We slightly adapted the allelic score calcu-
lation to our SKAT-based test results, into a weighted
(using the Beta.Weights function from SKAT package),
directional (increasing or decreasing cytokine production
over the genotype categories) allelic score. Specifically,
we inferred the direction of each variant in a set, and
combined this with the computed variant weight, by
inverting the weight only for variants with decreasing
cytokine production over the genotype categories. Geno-
types were converted to dosages and multiplied by their
directional weight, which was summed up to an allelic
score per set of variants. The weighted, directional allelic
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score was plotted in correlation with the residual cyto-
kine production, including a linear regression line using
geom_smooth with method = “lm” with standard error
of 0.95, and non-parametric Spearman R with accom-
panying P value were extracted. Of note, as we are not
able to incorporate variant-variant interactions into our
customized allelic scores, the resulting score will most
likely be slightly weaker as compared to the SKAT out-
put. In the case of common variant associations for sets
≤ 2 variants, we correlated cytokine production to geno-
type categories; homozygous reference, heterozygous,
and homozygous variant genotype. Differences in re-
sidual cytokine production over the genotype categories
were assessed by means of Wilcoxon rank sum test with
Bonferroni adjustment for the three tests performed, a P
value < 0.05 was considered significant. For significant
common variant associations based on sets > 2 variants,
the same customized allelic score was computed based
on all common variants in the respective set.
Additionally, considering accumulating evidence for a

role of non-coding genetic variation in health and dis-
ease [38, 39], we followed up on common coding variant
associations of our study by using the publicly available
genotype data from the 500FG cohort, generated with
the commercially available SNP chip Illumina
HumanOmniExpressExome-8v1.0 (for further details, we
refer to previously published work [9, 40]). We extracted
all common variants (based on cohort AF ≥ 5%) within
NCBI RefSeq “Whole Gene” gene regions and extended
the start position by 50 kB upstream [41] for the
following sets: IL36A, IL38, IL-30s subpathway, pro-
inflammatory, and anti-inflammatory. Variant sets were
pruned for LD as described before, and subjected to the
same SKAT with default weights, to test for association
with continuous IL-1β (n = 428) and IL-6 (n = 425)
cytokine production. We applied Bonferroni adjustment
for the number of sets tested in this follow-up. Signifi-
cant non-coding common variant sets were collapsed
into a set-based weighted, directional allelic score (calcu-
lated as described before) and correlated to residual
cytokine levels. In addition, to evaluate the individual
contribution of non-coding common variants in a set,
we computed per SNP linear models using C. albicans-
induced residual cytokine production as the criterion
variable and the SNP in question as predictor variable.
The individual SNP effect estimates (or Beta-estimates)
were organized by direction and annotated based on
their significance. The predictive capacity of the linear
models, as reflected by the model P value, combined
with the magnitude of the Beta-estimate, were used as
measures for impact of a specific SNP on cytokine
production and as such prioritized rs80339050 for more
in-depth follow-up. To gain insights into effects of non-
coding SNPs, we used a bioinformatic pipeline to map

and analyze transcription factor binding sites within gen-
omic compartments (TADs) using UCSC Genome
Browser, and checked public expression Quantitative
Trait Loci (eQTL) databases for other immune-mediated
correlations of the same variants (https://immunpop.
com) [42].

Results
Study cohort
In this study, we focused on healthy individuals from the
Human Functional Genomics Project (HFGP; 500FG
cohort) [17], by making use of the publicly available
demographic data and stimuli-specific in vitro cytokine
measurements [18]. The sex distribution over 463
included individuals for analysis shows a minor overrepre-
sentation of females as compared to males (male n = 201,
female n = 262), whereas the mean and median age
distribution for these groups separately is comparable
(Additional file 2: Fig. S1A).
In vitro IL-1β and IL-6 cytokine production in whole

blood in response to stimulation with either 100 ng/mL
lipopolysaccharide (LPS), 10 μg/mL phytohemagglutinin
(PHA), heat-killed Candida albicans 106 CFU/mL (C.
albicans), and 1 × 106/mL Staphylococcus aureus (S.
aureus) were likewise evenly distributed between females
and males (Additional file 2: Fig. S1B) and were log-
transformed prior to analysis. Based on the abovemen-
tioned distributions, in combination with the fact that
previous research has shown that age and sex can influ-
ence cytokine responses [8–11], both variables were
included as covariates in our analyses.

Sequencing
Molecular Inversion Probe (MIP) sequencing of all cod-
ing exons of the 48 genes in our IL-1 pathway MIP panel
generated sequencing data from 520 healthy individuals
(for all MIP probes, see Additional file 1: Table S2).
Overlapping sequencing data with the available immu-
nophenotyping data, we managed to obtain a complete
dataset from 463 individuals for analysis. The average
coverage depth for these 463 individuals over all MIPs
was 830× (Additional file 2: Fig. S2). Five genes in our
panel (SIGIRR, PYCARD, CYBA, RAC2, and MAP1LC3A)
were unfavorably covered for more than half of the sam-
ples (< 100× average coverage for the entire coding part of
the gene), and one gene (NCF1) lost all coverage in our
extensive quality filtering due to homology regions and
was therefore excluded from all analyses (Additional file 2:
Fig. S2). Based on gene-encoding protein function and the
immunological cascade in which they are activated, we
classified these 48 genes prior to analysis into (1) six
subpathway groups: IL-1 subpathway, IL-18 subpathway,
IL-30s subpathway, inflammasome subpathway, ROS-
production subpathway and autophagy subpathway; and
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(2) two inflammatory groups: pro-inflammatory and anti-
inflammatory (Additional file 1: Table S1).
Overall, we identified 201 non-synonymous variants in

the coding regions, out of which 35 were common and
166 were rare (based on cohort allele frequencies (AFs)
using a threshold of ≥ 5% for common variants). Our
common variants were pruned for linkage disequilibrium
(LD) prior to analysis, resulting in 26 non-synonymous
common variants and 166 rare variants, of which 18
were novel (i.e., absent from public databases). For a
complete variant list, see Additional file 1: Table S3.

Variant analysis on gene, pathway, and inflammation
levels
The role of rare and common variants on stimuli-
specific cytokine responses was assessed by a rare variant
burden analysis using SKAT. We performed the SKAT
using three different grouping strategies (Fig. 1e and
Additional file 1: Table S1): (I) gene level, where all vari-
ants per gene are combined into a set; (II) subpathway
level, where all variants in genes that belong to the
corresponding subpathway are combined into a set; and
(III) inflammatory level, where based on gene-encoded
protein function genes are classified with either a pro-
or anti-inflammatory phenotype and all variants from
genes in either groups are combined into a set. Each
level was assessed for the role of rare and common
genetic variants in a set on cytokine production. Output
from all SKATs performed in this study can be found in
Additional file 1: Table S4, S5, S6.
We applied Bonferroni correction to all SKAT P values,

and additionally performed a threefold validation to
further substantiate our findings. All of our described
associations persisted when running them with 10,000
permutations (Additional file 1: Table S7). Moreover, for
none of our significant non-synonymous variant SKATO
associations, we observed significant differences upon test-
ing for association with synonymous variants in the same
group level (for a complete synonymous variant list see
Additional file 1: Table S8, for SKAT output, see Add-
itional file 1: Table S9). And finally, we were able to repli-
cate our unidirectional gene level rare variant associations
in extreme cytokine producers (Additional file 1: Table
S10).
We created holistic heatmap overviews termed

“association landscapes,” to summarize rare and com-
mon variant associations, both on the gene and subpath-
way level, in an organized fashion. Figure 2 shows these
landscapes of gene and subpathway level associations for
IL-1β (Fig. 2a) and IL-6 (Fig. 2b) cytokine production by
whole blood, for genes that harbor common or rare vari-
ants contributing to the association only. Figure 3 shows
the inflammatory-level associations for IL-1β (Fig. 3a)
and IL-6 (Fig. 3b) production by whole blood in classic

rectangular heatmaps. Of note, we did not identify com-
bined common and rare variant associations (SKATjoint)
that were absent in testing the rare or common variants
alone and therefore show this data in the supplemental
material only (Additional file 1: Table S4, S5, S6).

NCF4 rare variant carriers present with lower cytokine
production in response to PHA stimulation
Our gene-level analysis significantly associated rare gen-
etic variants in NCF4 with cytokine production of both
IL-1β and IL-6 in response to PHA stimulation (SKATO

adjP value = 0.02 and 2.88E−05 respectively, Fig. 2). The
association with IL-6 cytokine was based on two variants
in two individuals: (1) a splice acceptor variant c.33-
1G>A that has never been observed before, and splice
predictions indicate that the probability that this canon-
ical position is used as a splice acceptor site is decreased
by 98.1%; and (2) a previously described known missense
variant [43], c.478G>A, located in a region that is in-
tolerant to variation [44]. The SKAT rho value of 1, indi-
cated a unidirectional association, which is reflected by
the fact that the individuals carrying these two variants
present with extremely low PHA-induced IL-6 cytokine
production (Fig. 4).
We identified another rare variant association between

LPS-induced IL-6 cytokine production and CASP1
(SKATO adjP value = 3.18E−05, Fig. 2b), based on five
variants in 15 individuals. Our allelic score follow-up
was unable to detect a significant correlation between
age- and sex-corrected (residual) LPS-induced IL-6 cyto-
kine production (Spearman R = 0.08, P value = 0.09),
suggesting that one outlier individual, was driving the
entire association (Additional file 2: Fig. S3A).
Common variants on the gene level were exclusively

associated with the C. albicans in vitro stimulus. Specif-
ically, common variants in IL36A and IL38 were signifi-
cantly associated with the production of both IL-1β and
IL-6 (IL36A SKAToC adjP value = 0.04 and 3.69E−03;
IL38 SKAToC adjP value = 9.16E−03 and 8.21E−03, Fig. 2).

Rare variants in IL-1 subpathway genes combined are
bidirectionally associated to LPS-induced IL-1β cytokine
On the subpathway level, i.e., multiple genes that
represent an immunological cascade in the IL-1-mediated
inflammatory response, we identified a significant bidirec-
tional burden of rare genetic variants in IL-1 subpathway
genes combined with LPS-induced IL-1β cytokine produc-
tion (SKATO adjP value = 7.12E−03, Fig. 2a). We translated
this set-based association into an allelic score, by multiply-
ing the IL-1 subpathway underlying rare variant dosages
with the same allele frequency-based directional weights
as used in the SKAT. Figure 4c shows a strong correlation
between residual LPS-induced IL-1β cytokine production
and the IL-1 subpathway allelic score (Spearman R = 0.33,
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Fig. 2 Association landscapes of SKAT (Bonferroni-adjusted) adjP values. The circular heatmaps consist of two rings separated by a black lane,
where the inner ring shows the SKAT adjP values with only common (AF ≥ 5%) variants (SKAToC), and the outer ring the SKATO adjP values with
only rare (AF < 5%) variants on the gene and subpathway levels with log10-transformed IL-1β (a) and IL-6 (b) cytokine production respectively.
Each ring consists of 8 lanes that represent different stimuli; (1) LPS, (2) PHA, (3) C. albicans, (4) S. aureus, (a) showing the subpathway-level result
and (b) the gene-level result. The gene names at the surface of the outer ring of the heatmap are grouped based on corresponding subpathway
as annotated on the yellow border, and genes without identified genetic variants are not shown. Genes or subpathways without identified
genetic variants contributing to a particular association (i.e., for a gene with a single rare variant the gene-level output is not considered, but it
does contribute to the subpathway-level association) have been assigned the value NA and are shown in light gray. Significance of P values is
highlighted in color, and only significant P values are labelled. Annotation: * = the CASP1 set-based association was the only one not confirmed
by Spearman correlation. Abbreviations: SKAT = Sequence Kernel Association Test; LPS = Lipopolysaccharide; PHA = Phytohaemagglutinin; C.
albicans = Candida albicans; S. aureus = Staphylococcus aureus
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P value = 5.7E−13). Besides this, LPS-induced IL-6 cytokine
production was significantly associated with rare variants
in the inflammasome subpathway (SKATO adjP value =
3.83E−03, Fig. 2b), reflected by a significant but modest
correlation between the inflammasome allelic score and
residual LPS-induced IL-6 cytokine (Spearman R = 0.21, P
value = 7.2E−06, Additional file 2: Fig. S3B).
Finally, common variants in IL-30s subpathway genes

were significantly associated with the production of both
IL-1β and IL-6 cytokine in response to C. albicans
stimulation (SKAToC adjP value = 1.66E−03 and 1.81E−04

respectively, Fig. 2). In our allelic score follow-up, the
correlation between residual cytokine production and
IL-30s common variants was stronger and more signifi-
cant in IL-6 as compared to IL-1β cytokine (IL-1β
Spearman R = 0.15, P value = 0.001; IL-6 Spearman R =
0.21, P value = 6.5E−06, Additional file 2: Fig. S3C, S3D).

The difference in correlation reflects the SKAT associ-
ation strengths.

Anti-inflammatory rare variant carriers show increased S.
aureus-induced IL-6 cytokine production
Collapsing variants into anti- and pro-inflammatory
groups on the inflammatory level, we detected two
strong rare variant associations with IL-6 cytokine pro-
duction upon stimulation. Rare variants in genes with
pro-inflammatory effects were bidirectionally associated
with LPS-induced IL-6 cytokine production (SKATO
adjP value = 1.99E−03, Fig. 3b). The high degree of
bidirectionality in this association (i.e., variants leading
to either lower or elevated cytokine levels, as indicated
by SKAT rho value = 0) is reflected by the significant
correlation between residual IL-6 cytokine in response
to LPS stimulation and the pro-inflammatory allelic

Fig. 3 Inflammatory-level cytokine association heatmap SKAT (Bonferroni-adjusted) adjP values. A heatmap representation of SKAT adjP values
testing for association between variants in pro- or anti-inflammatory sets and IL-1β (a) and IL-6 (b) cytokine production in response to four
different stimuli; LPS, PHA, C. albicans, and S. aureus. Common and rare variants were tested separately (based on a cohort allele frequency
threshold of 5%), by means of the SKAT for common variants and the SKATO for rare variants, in two inflammatory-level groups that distinguish
between pro- and anti-inflammatory roles of the respective gene-encoded proteins. Significance of adjP values is highlighted in color, and only
significant adjP values are labelled. c Zooms in on the details of the significant association between S. aureus-induced IL-6 cytokine production
and anti-inflammatory rare variants. The residual (corrected for age and sex) S. aureus-induced IL-6 cytokine production shown on the y-axis, is
higher in anti-inflammatory rare variant carriers as compared to non-carriers (NO = individuals without rare variant in the anti-inflammatory
group; YES = individuals carrying a rare variant in the anti-inflammatory group as shown on the x-axis). The Wilcoxon rank-sum P value reveals a
significant difference between the two categories (P value = 0.003). Annotation: ** = < 0.01. Abbreviations: SKAT = Sequence Kernel Association
Test; LPS = Lipopolysaccharide; PHA = Phytohaemagglutinin; C. albicans = Candida albicans; S. aureus = Staphylococcus aureus
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score (Spearman R = 0,36, P value = 2.1E−15, Additional
file 2: Fig. S3E). On the other hand, rare variants in anti-
inflammatory genes were unidirectionally associated with
S. aureus-induced IL-6 cytokine production (SKATO adjP
value = 6.71E−03, Fig. 3b). Figure 3c zooms in on this
association, highlighting that individuals carrying a rare
variant in an anti-inflammatory gene present with a higher
residual S. aureus-induced IL-6 cytokine production as
compared to non-carriers (Wilcoxon rank sum P value =
0.003).
Common variant associations were again exclusively

observed with C. albicans-induced cytokine production
(Fig. 3). Namely, common variants in anti-inflammatory
genes were associated with IL-1β and even stronger with
IL-6 cytokine (SKAToC adjP value = 1.87E−03 and 5.75E−04

respectively), and pro-inflammatory common variants
exclusively with IL-6 cytokine production in response to C.
albicans stimulation (SKAToC adjP value = 0.02). For all
three associations, we confirmed the significant correlation
between C. albicans-induced residual cytokine and set-
based allelic scores (Additional file 2: Fig. S3F, S3G, S3H).

Common variants are exclusively associated with the
immunological response to C. albicans
Over all levels of grouping, we observed associations
between common variants and C. albicans-induced

cytokine production, reflecting a common variant signa-
ture in this immunological response. For the underlying
variants in the gene-level associations (IL36A: rs895497;
IL38: rs6761276 and rs6743376), we observed that the al-
ternative allele presented with (1) a higher frequency and
(2) a higher C. albicans-induced residual cytokine produc-
tion as compared to the ancestral (reference) allele, suggest-
ing positive selection of the alternative or variant allele over
the ancestral allele. Figure 5a shows that for each of these
variants, cytokine production (IL-1β in blue and IL-6 in
red) clearly decreases in the heterozygous and even more in
the homozygous variant carriers. Specifically, significant dif-
ferences were observed between homozygous reference and
homozygous alternative genotypes for IL38 variants
rs6761276 and rs6743376 and both cytokines (Wilcoxon
rank sum P values: IL-1β rs6761276 = 0.008, rs6743376 =
0.001; IL-6 rs6761276 = 0.005, rs6743376 = 0.003). In
addition, we observed a significant difference between
rs6743376 heterozygous carriers and homozygous reference
only in IL-1β levels (Wilcoxon rank sum P value = 0.04),
whereas rs6761276 heterozygous carriers and homozygous
alternative presented with significantly different IL-6 levels
(Wilcoxon rank sum P value = 0.01). And finally, for
rs895497 (IL36A), heterozygous carriers presented with sig-
nificantly higher IL-6 cytokine as compared to homozygous
reference (Wilcoxon rank sum P value = 8.2E−04).

Fig. 4 NCF4 and IL-1 subpathway rare variants and effects on cytokine production. a NCF4 rare variant carriers are in the lowest extreme of PHA-
induced residual (corrected for age and sex) IL-6 cytokine production of the histogram distribution. Individuals without NCF4 rare variants are
shown in skyblue, individuals carrying a rare variant contributing to the association in red and purple. In b, the variants contributing to the
association are annotated in the same red and purple colors on the most abundant transcript of NCF4 (NM_013416). c A combined weighted
directional allelic score for IL-1 subpathway rare variants in correlation with LPS-induced residual IL-1β cytokine production that is accompanied
by a Spearman R of 0.33, P value = 5.7E−13
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Fig. 5 Coding and non-coding common variant set associations with C. albicans-induced cytokine production. a Residual (corrected for age and sex)
IL-1β (left in blue) and IL-6 (right in red) cytokine production for coding SNPs in IL36A and IL38 decreases over the genotype categories. For all plots,
the ancestral allele is the minor allele and thus the genotype categories are ordered from left to right: homozygous alternative (IL-1β in light-blue and
IL-6 in light-red), heterozygous (IL-1β in mid-blue and IL-6 in mid-red), homozygous ancestral (IL-1β in light-blue and IL-6 in light-red). Significant
Wilcoxon rank sum P values are observed for IL-1β rs6761276 CC vs TT = 0.008, IL-1β rs6743376 AA vs CC = 0.001, IL-1β rs6743376 CA vs CC = 0.04, IL-
6 rs895497 GG vs AG = 8.2E-04, IL-6 rs6761276 CC vs TC = 0.01, IL-6 rs6761276 CC vs TT = 0.005, and IL-6 rs6743376 AA vs CC = 0.003. Annotation: * =
Wilcoxon rank sum P value < 0.05; ** = Wilcoxon rank sum P value < 0.01; *** = Wilcoxon rank sum P value < 0.001. b Visualizes the significant
Bonferroni-adjusted association between coding and non-coding common variants in IL38 variants and C. albicans-induced IL-6 cytokine production
by means of a weighted, directional, allelic score summarizing the combined effect of all variants in the set in correlation with IL-6 cytokine. The
straight line represents the linear model equation using method “lm”’ with standard error of 0.95, and the R of 0.17 represents the Spearman
correlation coefficient with accompanying P value = 3.7E−04. c All common and non-coding SNPs with significant linear model P values (15 out of 41)
are shown on top of transcripts that fall in the region of our IL38 (gene name IL1F10) set
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Accumulating evidence highlights a role for common
non-coding genetic variation in human health [38, 39],
in inflammatory responses [45, 46], and even specifically
in innate immune responses [47–49]. While the rest of
our study focused on coding variants, i.e., variants that
likely have a direct effect on protein function, we there-
fore additionally aimed to gain insight into the impact of
non-coding common variants. Consequently, we ex-
panded our significant coding common variant associa-
tions with previously published genotyping data from the
same (500FG) cohort containing coding and non-coding
common genome-wide genetic variation [18]. Coding and
non-coding common variants (cohort AF ≥ 5%) in IL36A,
IL38, IL30s subpathway, anti-inflammatory, and pro-
inflammatory sets were pruned for LD, after which they
subjected to the same SKAT. We identified a significant
Bonferroni-adjusted association for these IL38 variants
with C. albicans-induced IL-6 cytokine production (SKA-
ToC adjP value = 0.04). Figure 5b visualizes this association
by means of a positive significant Spearman correlation of
0.17 (P value = 3.7E−04) between the IL38 allelic score and
residual cytokine production. Figure 5c shows all signifi-
cant SNPs falling in the IL38 genic region and 50 kb up-
stream sequence which includes other IL-1 pathway genes
IL36B and IL36RN. To explore the individual contribution
of non-coding common variants in significant IL38 set, we
organized linear model single SNP effect estimates by
direction and significance (Additional file 1: Table S11).
rs80339050, located in an intron of IL36B ~ 38kB up-
stream of IL38 (IL1F10 gene), presented with the largest
significant effect estimate on C. albicans-induced IL-6
cytokine production. This SNP falls into multiple tran-
scription factor binding sites and may therefore exert a
regulatory function. In addition, public eQTL databases
identified rs80339050, just as rs6761276 and rs6743376
our coding associated SNPs in IL38, as an eQTL for IL-1
pathway genes in Listeria monocytogenes, Salmonella
typhymurium, and non-infected macrophages [42].

Discussion
In this study, we identified and characterized rare and
common genetic variants in genes related to the IL-1
pathway and determined their impact on the inter-
individual variability of stimulus-induced in vitro cyto-
kine responses in whole blood from healthy individuals.
By employing grouping strategies over various levels of
magnitude, from gene to subpathway to inflammatory
level, we assessed the contribution of rare and common
variants, and thereby highlighted stimulus- and
frequency-specific variant set involvement in IL-1β and
IL-6 cytokine responses. An intrinsic issue with rare var-
iants is their low frequency, resulting in limited power
for association testing, in particular for healthy continu-
ous phenotypes [50]. This power issue can be addressed,

by using prior knowledge on the biological effects of the
genes studied to combine variants into functional sets,
thereby increasing the number of variants per test and
reducing the number of tests that need to be performed.
We identified two rare variant associations with three

cytokine-stimulus combinations in the gene-level variant
sets; CASP1 with LPS-induced IL-6 cytokine production,
and NCF4 with PHA-induced IL-1β and IL-6 produc-
tion. The fact that we observed a burden of CASP1 rare
variants with IL-6 production and not with IL-1β is sur-
prising, as CASP-1 protein is most known for cleavage
of the inactive mediators IL-1β, IL-18, and IL-33 into
their active form [2]. However, abnormal pyroptosome
formation and impaired nuclear localization independent
of the enzymatic activity of CASP-1 in processing pro-
IL1β into active IL1β was previously observed [51]. Im-
portantly, in our allelic score follow-up, we were unable
to detect a significant correlation, suggesting that this as-
sociation was mainly driven by a single individual with
extremely low IL-6 cytokine production (Additional
file 2: Fig. S3A). Repeating the SKAT without this indi-
vidual subsequently abolished the significance, indicating
that this result may suggest a false positive association
driven by this outlier or a complex gene-gene or gene-
environment interaction leading to the unlikely combin-
ation of extremely low cytokine production and homozy-
gous genotype of rs61751523. This example therefore
motivates the careful follow-up of significant (rare) vari-
ant associations. In contrast, we identified a robust uni-
directional burden of rare variants in NCF4 and PHA-
induced IL-6 cytokine production. The NCF4 gene en-
codes the NCF4 protein which is part of the cytoplasmic
unit of the NADPH (nicotinamide adenine dinucleotide
phosphate) oxidase enzyme system involved in phagocyt-
osis [52]. It is well known that mutations in the NADPH
complex can lead to dysregulated cytokine production in
the primary immunodeficiency chronic granulomatous
disease (CGD) [53, 54]. The consequences of these mu-
tations can be cell type specific and are known to cause
phenotypes deviating from classic CGD [55], which
suggests a high degree of complexity in the interaction
between NADPH and cytokine production. Adding to
this complexity, our study revealed an association be-
tween NCF4 rare variants and lower IL-6 cytokine in re-
sponse to PHA, and therefore mechanistically requires
further investigation.
In addition to the above discussed gene-level findings,

this study highlights the advantage of using larger func-
tionally defined groups. Specifically, rare variants in the
IL-1 subpathway were bidirectionally associated with
LPS-induced IL-1β production, and we identified a uni-
directional burden of rare variants in anti-inflammatory
genes combined with S. aureus-induced IL-6 cytokine
production, even though the individual genes part of
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these two sets did not produce an association with the
respective phenotype. The burden of anti-inflammatory
rare variants is interesting, as more than half of the anti-
inflammatory genes are autophagy genes, supporting the
notion that defective autophagy results in increased
cytokine production, with increased inflammatory dis-
ease severity, such as CGD and inflammatory bowel dis-
ease—especially colitis observed in Crohn’s disease—as a
consequence [53, 56]. Additional diseases characterized
by dysregulated inflammation in which defects of au-
tophagy, and subsequently higher cytokine production,
are also SLE and sarcoidosis [57, 58]. Interestingly, S.
aureus-mediated inflammatory effects have been also
suggested to play a role in Wegener’s granulomatosis,
and it would be tempting to speculate that this effect is
stronger in individuals with certain mutation in genes of
IL-1 pathway [59].
In contrast to rare variants, the C. albicans stimulus-

specific common variant associations identified in this
study constituted variant sets over multiple grouping
levels. The importance of common genetic variants in
the innate immune pathway in immunological defense
against C. albicans is supported by existing literature
[60, 61]. However, in the previously published study
using the same cohort, none of the IL-1 pathway genes
were significantly associated with C. albicans-induced
cytokine production [9]. The GWAS summary statistics
show nominal significance for these particular variants,
but do not reach genome-wide significance, highlighting
the advantage of our targeted approach and set-based
framework here (Additional file 1: Table S12). An add-
itional independent validation by means of exact replica-
tion of cytokine QTL would be most favorable, but
remains challenging as they can be cell type and context
specific as previously shown [10, 62]. Nonetheless, the
stimulus-specific variant frequency effect is noteworthy
shown, especially in combination with the phenomenon
that the ancestral allele in individual variants presents
with lower IL-6 cytokine upon C. albicans stimulation
(Fig. 5a). This observation may be interesting in light of
the co-evolution of commensal yeast species and
humans as oral candida infections appear to have been
described as early as the second century [63]. Next to
highlighting the role for coding common variants, we ex-
panded our study using non-coding common variants in
the same cohort. The significant association of coding
and non-coding common variants in IL38 supports the
importance of considering a combined effect of multiple
common variants. How these common non-coding vari-
ants may possibly impact gene expression levels requires
dedicated follow-up studies and remains speculative so
far. For instance, rs80339050, the SNP in our IL38 set
with highest effect estimate, falls into multiple transcrip-
tion factor binding sites and may therefore exert a

regulatory function. Long-range contact assessment can
help to understand local genome architecture, although
this could be cell type and context specific, substantiat-
ing the urge for studying the impact of non-coding vari-
ants in immunity [64]. Interestingly, the same variant
was previously shown to act as an eQTL of IL-1 pathway
genes after in vitro bacterial stimulations with Listeria
monocytogenes, Salmonella typhymurium; suggesting
that this locus may have bona fide regulatory effects in
the broad spectrum of human pathogen responses. In-
deed, IL-38 is an important regulatory cytokine for in-
flammatory response in general and IL-6 pathway in
particular [65], and our data suggest such effects on the
inflammation induced by human fungal and bacterial
pathogens alike.
Our study cohort is one of the largest to date in which

extensive immunophenotyping experiments have been
performed [8, 9, 11]. The associations described here are
based on cytokine production by whole blood, i.e., a mix
of immune cell subtypes, warranting the cross-regulation
between different cell types in determination of the final
immune response. The investigated stimuli were chosen
as representatives for an array of microbial infections.
Future efforts investigating a broader array of pathogens,
as well as the specific contribution of immune cell sub-
types, would be highly interesting. Nevertheless, poten-
tial limitations of this study include the relatively small
sample size for genetic studies and cohort characteristics
(restricted age distribution and residency), and replica-
tion in a larger cohort for validation is favorable. In
order to substantiate our findings, we applied a threefold
validation approach, in which all non-synonymous sig-
nificant associations were validated by permutation tests,
by extreme outlier analysis, and by comparing the bur-
den of synonymous rare variants. Our synonymous val-
idation did however produce two borderline significant
results in other sets, which could either uncover possible
false positive associations, potentially due to the limita-
tions of this study cohort, or could be true findings as
not all synonymous variation is fully neutral [66]. Sec-
ondly, despite the cost-effectiveness of MIP sequencing
(e.g., ±€25, per sample for the IL-1 panel), larger intronic
or non-coding regions are not sequenced and as such
escape analysis. The potential of using whole genome se-
quencing data to investigate the role of all rare coding
and non-coding genetic variation, thereupon, seems
promising, but the larger targets may require an even
bigger sample size. Thirdly, the SKAT is powerful, but
computes only set-wise association P values and does
not provide single-variant effect estimates, neither does
it provide direction in terms of positive/negative effects
or increased/decreased risk. Our customized allelic score
illustrates the set-based effect, but is most likely weaker
as compared to the SKAT output, as we cannot exclude
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potential heterogeneity or interaction of variants in a set.
Furthermore, the contribution of single variants to a
phenotype is difficult to estimate and as such the clinical
applicability remains complex and requires more in-
depth functional follow-up. Lastly, we present a frame-
work that allows one to analyze the burden of rare and
common variants and their effect on inter-individual
immune-response differences, which provides initial in-
sights for fundamental biology or disease understanding.
The fact that we use cytokine responses in a cohort of
healthy individuals could be a possible explanation for
the absence of even stronger effects, and similar studies
are warranted in disease cohorts. This, we have recently
demonstrated by the identification of six individuals
carrying four different rare variants in IL37 that present
with a more severe clinical form of gout [67].

Conclusions
In conclusion, this study shows that common and rare
genetic variation in genes of the IL-1 pathway in func-
tionally defined groups over various levels, differentially
influence in vitro IL-1β and IL-6 cytokine responses in-
duced by various stimuli. In particular, our rare variant
associations in NCF4 with specific stimulation-induced
cytokine responses are in line with previously published
defects known to contribute to the phenotypic presenta-
tion of inflammation-mediated diseases such as CGD.
Furthermore, a bidirectional burden of rare variants in
IL-1 subpathway genes combined is correlated with IL-
1β cytokine production levels. And finally, rare variants
in genes encoding proteins with known anti-inflammatory
function result in increased cytokine production, which is
in line with proposed autophagy defects resulting in
aggravated inflammatory disease severity. In contrast, the
identified common variant associations for C. albicans-in-
duced cytokine responses, replicates other common
variant effects for this pathogen.
Altogether, this study provides insights into genetic

variant effects on IL-1 mediated immunological cas-
cades, potentially affecting the clinical presentation of a
particular inflammatory disease. On a broader perspec-
tive, these findings could be used to prioritize genes or
variants in inflammation-mediated diseases that share
clinical similarities, but for which no single genetic
defect has been identified to date. The framework pre-
sented here can be applied to other (molecular) pheno-
types of interest and therefore has the potential to
contribute to better understanding of unresolved, complex
traits and diseases.
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