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Abstract

Background: Preclinical studies and early clinical trials have shown that targeting cancer neoantigens is a
promising approach towards the development of personalized cancer immunotherapies. DNA vaccines can be
rapidly and efficiently manufactured and can integrate multiple neoantigens simultaneously. We therefore sought
to optimize the design of polyepitope DNA vaccines and test optimized polyepitope neoantigen DNA vaccines in
preclinical models and in clinical translation.

Methods: We developed and optimized a DNA vaccine platform to target multiple neoantigens. The polyepitope
DNA vaccine platform was first optimized using model antigens in vitro and in vivo. We then identified
neoantigens in preclinical breast cancer models through genome sequencing and in silico neoantigen prediction
pipelines. Optimized polyepitope neoantigen DNA vaccines specific for the murine breast tumor E0771 and 4T1
were designed and their immunogenicity was tested in vivo. We also tested an optimized polyepitope neoantigen
DNA vaccine in a patient with metastatic pancreatic neuroendocrine tumor.
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Results: Our data support an optimized polyepitope neoantigen DNA vaccine design encoding long (≥20-mer)
epitopes with a mutant form of ubiquitin (Ubmut) fused to the N-terminus for antigen processing and presentation.
Optimized polyepitope neoantigen DNA vaccines were immunogenic and generated robust neoantigen-specific
immune responses in mice. The magnitude of immune responses generated by optimized polyepitope neoantigen
DNA vaccines was similar to that of synthetic long peptide vaccines specific for the same neoantigens. When
combined with immune checkpoint blockade therapy, optimized polyepitope neoantigen DNA vaccines were
capable of inducing antitumor immunity in preclinical models. Immune monitoring data suggest that optimized
polyepitope neoantigen DNA vaccines are capable of inducing neoantigen-specific T cell responses in a patient
with metastatic pancreatic neuroendocrine tumor.

Conclusions: We have developed and optimized a novel polyepitope neoantigen DNA vaccine platform that can
target multiple neoantigens and induce antitumor immune responses in preclinical models and neoantigen-specific
responses in clinical translation.
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Background
Cancer neoantigens are created by somatic DNA alter-
ations resulting in protein sequence changes capable of
triggering adaptive immune responses. Next generation
sequencing, together with bioinformatics-based compu-
tational algorithms, has revolutionized our ability to
identify cancer neoantigens [1, 2]. We and others have
demonstrated that cancer neoantigens are important
targets during cancer immunoediting and that cancer
sequencing combined with epitope prediction algorithms
can be used to identify and prioritize neoantigens for
integration into personalized cancer vaccines [3–5].
Conceptual advantages associated with cancer vaccines
targeting cancer neoantigens include the fact that neoan-
tigens are not found in normal tissues, decreasing the
risk of autoimmunity and/or central immune tolerance.
Neoantigen vaccines based on the synthetic long

peptide (SLP), RNA, and dendritic cell (DC) platforms
appear to be capable of inducing neoantigen-specific T
cell responses, and potential favorable clinical outcomes
[6–11]. In order to maximize antitumor immunity and
to prevent or curtail tumor immune escape, targeting
multiple neoantigens simultaneously is desirable. How-
ever, manufacturing neoantigen vaccines based on the
SLP, RNA, or DC vaccine platforms under good manu-
facturing practice (GMP) conditions is both time con-
suming and resource-intensive. In comparison, one of
the strengths of the recombinant DNA vaccine platform
is the relative ease of manufacture of plasmid DNA on a
scale appropriate for personalized vaccines. As such, the
recombinant DNA vaccine platform represents an at-
tractive platform for the clinical development of polyepi-
tope neoantigen cancer vaccines.
Advantages of the DNA vaccine platform include its

remarkable safety profile, the relative ease of manufacture,
and the molecular flexibility that allows integration of
multiple neoantigens using a single polyepitope construct.

Recent advances in the DNA vaccine platform, such as
gene/vector optimization, molecular/formulation adju-
vants, and DNA delivery by electroporation, have signifi-
cantly improved the efficacy of DNA vaccines, and
numerous early phase clinical trials are ongoing in the
infectious disease and cancer fields [12]. We report here
our efforts to optimize the polyepitope neoantigen DNA
vaccine in preclinical models to maximize neoantigen
presentation and vaccine immunogenicity. We addressed
the following questions: (1) are longer epitopes (≥20-mers)
processed equally well as minimal epitopes (e.g., 9-mers);
(2) will short flanking sequences (spacers) between epi-
topes enhance antigen processing and reduce creation of
junctional epitopes; and (3) will the addition of a mutant
form of ubiquitin enhance neoantigen processing and pres-
entation? Our study demonstrates that polyepitope inserts
encoding 20–25-mer neoantigen epitopes (with or without
spacers) fused with a mutant form of ubiquitin are effi-
ciently processed and presented. Model DNA vaccines de-
signed with this strategy were able to induce immune
responses in vivo, and neoantigen DNA vaccines were able
to induce antitumor immune responses in preclinical
breast cancer models and neoantigen-specific T cell re-
sponses in clinical translation.

Methods
Animals
Female C57BL/6J (H-2b) and Balb/cJ (H-2d) mice were
purchased from the Jackson Laboratory (Bar Harbor, ME).
HHD II transgenic mice [13] were originally obtained
from Dr. F. Lemonnier (Institut Pasteur, Paris, France)
and were maintained in SPF animal facilities. These mice
express the transgene Tg (HLA-A/H2-D/B2M) 1Bpe in a
mixed background involving B2Mtm1Unc/tm1Unc and H2-
D1tm1Bpe/tm1Bpe. They express chimeric MHC-I heavy
chain with HLA-A*0201 (α1-α2) and H-2Db (α3-trans-
membrane and intracytoplasmic domains), allowing the
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study of HLA-A2-restricted responses in vivo. All animals
were used at 7–10 weeks of age. Protocols were approved
by the Animal Studies Committee of Washington University
School of Medicine (WUSM) and were in accordance with
IACUC guidelines and procedures.

Tumors and cell lines
HeLa cells that stably express HLA-A2 (HeLa-A2), mur-
ine and human TAP-deficient RMA-S (H-2b) and T2
cells made to express mouse MHC class I molecules
were obtained from Dr. T. Hansen (Washington Univer-
sity School of Medicine). E0771 [14] and 4T1.2 [15] are
mouse breast cancer cell lines of C57BL/6 (H-2b) and
Balb/c (H-2d) origin, respectively. All cells were cultured
in RPMI-1640 complete media (Gibco) supplemented
with L-glutamine, 10% fetal bovine serum (Atlanta Biologi-
cals, Flowery Branch, GA), sodium pyruvate, non-essential
amino acids, and penicillin-streptomycin (Gibco).

Genome sequencing and neoantigen identification
Genomic DNA and RNA were extracted from E0771
and 4T1.2 tumors grown in vivo using commercially
available kits (Qiagen). Tails from C57BL/6 and Balb/c
mice were used as normal control. Exome and cDNA-
capture sequencing were performed as previously
described [3, 5]. The pVACseq pipeline, version 1.0.0-
beta [16, 17], was applied to identify genetic alterations
and prioritize neoantigens based on the tumor/normal
sequencing data. Briefly, each genetic alteration resulting
in an amino acid change was evaluated in the context of
10–14 flanking amino acids. All sub-peptides containing
the substitution were evaluated using the suite of IEDB-
provided HLA class I peptide-binding algorithms (netMHC,
NetMHCcons, netMHCpan, PickPocket, SMM, and
SMMPMBEC). In order to prioritize neoantigen candidates
for the study, results with median predicted binding affin-
ities (IC50) less than 500 nm were filtered based on sample
purity (both tumor VAF and RNA VAF > 30%), gene
expression level (FPKM > 1), and ranked according to the
fold change (MT/WT) of IC50 scores. Neoantigens with
MT/WT fold change greater than 2 were incorporated in
the polyepitope neoantigen DNA vaccines.

Polyepitope DNA and SLP vaccines
Codon-optimized DNA fragment encoding polyepitope
neoantigens were synthesized by Blue Heron Biotech
(Bothell, WA) or GenScript (Piscataway, NJ) and subse-
quently cloned into the mammalian expression plasmid
pcDNA 3.1(+) (Invitrogen, Carlsbad, CA) or the pMSV.IR-
ES.GFP (pMIG) retroviral expression vector. The se-
quences of the polyepitope constructs can be found in
Additional file 1. Where indicated, DNA sequence for
Ubmut, a mutated (G76V) ubiquitin [18], was fused to the
N-terminus of the polyepitope construct by standard

molecular subcloning. Plasmid DNA were amplified in
Escherichia coli DH5α (Invitrogen) and purified using
NucleoBond Maxi Plasmid DNA Purification kits
(Macherey-Nagel, Bethlehem, PA). DNA vaccination was
performed using a Helios gene gun (Bio-Rad, Hercules,
CA) as previously described [19]. Typically, 4 μg of DNA
was delivered to non-overlapping shaved and depilated
mice abdominal areas at 3-day intervals (days 0, 3, and 6)
for a total of three doses [20]. The discharge helium pres-
sure was set to 400 p.s.i. Immune responses were measured
5 days after the last gene gun vaccination (day 11).
SLPs containing the identified neoantigens were

custom-made by GenScript and Peptide 2.0 (Chantilly,
VA). Lyophilized peptides were first dissolved in H2O or
DMSO and stored at − 20 °C. One hundred micrograms
of each peptide was diluted in PBS and mixed with 50 μg
of poly(I:C) (InvivoGen) before subcutaneous injection
on day 0 and day 7. Immune responses were measured
by ELISpot assay on day 12.

Immunoprecipitations and immunoblots
HeLa-A2 cells were transduced with a retroviral vector
pMIG [21] encoding polyepitope antigen. GFP+ cells
were FACS-sorted and cultured for 24 h with or without
50 μM MG132 (Boston Biochem, Cambridge, MA). Ex-
pression of GFP protein was also confirmed by western
blot of total cell lysate with anti-GFP antibody (Santa
Cruz, Dallas, TX). To detect the production and degrad-
ation of polyepitopes, immunoprecipitation and immu-
noblot were performed as previously described [22].
Briefly, cells were lysed in PBS with 1% Nonidet P-40.
Post-nuclear lysates were then incubated with anti-HA-
Sepharose (Covance). After washes, precipitated proteins
were eluted by boiling in LDS sample buffer (Invitrogen)
and separated by SDS-PAGE. Proteins were detected with
anti-HA (clone 16B12, Santa Cruz) and visualized by
chemiluminescence using the ECL system (ThermoFisher).

Flow cytometry
To measure cell surface expression of neoantigens, a
TCR mimic Ab (TCRm) specific for SVG9/HLA-A2 [23]
was used to stain HeLa-A2 cells transduced with polye-
pitope DNA. As a positive control, parental HeLa-A2
cells were incubated with 10 μM SVG9 peptide for the
last hours before cell wash. PE-conjugated goat anti-
mouse Ig Ab (BD Biosciences, San Jose, CA) was used as
secondary Ab. Data from viable cells, gated by forward
and side scatter, were acquired on a FACSCalibur (BD
Biosciences) and analyzed using FlowJo v10 software
(TreeStar, Ashland, OR).

CTL assay
In vitro CTL assays were performed as previously de-
scribed [23]. Briefly, target cells (transduced HeLa-A2)
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were labeled with 0.2 mCi of [51Cr] (PerkinElmer,
Wellesley, MA) and incubated with SVG9-specific T
cells generated from WNV-KUN-immunized HHDII
spleen cells. Parental HeLa-A2 cells with or without
SVG9 peptide were used as controls. Maximum lysis
was achieved by adding 5% Triton-X 100 (Sigma-Al-
drich) to the wells. Spontaneous lysis was determined
with cultured target cells without CTLs. Supernatants
were collected and read by an Isomedic γ-counter (ICN
Biomedicals, Huntsville, AL). The specific lysis was
calculated by the formula: 100 × [(experimental 51Cr
release − control 51Cr release)/(maximum 51Cr release −
spontaneous 51Cr release)].

Tumor challenge and TIL analysis
E0771 and 4T1.2 tumor cells were dislodged with Tryp-
sin/EDTA (ThermoFisher) and washed twice with Ca2+/
Mg2+-free PBS. 106 cells were injected subcutaneously
into the flanks of female mice. Tumor sizes were mea-
sured using an electronic caliper. For checkpoint block-
ade, 200 μg of anti-PD-L1 (clone 10F.9G2) or isotype
control (clone LTF-2) antibody (both from Bio X Cell,
West Lebanon, NH) was administered i.p. at the indi-
cated time points.
To study the neoantigen-specific T cells present in the

tumor after DNA vaccination, tumors were harvested
and digested with Tumor Dissociation Kit (Miltenyi Bio-
tec) following the manufacturer’s instruction. Single cell
suspensions were prepared by passing through 70-μm
cell strainers after cell debris was removed and red blood
cells were lysed. Tumor-infiltrating leukocytes were
stained with dextramer and analyzed by flow cytometry.

Tetramer/dextramer staining
PE-conjugated SVG9/HLA-A*0201 tetramer was
obtained from the National Institute of Allergy and
Infectious Diseases tetramer facility (Emory University,
Atlanta, GA). APC-conjugated Lrrc27/H-2Db dextramer
was manufactured by Immudex (Copenhagen, Denmark).
Cells were stained with tetramer or dextramer for 40min
at 37 °C. Fluorophore-labeled antibodies specific for sur-
face markers (CD45, CD3e, and CD8α) were subsequently
added and the cells were incubated for an additional 20
min at 4 °C. Cells were acquired on a FACSCalibur and
data were analyzed with FlowJo v10 software.

Human subject
Patient GTB16 was a 25-year-old male with Lynch
Syndrome-associated metastatic pancreatic neuroendo-
crine tumor that was refractory to standard of care treat-
ment. He was initially diagnosed and treated at Barnes-
Jewish Hospital, St. Louis, MO. He received palliative
carboplatin/etoposide and concurrent lanreotide with a
partial response. Because his tumor demonstrated

microsatellite instability, he was also treated with pem-
brolizumab as maintenance therapy on a compassionate
use protocol with a partial response. Repeat surveillance
MRI demonstrated mixed response with evidence of on-
going progression. Due to the lack of any effective treat-
ment options available, he was treated with a neoantigen
DNA vaccine (pGTB16) on a compassionate use basis.
The protocol was approved by the Washington Univer-
sity School of Medicine Institutional Review Board, In-
stitutional Biosafety Committee, and the Food and Drug
Administration. Written informed consent was signed
by the patient for the treatment and associated research
studies. A total of three vaccinations with at least 21 days
in between injections were administered. pGTB16 vac-
cine was delivered intramuscularly using an integrated
electroporation device (TDS-IM system, Ichor Medical
Systems). Blood was drawn pre- and post-vaccination
and peripheral blood mononuclear cells (PBMC) were
isolated by Ficoll-Paque PLUS (GE Healthcare) density
centrifugation and cryopreserved. PBMCs were used in
IFN-γ ELISpot assay to evaluate the generation of a
neoantigen-specific immune response.

ELISpot assay
IFN-γ ELISpotPLUS Kits (Mabtech, Cincinnati, OH) were
used as instructed by the manufacturer to measure the
in vivo neoantigen-specific immune response. For pre-
clinical studies, mouse spleen or lymph node cells were
typically seeded at 2–4 × 105 per well in triplicates.
Neoantigen (MT) and wildtype (WT) counterparts were
synthesized by Peptide 2.0 or GenScript and were used
at the indicated final concentration. For clinical studies,
cryopreserved PBMCs were thawed and cultured for 12
days in the presence of human IL-2 (50 U/mL) and
25 μM each of the pooled overlapping peptides (each
pool contained two mutated genes). After an overnight
rest in culture medium without peptides and IL-2, 105 of
the in vitro-stimulated cells were co-cultured in the ELI-
Spot plate for 20 h with 104 of autologous PBMCs that
were pulsed with 100 μM individual long peptide and ir-
radiated (3000 Rad). The ELISpot plates were scanned
and analyzed on an ImmunoSpot Reader (CTL, Shanker
Heights, OH).

Statistics
Data were analyzed using GraphPad Prism 8 software
(GraphPad, La Jolla, CA) and presented mainly as
mean ± SEM. The Mann-Whitney test or one-way
ANOVA test were used to compare between vaccination
groups. Paired t-test was performed in some cases when
different conditions were compared using the same
specimens. A P value equal or less than 0.05 is consid-
ered statistically significant. Figures were prepared using
Adobe Illustrator CS6 (Adobe, San Jose, CA).
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Results
Optimizing the design of polyepitope neoantigen DNA
vaccines for enhanced presentation and recognition
We first established a model system to optimize the
polyepitope DNA vaccine platform by using eight well-
characterized HLA-A2-restricted epitopes. This model
system allowed us to address important questions about
polyepitope design such as size of the neoantigen
epitope, inclusion of spacers, and addition of a ubiquitin
tag to enhance antigen processing. The HLA-A2-
restricted epitopes included viral (EBV, HCMV,
influenza, and West Nile Virus) and tumor-associated
antigens (melanoma gp100) (Additional file 2, Table S1).
With the exception of the CMV (pp65) and influenza
(M1) epitopes, the order of the other six epitopes was

consistent between the model polyepitope constructs
(Fig. 1a, left). The spacer inserted between epitopes con-
sisted of three amino acids (AAY) [24]. To study
whether antigen processing efficacy is different for short
vs. long epitopes encoded in polyepitope DNA vaccines,
we created polyepitope DNA constructs that encode ei-
ther minimal epitopes (9–10 AA) or longer epitopes (20
AA) with native residues flanking the minimal epitopes.
We designated the constructs as P9/P20 (starting with
pp65) and M9/M20 (starting with M1). To facilitate
in vitro assays, the polyepitope constructs integrated an
HA tag at the C-terminus. Co-expression of GFP was
made possible through an IRES element and served as
control for transduction as measured in immunoblot
(IB) analysis or flow cytometry (Fig. 1a, right).

Fig. 1 Optimizing the polyepitope DNA vaccine design. a Schematic DNA constructs encoding eight polyepitope model antigens (peptide sequences
were listed in Additional file 2, Table S1). Left, polyepitope P20 and M20 differ only in the position of epitopes pp65 and M1. Right, the polyepitope
constructs were subcloned into a retroviral vector driven by the MSCV promoter. The HA-tag and IRES-GFP were included to facilitate the in vitro
detection of polyepitope protein production. Ubmut, a mutated (G76V) ubiquitin. b Immunoblot (IB) analysis of the polyepitope proteins. Left, HeLa-A2
cells were transduced with indicated polyepitope constructs. Red arrowheads indicate the ubiquitinated polyepitope proteins. Right, HA/GFP ratio was
used to quantify relative levels of polyepitope proteins. Results combined from three independent experiments (mean ± SEM) were shown. c
Presentation of antigens by the transduced HeLa-A2 cells. Left, surface staining of the SVG9/HLA-A2 complexes with a TCR-mimic antibody. Mean
fluorescence intensity (MFI) of the SVG9/HLA-A2 signal relative to MFI of the co-expressed GFP (mean ± SEM, in triplicates) was shown. Middle, specific
lysis of transduced HeLa-A2 cells by SVG9-specific cytotoxic T cells was measured by a 51Cr-releasing cytotoxicity assay (E:T = 25:1). Right, DNA vaccines
induced G209-specific immune response in HHD II mice was measured by an IFN-γ ELISpot assay (mean ± SEM, n = 8). These experiments were
repeated at least once and representative results were shown. d Representative dot plots showing SVG9/HLA-A2 tetramer staining of CD8+ spleen
cells from the vaccinated HHD II mice. Numbers indicate frequencies in each quadrant. *P < 0.05, ***P < 0.001, t-test
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To study the expression and processing of the polyepi-
tope constructs, HeLa-A2 cells were transduced with dif-
ferent constructs. Cell lysates were immunoprecipitated
(IP) followed by IB to detect HA-tagged polyepitopes.
We found that GFP proteins were equally expressed in
the transduced cells, as determined by IB. However, the
P9 and P9-spacer constructs were undetectable while
M9 and M9-spacer constructs were readily detected
(Additional file 3, Fig. S1a, left), suggesting that polyepi-
topes starting with an unstable amino acid (such as N in
pp65) degraded more rapidly than constructs starting
with a stable residue (such as G in M1). This observation
is consistent with the N-end rule of protein degradation
[25]. The addition of spacers in both P9 and M9 con-
structs resulted in increased surface presentation of
SVG9 as determined by flow cytometric analysis using a
TCR-mimic antibody specific for SVG9/HLA-A2 [23].
But in the case of construct P20, the addition of spacers
did not increase the presentation of SVG9 (Additional
file 3, Fig. S1a, middle and right). These data suggest
that additional amino acids in the spacers flanking the 9-
mer epitopes might help with processing of the intact
minimal epitope, but that spacers may not be required if
native flanking sequences are present. We therefore de-
cided to focus on the DNA construct P20, which en-
codes long epitopes.
Because MHC I binding peptides are initially proc-

essed in the cytosol by the ubiquitin/proteasome path-
way [26], we hypothesized that integrating a mutant
form of ubiquitin (Ub G76V or Ubmut), which is resist-
ant to ubiquitin hydrolysis, to the N-terminus of the
polyepitope constructs could accelerate ubiquitination-
mediated degradation of the polyepitopes and antigen
processing. Indeed, integration of Ubmut before the poly-
epitope construct resulted in faster protein degradation,
compared with the same construct without the addition
of Ubmut, as determined by IB analysis (Fig. 1b). The in-
tegration of Ubmut does not impact the transduction effi-
cacy and protein expression, as the GFP levels were
similar comparing constructs with or without the Ubmut

tag. Notably, this increased polyepitope degradation
appeared to be associated with a higher surface presenta-
tion of HLA-A2/SVG9 complexes (Fig. 1c, left). The
degradation of polyepitope proteins was proteasome-
dependent, as addition of the proteasomal inhibitor
MG132 protected the proteins from rapid degradation
(Additional file 3, Fig. S1b). Consistent with the flow cy-
tometric analysis, in a 51Cr-releasing cytotoxicity assay
using an A2/G209-specific T cell line, HeLa-A2 cells
transduced with Ubmut-P20 were lysed more efficiently
compared to cells transduced with P20 (Fig. 1c, middle;
Additional file 3, Fig. S1c). Additionally, when the DNA
constructs were used to vaccinate HHD II mice, the
Ubmut-P20 vaccine generated more robust CD8 T cell

responses in vivo compared to the P20 vaccine, as
determined by an IFN-γ ELISpot assay (Fig. 1c, right;
Additional file 3, Fig. S1d) and SVG9/HLA-A2 tetramer
staining (Fig. 1d).
Taken together, these results suggested that a polyepi-

tope DNA construct encoding long epitopes (≥20 mers),
in tandem with an Ubmut fused to the N-terminus, is op-
timal for processing and presentation of epitopes among
the constructs tested. This design was therefore used for
subsequent studies. Of note, although the optimized vac-
cine is superior for the majority of the encoded antigens,
it is not superior for all antigens compared to the con-
trol vaccine (Additional file 3, Fig. S1c).

Optimized polyepitope neoantigen DNA vaccines elicit
immune responses in preclinical mouse breast cancer
models
We carried out proof-of-concept studies using E0771
and 4T1.2, two syngeneic murine mammary tumors.
E0771 and 4T1.2 recapitulate many of the biologic fea-
tures of human breast cancer, including the dynamic
tumor and immune system interactions restraining
endogenous immune responses and serve as models of
estrogen receptor-positive (ER+) and triple-negative breast
cancer (TNBC), respectively [27, 28]. We sequenced both
4T1.2 and E0771 and successfully identified candidate
neoantigens with strong predicted binding affinity to the
corresponding MHC class I alleles using pVACseq, a
computational pipeline [16, 17] (Additional file 2, Table
S2 and S3). Polyepitope Ubmut-E0771 and Ubmut-4T1.2
neoantigen DNA vaccines were created and used to vac-
cinate C57BL/6 or Balb/c mice, respectively. Neoantigen-
specific T cell responses were detected by IFN-γ ELISpot
assay for three neoantigens (Lrrc27 G330A, Plekho1
P251S, and Pttg1 V53L) encoded in the Ubmut-E0771
polyepitope DNA vaccine (Fig. 2a). Of note, short peptides
corresponding to the minimal MHC class I epitopes were
used in these assays, suggesting a CD8 T cell response.
Neoantigen-specific T cell responses were also detected
by IFN-γ ELISpot assay for four neoantigens (Gyk K505R,
Gpld1 R829W, Pram1 Q572L and Aars2 A697P) encoded
in the Ubmut-4T1.2 polyepitope DNA vaccine (Fig. 2b). All
four 4T1.2 neoantigens are known to contain CD4 epi-
topes as spleen CD4+ T cells isolated from mice vacci-
nated with peptides responded to peptide restimulation
ex vivo (Additional file 3, Fig. S2). These results confirmed
the ability of neoantigen DNA vaccines incorporating
Ubmut-polyepitope inserts to generate robust immune re-
sponses in clinically relevant preclinical models.
We created additional constructs that did not integrate

the mutant ubiquitin tag in the E0771 model system.
E0771 polyepitope DNA vaccines with or without the
Ubmut tag were used to vaccinate C57BL/6 mice. Results
from IFN-γ ELISpot assays demonstrated no statistically
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significant difference in the ability to induce neoantigen-
specific immune responses (data not shown).

Optimized polyepitope neoantigen DNA vaccines in
combination with checkpoint blockade inhibit tumor
growth in preclinical models
We next investigated whether antitumor immunity can
be generated by polyepitope neoantigen DNA vaccines.
In an initial study, polyepitope Ubmut-E0771 DNA
vaccine alone, in either prophylactic or therapeutic set-
tings, had only a marginal impact on subcutaneously
transplanted E0771 tumor growth (data not shown).
However, when combined with anti-PD-L1 ICB therapy,
the polyepitope Ubmut-E0771 neoantigen DNA vaccine
was able to enhance the antitumor response and
suppress E0771 tumor growth for the duration of the
experiment (Fig. 3a, b). At day 14, robust neoantigen-
specific T cell responses were detected in tumors
(Fig. 3c) and tumor-draining lymph nodes (Fig. 3d) fol-
lowing treatment with neoantigen DNA vaccines alone,
or neoantigen DNA vaccines plus anti-PD-L1 antibody.
At day 26, neoantigen-specific T cell responses persisted
only in mice treated with neoantigen DNA vaccines plus
anti-PD-L1 antibody (Fig. 3e). In mice that received
neoantigen DNA vaccines but not anti-PD-L1 antibody,
neoantigen-specific T cell responses returned to base-
line. These data suggest that in the setting of a tumor-
bearing mouse, addition of anti-PD-L1 is required for
persistent antitumor immunity following neoantigen
DNA vaccine treatment.
Unlike E0771, which is responsive to anti-PD-L1 treat-

ment, 4T1.2 is resistant to anti-PD-L1 monotherapy

(Additional file 3, Fig. S3a). In a pilot study, we found
that Ubmut-4T1.2 polyepitope DNA vaccine alone was
able to partially inhibit tumor growth in vivo (Additional
file 3, Fig. S3b). Further investigation is needed to under-
stand the changes in immune system and whether ICB
treatment will enhance the antitumor immunity induced
by Ubmut-4T1.2 polyepitope DNA vaccine.

Optimized polyepitope DNA vaccines induce similar
magnitude of immune responses as synthetic long
peptides
We compared the efficacy of polyepitope neoantigen
DNA vaccines with that of neoantigen SLP vaccines.
Vaccine schedules were optimized for each platform by
testing different doses and vaccination time points
(DNA vaccine), or different doses, vaccination time
points and molecular adjuvants (SLP vaccine) (data not
shown). IFN-γ ELISpot assays performed on the same
day indicated that the Ubmut-E0771 polyepitope neoanti-
gen DNA vaccine and the neoantigen SLP vaccine gen-
erated similar levels of T cell responses specific to the
three neoantigens (Fig. 4a). Likewise, polyepitope Ubmut-
4T1.2 DNA vaccine and SLP vaccine generated similar
levels of T cell responses specific to the four neoantigens
(data not shown).
Specificity of the immune response was further investi-

gated by means of cross-reactivity against corresponding
germline (wildtype) Lrrc27, Plekho1, and Pttg1 epitopes
over a range of concentrations. At physiologic concen-
trations, no reactivity was detected against all three WT
epitopes (Fig. 4b and data not shown). Of note, one of
the wild-type peptides (Lrrc27) was predicted to be a

Fig. 2 Polyepitope neoantigen DNA vaccine elicit neoantigen-specific T cell responses in vivo. Neoantigens were identified for E0771 and 4T1.2
breast cancer models. Polyepitope neoantigen DNA vaccines were created for each and were used to immunize mice by gene gun. Spleen cells
from mice vaccinated with polyepitope DNA vaccines (red) and control empty vector DNA (black) were harvested and used in IFN-γ ELISpot
assay. T cell responses to selected neoantigens were shown (mean ± SEM) for Ubmut-E0771 (a) and Ubmut-4T1.2 (b). Of note, 8- to 10-mer minimal
peptides were used in the assays for Ubmut-E0771 (a), but 29-mer long peptides were used for Ubmut-4T1.2 (b). Experiments were repeated at
least two more times for panel a, and similar results were obtained. **P < 0.01, ***P < 0.001, t-test
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strong binder, with a predicted binding affinity of
408.48 nM to H-2Db [netMHC 4.0 [29], http://www.cbs.
dtu.dk/services/NetMHC]. Additional analysis revealed
that both MT and WT Lrrc27 peptides bind equally well
to H-2Db (Additional file 3, Fig. S4A). At relatively high
concentration, some cross-reactivity was observed
against WT Lrrc27 peptide following vaccination with
either polyepitope DNA or SLP vaccines (Fig. 4b and
Additional file 3,Fig. S4b). These data suggest that T
cells induced by polyepitope Ubmut-E0771 DNA vaccines
preferably recognize MT neoantigens over WT counter-
parts when the density of peptide-MHC complexes is

low. Such specificity to neoepitopes is critical as tumor
cells typically only display relatively few neoantigen-
MHC complexes.

An optimized polyepitope neoantigen DNA vaccine
induced neoantigen-specific T cell responses in a patient
with metastatic neuroendocrine tumor
Cancer patient GTB16 was treated with an optimized
polyepitope neoantigen DNA vaccine. The pGTB16 vac-
cine was constructed as described for the preclinical
studies and was manufactured in the GMP facility at
WUSM. The DNA sequence of the pGTB16 construct

Fig. 3 Polyepitope E0771 neoantigen DNA vaccines combined with anti-PD-L1 immunotherapy suppressed tumor growth in vivo. a Scheduling
of DNA vaccination and anti-PD-L1 treatment. Wildtype female C57BL/6 mice (n = 15 per group) were vaccinated by gene gun on days − 4, − 1,
and 2 and challenged with 106 E0771 cells on day 0. Anti-PD-L1 or control antibodies were administered every 3–4 days. b Tumors were
measured with electronic calipers of the longest (L) and perpendicular (W) diagonals. Tumor sizes (mean ± SEM) were calculated as (L × W2)/2.
Results from one of the three independent experiments were shown. c In a parallel experiment, tumors were harvested and dissociated to
prepare single cell suspension on day 14. TILs were analyzed by Lrrc27/Db dextramer staining and flow cytometry. P = 0.0381, one-way ANOVA. d
Tumor-draining lymph nodes (LN) were harvested on day 14. LN cells were used in an IFN-γ ELISpot assay and stimulated with selected MT
peptides (8- to 10-mer). e Spleen cells were harvested from treated tumor-bearing mice on day 26 and used in an IFN-γ ELISpot assay. The
studies were repeated once and similar results were obtained. Error bars, SEM. *P < 0.05, **P < 0.01, ***P < 0.001, t-test
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and a list of targeted neoantigens can be found in
Additional file 1 and Additional file 2, Table S4. IFNγ
ELISpot assay performed after in vitro stimulation
indicated that the polyepitope neoantigen DNA vaccine
was able to induce T cell responses against select neoan-
tigens. For this patient, 13 neoantigens were targeted
by the DNA vaccine. Specific responses above back-
ground were demonstrated against three neoantigens
(TBC1D22A:p.R437S, TRPC4AP:p.T63M, and ZNF611:
p.D404G, Fig. 5).

Discussion
Recombinant DNA vaccines can generate potent im-
mune responses [30–33] and have progressed into clin-
ical trials targeting infectious disease agents and cancer
[34]. DNA vaccines are stable, relatively easy to design
and manufacture, and less expensive than synthetic long
peptide, viral or cell-based vaccine platforms. More im-
portantly, the molecular flexibility of the DNA vaccine
platform allows genetic modification of encoded anti-
gens, and/or incorporation of immune modulators to
improve immunogenicity. In this study, we constructed
polyepitope DNA vaccines encoding multiple cancer
neoantigens and evaluated multiple parameters of the
vaccine design including the length of neoepitopes,
inclusion of spacers, and/or inclusion of a mutant ubi-
quitin construct to enhance antigen presentation.
The polyepitope approach has been studied previously

and proved to be effective in priming T cell responses
against viral and conventional tumor antigens [24, 35–
37]. Polyepitope proteins require additional intracellular
processing in order to be loaded onto MHC molecules.
Studies of peptide vaccination in incomplete Freund’s
adjuvant (IFA) showed that longer peptides (25-mers) in
IFA can generate sustained CD8 T cell reactivity while
shorter peptides (8–10-mers) corresponding to minimal
epitopes induced only short-lived CD8 T cell responses
[38]. This may result from altered antigen processing
with minimal epitopes, or the inclusion of both CD4 and
CD8 epitopes in the longer epitopes. Since the goal of
neoantigen cancer vaccines is to generate a robust and
long-lasting cancer-specific immune response, we chose
to evaluate both short and long neoepitopes in the DNA
vaccines, with the understanding that maximizing pres-
entation of long neoepitopes would be preferred. There
is now evidence to suggest that long neoantigens may

Fig. 4 Polyepitope DNA vaccine generated similar magnitude of immune responses as synthetic long peptide vaccines. a Comparison of IFN-γ
ELISpot results (mean ± SEM) induced by polyepitope Ubmut-E0771 DNA vaccine and SLP vaccine. Wildtype C57BL/6 mice were vaccinated with
Ubmut-E0771 vaccine or a mixture of three SLPs. The schedule for both platforms was optimized independently. The IFN-γ ELISpot assay was
performed on the same day when immune responses are at peak level. The experiment was repeated once and similar results were obtained. b
Specificity of DNA vaccine-generated immune response towards neoantigens (MT) over corresponding WT peptides. An IFN-γ ELISpot assay was
performed by using 8- to 10-mer MT and WT peptides at different concentrations. Results shown were from one of the two independent
experiments. Results generated with high (2.5 μg/ml) and low (10 pg/ml) MT/WT Lrrc27 peptides were also shown. *P < 0.05, paired t-test

Fig. 5 An optimized polyepitope neoantigen DNA vaccine is
capable of inducing neoantigen-specific T cell responses in a patient
with metastatic pancreatic neuroendocrine cancer. PBMC from
patient GTB16 were obtained before (pre-vaccine) and after (post-
vaccine) vaccination with an optimized polyepitope neoantigen
DNA vaccine. PBMC were stimulated in vitro for 12 days with
peptides corresponding to the indicated neoantigens and then an
IFNγ ELISpot assay was performed. The number of spot forming cells
(SFC) specific for each neoantigen is indicated. Nonspecific
background counts, assessed by incubating cells without peptide
during the ELISpot assay, were subtracted. The assays were repeated
twice and similar results were obtained. Please note that the vaccine
incorporated 13 neoantigens. A robust response was observed to 3/
13 neoantigens. The other neoantigens did not induce a response
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contain neoantigen-specific CD4 helper T cell epitopes
with the potential to induce a more balanced CD8/CD4
response. Recent studies demonstrate that CD4 T cell
responses were induced by neoantigen vaccines even
though neoantigen prioritization was based primarily on
the binding affinity to MHC class I [7, 9, 39]. Our data
confirm that long neoantigens are equally well processed
and can induce robust neoantigen-specific CD8 and
CD4 T cell responses in vivo.
Amino acids flanking minimal epitopes play an im-

portant role in TAP-binding and proteasomal cleavage.
Researchers have used artificial linkers [24, 37] and furin
cleavage sites [36] to facilitate proteolytic cleavage and
antigen presentation. Previous studies indicated a prefer-
ence of natural flanking sequences in TAP-dependent
antigen presentation [40]. Some peptides are efficiently
presented by MHC I molecules but are poorly trans-
ported by TAP as minimal epitopes. Research suggested
that they can be more efficiently transported by TAP as
larger fragments with natural flanking amino acids,
which can be further trimmed in the endoplasmic
reticulum (ER) and bind to MHC class I molecules [40].
In the current study, we found that epitopes flanked by
natural sequences can be processed and presented ef-
fectively and adding a linker does not further enhance
antigen presentation. In order to minimize the risk of
junctional neoepitopes, we have developed a robust tool
(pVACvector) to assess for the presence of junctional
epitopes. pVACvector starts with the list of prioritized
neoantigens and uses the pVACseq software to predict
the binding score for each possible junctional peptide.
This information is used to order the neoantigen se-
quences in a way that minimizes junctional epitopes [17].
Current version of the pVACtools suite, which contains
pVACseq and pVACvector, is available at Github [41].
To enhance antigen presentation, we explored integra-

tion of a mutant ubiquitin tag as part of the polyepitope
DNA vaccine to facilitate protein degradation and
maximize antigen presentation. Early studies in the yeast
Saccharomyces cerevisiae demonstrated that a monoubi-
quitin conjugate can function as protein degradation sig-
nal [42]. Fusion of a ubiquitin molecule to a polyepitope
DNA vaccine was able to enhance CTL priming and im-
prove antitumor immune responses in an HPV-induced
preclinical model [24]. However, natural ubiquitin fu-
sions are unstable and prone to deubiquitination under
physiological conditions. The modification at the C-
terminal portion of ubiquitin, replacing the glycine with
a valine (G76V), metabolically stabilizes the fusion as re-
vealed by pulse-chase analysis [42, 43]. This “uncleava-
ble” Ubmut has been a useful tool in studying cell cycle
and apoptosis [18], as wells as autophagy [44]. We have
demonstrated in this study that the Ubmut tag does in-
deed improve antigen processing and presentation,

which in turn results in an enhanced immune response
in vitro (Fig. 1).
We created polyepitope DNA vaccines encoding

neoantigens identified in mouse breast cancer models
and tested these vaccines in vivo. Polyepitope DNA
vaccines were able to induce robust T cell responses to
some but not all neoantigens. This underscores the need
for further improvement of neoantigen prediction algo-
rithms. Our finding that a polyepitope neoantigen DNA
vaccine can induce robust T cell responses and antitu-
mor immunity is consistent with a recent report [36].
Although our findings confirm and extend the results of
Duperret et al., the polyepitope DNA vaccine designs
evaluated here are distinct. Duperret et al. constructed
polyepitope DNA vaccines encoding 33-mer neoantigens
separated by furin cleavage sites. We demonstrate that
furin cleavage sites are not required for robust neoanti-
gen presentation, and we have leveraged a publically
available software tool, pVACvector, to optimize the
order of neoantigens so that the risk of introducing
junctional epitopes is minimized. In addition, we inte-
grated the Ubmut tag to the constructs, which clearly
improves antigen processing and presentation, and
potentially the downstream immune responses. Of note,
the optimized polyepitope vaccine is not superior for
every neoantigen/model tested. For instance, a side-by-
side comparison of polyepitope DNA vaccines with or
without the Ubmut tag targeting the same neoantigens
identified in E0771 showed no statistically significant dif-
ference in magnitude of neoantigen-specific responses.
We hypothesize that some neoantigens are efficiently
processed and may not require targeting to the ubiquitin
pathway for presentation, while others are less efficiently
processed and benefit from targeting to the ubiquitin
pathway.
In spite of the ability to generate neoantigen-specific T

cell responses, the neoantigen DNA vaccines alone were
not able to protect animals from transplanted E0771 and
4T1.2 tumors. We present our observation that com-
binatorial immunotherapy of neoantigen DNA vaccine
plus anti-PD-L1 checkpoint blockade is capable of sup-
pressing E0771 tumor growth. One limitation in our
study is that we did not study in detail the mechanism(s)
of the antitumor immunity rendered by the optimized
polyepitope neoantigen DNA vaccine +/− ICB immuno-
therapy. Research into the cellular and molecular
changes occurring in the tumor microenvironment fol-
lowing combination therapy with ICB and neoantigen
DNA vaccine is currently underway in novel genetic
models. Preliminary data suggest that tumor growth in-
hibition by combination immunotherapy is associated
with sustained neoantigen-specific T cell responses and
CD8 T cell infiltration into the tumor (Fig. 3c–e). The
recent clinical success of ICB in treating various types of
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cancer [reviewed in [45–47]] has pushed it towards the
forefront of cancer therapy. We have initiated a randomized
phase 1 clinical trial that tests the efficacy of a polyepitope
neoantigen DNA vaccine +/− anti-PD-L1 in patients with
triple negative breast cancer (NCT03199040). This trial
represents unique bench-to-bedside-to-bench opportunities
to enhance the efficacy of neoantigen vaccines and check-
point blockade therapy.
Finally, we have treated a patient with metastatic neu-

roendocrine tumor with a polyepitope neoantigen DNA
vaccine. This is the first report of the use of a neoanti-
gen DNA vaccine in humans. The tumor of this patient
was refractory to standard of care treatment and showed
evidence of ongoing progression at the time when the
vaccination started on a compassionate use basis. Our
data demonstrate that polyepitope neoantigen DNA
vaccines are capable of inducing neoantigen-specific T
cell responses. The successful clinical translation of poly-
epitope neoantigen DNA vaccines will likely depend on
refinement of neoantigen prediction algorithms, combin-
ation therapies targeting the tumor microenvironment,
and an improved ability to assess the antitumor potential
of neoantigen-specific T cells. In this study, we observed
neoantigen-specific T cell responses to 3/13 neoantigens
included in the vaccine, highlighting the need to further
refine current neoantigen prediction algorithms. In
addition, neoantigen-specific T cells may not be effective
in mediating antitumor immunity if these T cells are
suppressed in the tumor microenvironment. For future
studies, we are planning to use innovative technologies
such as CyTOF, IMC, and CODEX, to investigate the
phenotype and function of neoantigen-specific T cells in
the tumor, and the impact of combination therapy on
the tumor microenvironment. These technologies will
allow a better understanding of the antitumor potential
of neoantigen-specific T cells.

Conclusions
We have optimized a polyepitope DNA vaccine design to
encode multiple neoantigens. Tumor/normal whole
exome sequencing and RNA sequencing were used to
identify and prioritize neoantigens in the E0771 and 4T1.2
preclinical breast cancer models, as well as a patient with
metastatic pancreatic neuroendocrine tumor. E0771 and
4T1.2-specific polyepitope neoantigen DNA vaccines were
able to induce robust immune responses and inhibit
tumor growth when combined with anti-PD-L1 check-
point blockade immunotherapy. Similarly, neoantigen-
specific immune responses were detected after vaccination
in a patient with metastatic neuroendocrine tumor. The
results provide strong evidence to support clinical transla-
tion of a polyepitope neoantigen DNA vaccine strategy.
We are currently evaluating the polyepitope neoantigen

DNA vaccine platform in phase 1 clinical trials in breast
and pancreas cancer (NCT03199040 and NCT03122106).
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