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Abstract

Background: Heat shock proteins (HSPs), a representative family of chaperone genes, play crucial roles in
malignant progression and are pursued as attractive anti-cancer therapeutic targets. Despite tremendous efforts to
develop anti-cancer drugs based on HSPs, no HSP inhibitors have thus far reached the milestone of FDA approval.
There remains an unmet need to further understand the functional roles of HSPs in cancer.

Methods: We constructed the network for HSPs across ~ 10,000 tumor samples from The Cancer Genome Atlas (TCGA)
and ~ 10,000 normal samples from Genotype-Tissue Expression (GTEx), and compared the network disruption between
tumor and normal samples. We then examined the associations between HSPs and cancer hallmarks and validated these
associations from multiple independent high-throughput functional screens, including Project Achilles and DRIVE. Finally,
we experimentally characterized the dual function effects of HSPs in tumor proliferation and metastasis.

Results: We comprehensively analyzed the HSP expression landscape across multiple human cancers and revealed a
global disruption of the co-expression network for HSPs. Through analyzing HSP expression alteration and its association
with tumor proliferation and metastasis, we revealed dual functional effects of HSPs, in that they can simultaneously
influence proliferation and metastasis in opposite directions. We experimentally characterized the dual function of two
genes, DNAJC9 and HSPA14, in lung cancer cells. We further demonstrated the generalization of this dual direction of
associations between HSPs and cancer hallmarks, suggesting the necessity to more carefully evaluate HSPs as therapeutic
targets and develop highly specific HSP inhibitors for cancer intervention.

Conclusions: Our study furnishes a holistic view of functional associations of HSPs with cancer hallmarks to aid the
development of HSP inhibitors as well as other drugs in cancer therapy.
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Background
Heat shock proteins (HSPs), as one of the largest families
of molecular chaperones [1], are traditionally divided into
9 families/sub-families based on their molecular weights:
HSP10 (HSPE), HSP20 (HSPB), HSP40 (DNAJA, DNAJB
and DNAJC), HSP60 (HSPD), HSP70 (HSPA), HSP90
(HSPC), and large HSPs [2]. HSPs in the same family usu-
ally have similar sequences and share functional domains.
For example, four members of the HSP90 family,
HSP90AA1, HSP90AB1, HSP90B1, and TRAP1, have ~
80% sequence similarity and share three functional do-
mains, an N-terminal ATP-binding domain, a middle
linker region, and a C-terminal domain [3]. HSPs often
function collaboratively to ensure the correct process of
protein folding [4, 5]. For example, HSP40s often act as
co-chaperones to transfer premature/misfolded peptides
to HSP70s [6], through which the peptide can be correctly
folded to make mature proteins [7]. HSPs that demon-
strate collaborative relationships are usually co-expressed
[8]. For example, HSPE1 and HSPD1 are co-expressed to
assist protein folding in the mitochondria [9].
Cancer hallmarks are common traits shared by cancers

and thus are significant for understanding cancer capabil-
ity and aiding the development of anti-cancer therapy
[10]. HSPs profoundly impact malignant progression
across multiple cancer types by manipulating cancer hall-
marks [11], including anti-apoptosis [12], proliferation
[13], metastasis [5], and angiogenesis [5]. For example,
HSPD1, an HSP60 member, arrests apoptosis by stabiliz-
ing the baculoviral inhibitor of apoptosis repeat-
containing protein 5 (BIRC5) in breast cancer [14].
HSPA8, an HSP70 member, promotes cell proliferation by
regulating Ras pathways in colorectal adenocarcinoma
[15]. CRYAB, an HSP20 member, promotes tumor metas-
tasis by activating the NF-ĸB pathway in gastric cancer
[16]. DNAJA3, an HSP40 member, modulates angiogen-
esis by destabilizing HIF1A in HeLa cells [17]. Further-
more, HSPs may contribute to two or more cancer
hallmarks. For example, HSP90B1, an HSP90 member, is
associated with proliferation [18], metastasis [19], and
angiogenesis [20] across multiple cancers. HSPA1, an
HSP70 member, is associated with proliferation [21], me-
tastasis [22], and anti-apoptosis [21] in several cancers.
HSPs represent promising therapeutic targets due to

their significant roles in tumorigenesis. Multiple HSP in-
hibitors, including 17AAG (HSP90 inhibitor) [23],
cmHsp70.1 (HSP70 inhibitor) [24], quercetin (HSP20 in-
hibitor) [18], and KNK423 (pan-HSP inhibitor) [25],
have been developed in recent decades. These drugs
have been tested in clinical trials, including a phase II
trial of 17AAG in breast cancer [26], phase II trial of
17AAG in melanoma [27], and phase I trial of
cmHsp70.1 in lung cancer [28]. However, none has been
approved by the US Food and Drug Administration

(FDA) for anti-cancer therapy [4]. There are many rea-
sons for these unfortunate failures. For example, these
drugs might encounter solubility issues to reach effective
dosage in vivo and/or fail to target the specific tissue
[29]. A further challenge for HSP drug development is
the limited understanding of the expression and func-
tions of HSPs in a context-dependent manner [4]. In this
study, we comprehensively analyzed multi-omic data
from The Cancer Genome Atlas (TCGA) [30], Cancer
Cell Line Encyclopedia (CCLE) [31], Project Achilles
[32], and Deep RNAi Interrogation of Viability Effects in
Cancer (DRIVE) [33] and performed functional experi-
ments to characterize HSPs across multiple cancer types
to aid future rationalized development of improved
HSP-targeted anti-cancer therapy.

Methods
Data collection
The mRNA expression profiles and clinical features of ~
10,000 patients across 33 human cancers were downloaded
from TCGA data portal (https://portal.gdc.cancer.gov/,
Additional file 1: Table S1) [30]. The protein expression
profiles of BRCA were downloaded from CPTAC (https://
cptac-data-portal.georgetown.edu/cptac/s/S015) [34]. The
mRNA expression profiles of ~ 1000 cancer cell lines were
downloaded from the CCLE (https://portals.broadinstitute.
org/ccle/about) [31]. The expression matrices of 29 normal
tissues were downloaded from GTEx (https://www.gtexpor-
tal.org/home/, Additional file 1: Table S2) [35]. We used
default expression unit from each dataset. For example,
TCGA used RNA-Seq by Expectation Maximization
(RSEM) [30], GTEx used Transcripts Per Kilobase Million
(TPM) [35], and CCLE used Fragments Per Kilobase Mil-
lion (FPKM) [31]. Due to this reason, we did not compare
gene expression across datasets directly. PPI were collected
from STRING (https://string-db.org/) [36]. Single gene
loss-of-function assays were collected from Project Achilles
(https://depmap.org/portal/) [32] and DRIVE (https://dep-
map.org/portal/) [33].

Correlation between mRNA and protein in TCGA
Protein expression matrix of TCGA was collected from
CPTAC (https://proteomics.cancer.gov/programs/cptac).
We only selected samples with both mRNA and protein
data in TCGA BRCA for analyses, since only BRCA have
enough proteomics data for comparisons. The compari-
son analyses used Spearman’s correlation and followed
by FDR adjustment for p value. Instances with Rs > 0.3
and FDR < 0.05 were considered as significance.

Construct co-expression network among HSPs
We collected gene expression data for 20 normal tissues
and matched tumor samples from GTEx and TCGA, re-
spectively. We constructed a co-expression network for
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each cancer type and normal tissue by calculating the
correlation between individual HSPs using Spearman’s
correlation. Only cancer type/tissue with ≥ 10 samples
was analyzed for co-expression. In each cancer type/tis-
sue, we adjust the p value with FDR method and consid-
ered Rs > 0.3 and FDR < 0.05 as significance. Random
sampling was performed by R 3.5 (https://cran.r-project.
org/). The random sampling sample size is equal to the
smaller sample size in tumor or normal tissues.

Characterize the expression alteration and survival
analyses
We used Student’s t test to assess the differential expres-
sion between TCGA tumor and paired normal samples
(Additional file 1: Table S1) and defined |fold change| >
1.5 and FDR < 0.05 as significant, as described in previous
studies [13, 37, 38]. Only cancer types with ≥ 5 paired
samples were included in these analyses. We used a Cox
model and log-rank test to assess whether HSP expression
was associated with the OS times in cancer patients and
considered FDR < 0.05 to indicate significance. We also
used Student’s t test for two groups and analysis of vari-
ance (ANOVA) for multiple groups to assess the statistical
difference of clinically relevant events, including cancer
subtype, stage, and grade across independent cancer types,
and considered FDR < 0.05 to indicate significance. Only
groups with ≥ 5 samples were included in these analyses.
All FDR adjustments were calculated in individual cancer
type for each clinically relevant event, respectively.

Estimate the associations between HSPs and tumor
proliferation
We used the well-known proliferation marker ki67 to re-
flect tumor proliferation across TCGA samples. We then
assessed the association between individual HSPs and
proliferation by Spearman’s correlation and considered
|Rs| > 0.2 and FDR < 0.05 to indicate significance [31].
We also applied this method in cancer cell lines. The
single gene loss-of-functions were calculated from Pro-
ject Achilles in ~ 1000 cancer cell lines [32]. The back-
ground proliferation score for each cell line was

estimated as

XN

i

Si

N , where S is the proliferation score for
each gene and N is the number of genes applied in the
loss-of-function assay. In Project Achilles, the case with
increased proliferation is rare, which may be due to the
reason that knocking out system is insensitive to tumor
suppressors [39–43]. Student’s t test was used to assess
the different associations with proliferation between in-
dividual HSPs and baseline, and cases with difference >
0.5 and FDR < 0.05 were considered to be significant.

Estimate associations between HSPs and EMT
We divided patient samples into a high group and a low
group according to the expression of individual HSP
genes across cancer types. For independent cancer type,
we divided all sample into two groups via median ex-
pression of each HSP genes. For example, to detect the
EMT enrichment of HSPA14 in BRCA, we divided all
BRCA tumor samples into two groups (HSPA14 high
expression vs. HSPA14 low expression) by median ex-
pression value of HSPA14. We then calculated the en-
richment in comparison of the two groups using GSEA
4.03 (https://www.gsea-msigdb.org/gsea/index.jsp) [32].
The gene set of EMT collected from MSigDB [33]. The
background is the whole genome genes. The EMT score

for each patient was estimated as
PN

i
Mi=N −

Pn

j
E j=n ,

where N is the number of epithelial genes and n is the
number of mesenchymal genes. The list of epithelial and
mesenchymal genes was collected from a previous study
[44]. We then calculated Spearman’s correlation between
individual HSPs and the EMT score across cancer types
and considered |Rs| > 0.3 and FDR < 0.05 to be
significant.

Cell culture and gene knockdown
A549 was purchased from the American Type Culture
Collection and cultured in DMEM/F12 with 10% fetal
bovine serum and 1% penicillin/streptomycin. A549 has
been tested and confirmed to be negative for myco-
plasma. On-TARGET plus SMART pool DNAJC9
siRNA (L-017868-01-0005) and HSPA14 siRNA (L-
021084-01-0005) were purchased from Dharmacon. siR-
NAs were resuspended in 1 ✕ siRNA buffer (GE Dhar-
macon) to obtain a 20 μM stock. The cells were
transfected with the indicated siRNA at 10 nM final con-
centrations with DharmaFECT 1 (T-2001-01, GE Dhar-
macon) according to the manufacturer’s instructions.

Cell proliferation assay
WST-1 (5015944001, Sigma) was used for the cell prolif-
eration assays according to the manufacturer’s instruc-
tions. Briefly, the cells were seeded in 96-well plates and
maintained at 37 °C and 5% CO2 for 24 h before further
processing. Ten microliters per well of cell proliferation
reagent WST-1 was added to the cells cultured in
100 μl/well, and the cells were incubated between 0.5~4
h. The amount of formazan dye produced was deter-
mined by measuring the absorbance at 450 nm using an
imaging reader (Cytation|5, BioTek).

EMT assay
Antibodies against E-cadherin (ab76055, 1:1000 western
blotting [WB]; immunofluorescence [IF], 1:200) and
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vimentin (ab92547, 1:1000 WB; IF, 1:200) were pur-
chased from Abcam. Secondary antibodies (1:2000) con-
jugated to horseradish peroxidase were purchased from
Santa Cruz Biotechnology. Secondary antibodies for im-
munofluorescence staining, anti-mouse and anti-rabbit
Alexa Fluor 488 and 546, were obtained from Molecular
Probes (1:1000).
For the western blotting assays, the cells were washed

in phosphate-buffered saline (PBS) 3 times and lysed dir-
ectly using Cell Signaling Technology lysis buffer (20
mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1
mM EGTA, 1% Triton X-100, 2.5 mM Sodium pyro-
phosphate, 1 mM β-glycerophosphate) for 30 min at
4 °C. The lysis buffer contained 1 ✕ protease inhibitor
cocktail and phosphatase inhibitor cocktail 2 and 3
(Sigma). Lysates were microcentrifuged at 4 °C at max-
imum speed (10,000g) for 10 min. The supernatant was
subjected to BCA Protein Assay (Thermo Scientific) to
quantify protein levels. The cell lysates were separated
on 8~16% gel (M00660, GenScript), transferred to poly-
vinylidene fluoride membranes, and probed with
antibodies.
For immunofluorescence microscopy, the cells were

plated on 35-mm glass-bottom dishes (MatTek) and
maintained at 37 °C and 5% CO2 for 24 h. Cells were
washed with 1 ✕ PBS 3 times and fixed in 4% parafor-
maldehyde for 15 min, permeabilized in 0.5% Triton X-
100 for 10 min, blocked with 3.75% BSA in PBS for 1 h
at room temperature, and incubated with primary anti-
body overnight at 4 °C. Secondary antibodies were ap-
plied for 1 h at 37 °C, stained with DAPI for 2 min, and
washed with PBS three times. Images were acquired on
a Nikon confocal system.

Results
Global disruption of co-expression network of HSPs in
cancer
HSP genes included 9 families/sub-families and each
family/sub-family has conserved functional domains. To
comprehensively characterize HSPs, we collected 82
HSP genes with functional domains and classified into 9
families/sub-families by their molecular weights [5]
(Additional file 1: Table S3): HSP10 (one gene), HSP20
(11 genes), HSP40s (48 genes: four, 13 and 31 genes for
subfamily DNAJA, DNAJB, and DNAJC, respectively),
HSP60 (one gene), HSP70 (15 genes), HSP90 (four
genes), and large HSP (two genes). We first investigated
the expression of HSPs at both mRNA level and protein
level from BRCA patient samples (see the “Methods”
section), and we observed that majority of HSPs (49/57,
86.0%) are highly correlated between mRNA and protein
level (Spearman’s correlation [Rs] > 0.3 and FDR < 0.05,
Fig. 1a), including HSP40 members DNAJC1 (Rs = 0.73,
FDR < 2.2 × 10−16), GAK (Rs = 0.80, FDR < 2.2 × 10−16),

HSP70 member HSPA4 (Rs = 0.76, FDR < 2.2 × 10−16),
and large HSP member HYOU1 (Rs = 0.78, FDR < 2.2 ×
10−16, Additional file 1: Fig. S1A). In the absence of pro-
tein expression across large number of cancer samples,
our observation suggested that mRNA expression could
partially represent the protein expression of HSPs.
Given that HSPs are universally co-expressed to exert

their functions [5], we constructed the co-expression net-
work of HSPs in normal tissues and matched tumor tis-
sues. We first characterized the co-expression network by
calculating Rs among HSPs across 20 normal tissues from
The Genotype-Tissue Expression Portal (GTEx) [35]
(3321 unique pairs). We detected 26,005 co-expressions
from 3064 unique HSP pairs across all tissues, ranging
from 28 co-expression in cervix uteri to 2121 co-
expression in stomach (Fig. 1b and Additional file 1: Fig.
S1B). We collected protein-protein-interaction (PPI) net-
work of HSPs from STRING database and observed that
1684 co-expressed HSPs (1684/3064, 55.0%) showed ex-
perimentally validated PPI, suggesting the reliability of our
co-expression network (Additional file 1: Fig. S1B). We
then constructed the co-expression network of HSPs in 20
matched tumor tissues and detected 7026 co-expressions
from 1937 unique HSP pairs across all cancer types, ran-
ging from 57 co-expression in OV to 658 co-expression in
TGCT (Fig. 1b and Additional file 1: Fig. S1C). The num-
ber of co-expressions was significantly reduced in tumor
compared to normal tissues (26,005/7026; 3.70-fold de-
crease), suggesting lost co-expression of HSPs in cancer.
For example, there are 969 co-expressions in normal lung
tissue, but only 351 in lung cancer (2.76-fold decrease,
Additional file 1: Fig. S1D). A similar scenario was visual-
ized in normal breast tissue versus breast cancer (1417 vs.
245 co-expressions; 5.78-fold decrease, Additional file 1:
Fig. S1E). To eliminate the potential effects from sample
size, we performed 1000 times random sampling for the
same sample size in lung vs. lung cancer and breast vs.
breast cancer. We observed that number of co-
expressions was still significantly reduced in tumor com-
pared to normal tissues, which further validated our major
conclusion that the co-expression network is globally dis-
rupted in cancer (Additional file 1: Fig. S1F). The global
disruption of HSP co-expression may affect their functions
(Fig. 1c). For example, DNAJA3 and HSP90B1, which cor-
related with each other in 12 normal tissues, including
breast (Rs = 0.50, false discovery rate [FDR] = 8.83 × 10−16)
and lung (Rs = 0.49, FDR =1.69 × 10−13), had no significant
co-expression in tumor tissues (breast invasive carcinoma
[BRCA], Rs = 0.08, FDR = 0.14, and lung adenocarcinoma
[LUAD], Rs = − 0.05, FDR = 0.55; Additional file 1: Fig.
S1G). Many HSP pairs were co-expressed in both normal
and tumor tissues (Fig. 1c). For example, HSPD1 corre-
lated with HDPE1 in normal tissues, including breast (Rs =
0.73, FDR < 2.2 × 10−16) and lung (Rs = 0.87, FDR < 2.2 ×
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Fig. 1 (See legend on next page.)
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10−16), as well as in matched cancer types, including
BRCA (Rs = 0.69, FDR < 2.2 × 10−16) and LUAD (Rs = 0.83,
FDR < 2.2 × 10−16, Additional file 1: Fig. S1H). Importantly,
we observed 2599 tumor-specific co-expressions from 1371
unique HSP pairs across all cancer types (Fig. 1c). For ex-
ample, HSPB1 and DNAJC30 correlated with each other in
eight cancer types, including BRCA (Rs = 0.39, FDR < 2.2 ×
10−16) and LUAD (Rs = 0.47, FDR < 2.2 × 10−16), but had no
significant or reduced co-expression in normal tissues, in-
cluding breast (Rs = − 0.01, FDR = 1) and lung tissue (Rs =
− 0.23, FDR = 4.6 × 10−5, Additional file 1: Fig. S1I). Target-
ing these tumor-specific co-expressions may provide a
novel strategy for the development of HSP inhibitors.
Taken together, our results revealed a global disruption of
co-expression between individual HSPs, suggesting func-
tional rewiring of the HSP network in cancer.

Dysregulation of HSP expression in cancer
We further investigated aberrant expression of individual
HSPs between paired tumor and normal tissue samples
across cancer types and defined fold change (FC) > 1.5
and FDR < 0.05 as significantly differential expression.
We observed 380 instances of differential expression, in-
cluding 164 upregulated expressions and 216 downregu-
lated expressions across cancer types (Fig. 2a),
suggesting dual roles of HSPs as both tumor-promoting
and tumor-suppressing in cancer. Most individual HSPs
showed a consistently altered direction across multiple can-
cer types, suggesting their consistent roles in cancer. For
example, DNAJC9 was upregulated in 8 cancer types, in-
cluding bladder urothelial carcinoma (BLCA), stomach
adenocarcinoma (STAD), and lung squamous cell carcin-
oma (LUSC), while DNAJC27 was downregulated in 9 can-
cer types, including LUAD, kidney renal clear cell
carcinoma (KIRC) and BRCA. About 80% (65/82) of HSPs
showed aberrant expression, ranging from one cancer type
(e.g., DNAJC25) to 15 cancer types (e.g., HSPB6). More im-
portantly, some expression alterations were consistent with
known functions in promoting or repressing tumors. For
example, HSP90AB1, an oncogene [45], was upregulated in
8 cancer types, while DNAJB4, a tumor suppressor [46],
was down-regulated in 12 cancer types. We further exam-
ined the expression alterations for each HSP family. For ex-
ample, the HSP90 family, including HSP90AB1,
HSP90AA1, HSP90B1, and TRAP1, had 21 instances of dif-
ferential expression, with the majority showing

upregulation (19/21 = 90.5%). In contrast, the HSP20 family
had 99 instances of differential expression, of which most
(85/99 = 85.9%) were downregulated. Some families showed
more diverse alterations in gene expression. For example,
the HSP70 family had 73 instances of differential expres-
sion, 53.4% of which showed upregulation while 46.6%
showed downregulation. This may imply that the failure of
drugs that inhibit HSP70 is due to the inconsistently aber-
rant expression patterns of these HSPs in cancer.
Furthermore, the differential expression of individual

HSPs was associated with the clinically relevant events
[47, 48] across cancers that we observed 1185 significant
associations between HSPs and clinical relevance (Fig. 2a
and b and Additional file 1: Fig. S2A). For example, up-
regulated HSPs, including HSPA6 (Student’s t test, FC =
1.82, FDR = 7.0 × 10−14) and DNAJC9 (FC = 3.87, FDR <
2.2 × 10−16), were associated with worse overall survival
(OS) in KIRC (Kaplan–Meier test, p = 1.4 × 10−4) and
LUAD (p = 4.8 × 10−3) (Additional file 1: Figs. S2B and
S2C). These genes are highly expressed in late stage of
KIRC (FDR = 0.001) and LUAD (FDR = 4.8 × 10−4), dif-
ferentially expressed across subtypes of KIRC (FDR =
8.9 × 10−14) and LUAD (FDR = 9.3 × 10−9), and highly
expressed in high grade of KIRC (FDR = 1.4 × 10−6, and
FDR = 3.6 × 10−9) (Additional file 1: Figs. S2D - S2F). In
contrast, downregulated HSPs, including DNAJC28 (FC =
− 2.43, FDR < 2.2 × 10−16) and DNAJC27 (FC = − 1.83,
FDR = 1.6 × 10−16), were associated with worse OS in
KIRC (p = 8.2 × 10−3) and LUAD (p = 0.012) (Fig. 2a and
b). These genes are highly expressed in early stage of
KIRC (FDR = 4.0 × 10−6) and LUAD (FDR = 9.3 × 10−4),
differentially expressed across subtypes of KIRC (FDR =
8.3 × 10−12) and LUAD (FDR = 4.4 × 10−5), and highly
expressed in low grade of KIRC (FDR = 0.0066, and FDR =
2.2 × 10−7) (Additional file 1: Figs. S2D - S2F). Taken
together, our comprehensive analysis of HSPs across dif-
ferent cancer types demonstrated global alterations and
the potential prognostic value of HSPs in cancer.

Dual functional effects of HSPs in cell proliferation
Cell proliferation is one of the major hallmarks of tu-
mors [49]. To characterize the functional roles of HSPs
in cell proliferation, we calculated the Rs between indi-
vidual HSPs and the well-known proliferation marker
ki67 [50] across cancer types. We identified a total of
920 significant associations, 456 positive associations

(See figure on previous page.)
Fig. 1 Global disruption of HSP co-expression network in cancer. a Expression correlation between mRNA level and protein level of HSP genes in
BRCA samples. Red dots denote significant correlation (Rs > 0.3 and |FDR| < 0.05). Colored blocks in inner circle denote HSP family/subfamily. b
Schematic diagram for HSP co-expression network in normal tissues (blue) and matched cancer types (red). Colored ovals denote number of co-
expression pairs detected in normal and tumor tissues (right panel). c HSP co-expression network in normal and tumor tissues. Each pie chart
denotes percentage of co-expression is cancer tissue only (red), normal tissue only (blue), shared by cancer and normal tissues (yellow), and
insignificant ones (gray). The cluster was based on co-expression pattern in cancer

Zhang et al. Genome Medicine          (2020) 12:101 Page 6 of 16



A
0.05

<10-10
10-5

<−4

−2

0

2

4
Fold

FDR

|FC| > 1.5
& FDR < 0.05

Expression up-regulated in tumor Expression down-regulated in tumor

−10

0

10

D
N

A
JC

2
D

N
A

JC
9

D
N

A
JC

22
D

N
A

JC
5B

D
N

A
JC

10
D

N
A

JC
5

D
N

A
JC

1
D

N
A

JC
4

G
A

K
D

N
A

JC
12

S
A

C
S

D
N

A
JC

25
D

N
A

JC
3

D
N

A
JC

8
D

N
A

JC
6

D
N

A
JC

19
D

N
A

JC
11

D
N

A
JC

15
D

N
A

JC
16

D
N

A
JC

28
D

N
A

JC
18

D
N

A
JC

27

D
N

A
JB

11
D

N
A

JB
13

D
N

A
JB

3
D

N
A

JB
14

D
N

A
JB

1
D

N
A

JB
9

D
N

A
JB

5
D

N
A

JB
4

H
S

PA
5

H
S

PA
6

H
S

PA
4

H
S

PA
7

H
S

PA
13

H
S

PA
14

H
S

PA
9

H
S

PA
4L

H
S

PA
1B

H
S

PA
1A

H
S

PA
12

B
H

S
PA

1L
H

S
PA

12
A

H
S

PA
2

H
S

P
B

1
C

R
YA

A
H

S
P

B
11

H
S

P
B

9
H

S
P

B
8

H
S

P
B

2
H

S
P

B
3

C
R

YA
B

H
S

P
B

7
H

S
P

B
6

D
N

A
JA

3
D

N
A

JA
1

D
N

A
JA

4

H
S

P
90

B
1

T
R

A
P

1

H
S

P
90

A
B

1

H
S

P
90

A
A

1

H
S

P
D

1
H

S
P

E
1

H
S

P
H

1
H

Y
O

U
1

N
o.

 o
f c

an
ce

r 
ty

pe
s

BLCA
BRCA
COAD
ESCA
HNSC
KICH
KIRC
KIRP
LIHC

LUAD
LUSC
PRAD
READ
STAD
THCA
UCEC

B

HSP

Clinical 
relevance

Stage

Grade

Subtype

Survival

HSP70
HSP90

HSP60

DNAJA (HSP40)
DNAJB (HSP40)
DNAJC (HSP40)

HSP20
HSP10

Large HSP

HSP families

H
S

P
E

1

O
D

F
1

H
S

P
B

9

H
S

P
B

3

H
S

P
B

2
C

R
YA

A
H

S
P

B
8

H
S

P
B

1
H

SP
B6

HSP
B7

HSPB11

CRYA
B

DNAJA
1

DNAJA
3

DNAJA
4

DNAJA2

DNAJB8

DNAJB14

DNAJB3

DNAJB2

DNAJB5

DNAJB1

DNAJB6

DNAJB12

DNAJB13

DNAJB9
DNAJB7

DNAJB4
DNAJB11DNAJC24DNAJC11DNAJC15SEC63

DNAJC13

D
N

AJC
21

D
N

AJC
17

D
N

A
JC

19

D
N

A
JC

25

D
N

A
JC

3

D
N

A
JC

30

H
S

C
B

D
N

A
JC

1

D
N

A
JC

14

D
N

A
JC

7

D
N

A
JC

18

D
N

A
JC

16

D
N

A
JC

4
D

N
A

JC
27

D
N

A
JC

5
D

N
A

JC
2

D
N

AJC
8

D
N

AJC
10

DNAJC22
GAK

DNAJC28

DNAJC6

DNAJC12

DNAJC5B

SACS

DNAJC9

HSPD1

HSPA1A

HSPA1B

HSPA13

HSPA2

HSPA7

HSPA8

HSPA6

HSPA14
HSPA4L

HSPA12A HSPA12B HSPA1L HSPA5 HSPA
9 HSPA

4 TR
AP

1

H
SP

90
AA

1

H
S

P
90

A
B

1

H
S

P
90

B
1

H
YO

U
1

H
S

P
H

1

THCA
TGCT
STAD
PAAD
LUAD
KIRP
KIRC
KICH

COAD
BRCA
BLCA
ACC

UCEC
STAD
PAAD

OV
LIHC
LGG
KIRC

HNSC
ESCA
CESC
BLCA

UVM
UCS

UCEC
THYM
THCA
STAD

SKCM
SARC
READ
PRAD
PCPG

OV
MESO
LUSC
LUAD
LIHC
LGG

LAML
KIRP
KIRC
KICH

HNSC
GBM

ESCA
DLBC
COAD
CESC
BRCA
BLCA
ACCSTAD

LUSC
LUAD
KIRC
GBM

BRCA
BLCA

0

10

Fig. 2 (See legend on next page.)

Zhang et al. Genome Medicine          (2020) 12:101 Page 7 of 16



and 464 negative associations from 97.6% (80/82) of the
HSPs, suggesting dual functional effects of HSPs in
tumor proliferation (Fig. 3a). Multiple individual HSPs
had consistent association with proliferation across can-
cers, suggesting their consistent roles in promoting or
suppressing cell proliferation. For example, DNAJC9
positively correlated with cell proliferation in 32 cancer
types, and HSPA14 positively correlated with cell prolif-
eration in 24 cancer types. By contrast, HSPB2 negatively
correlated with cell proliferation in 20 cancer types, and
DNAJB2 negatively correlated with cell proliferation in
18 cancer types. To further confirm the functional roles
of HSPs in cell proliferation, we analyzed the expression
profiles of ~ 1000 cancer cell lines from CCLE [31] and
observed similar divergent patterns. For example, in
HSP40 families, DNAJC9 positively correlated with cell
proliferation across all cancer cell lines (Fig. 3b) and 14
cancer lineages (Additional file 1: Fig. S3A), while
DNAJB9 negatively correlated with cell proliferation
across all cancer cell lines, as well as 13 cancer lineages.
Interestingly, HSPs from the same family/subfamily may
either promote or suppress cell proliferation. For example,
in the HSP70 family, HSPA4 positively correlated with cell
proliferation in 14 cancer types, while HSPA1L negatively
correlated with cell proliferation in 14 cancer types. In the
DNAJB (HSP40) subfamily, DNAJB11 positively correlated
with cell proliferation in 16 cancer types, while DNAJB9
negatively correlated with cell proliferation in 17 cancer
types. Taken together, our results suggest dual functional
effects of HSPs in tumor cell proliferation.
To further confirm the functional effects of individual

HSPs in cell proliferation, we analyzed the cell prolifera-
tion data from Project Achilles, a project experimentally
that characterized the effects of genes on cell prolifera-
tion by gene knockout [32]. We collected the prolifera-
tion score of each cell line for the individual HSP
knockout condition and compared it to the background
proliferation score (see the “Methods” section). We ob-
served that the knockout of 15 HSPs led to significantly
lower proliferation scores (difference ≥ 0.5 and FDR <
0.05; Fig. 3c). For example, the knockout of HSPE1 (dif-
ference = 1.85, FDR < 2.2 × 10−16), HSPA9 (difference =
1.08, FDR < 2.2 × 10−16), and DNAJC9 (difference = 0.99,
FDR < 2.2 × 10−16), significantly reduced cell prolifera-
tion. Similar pattern was observed within cancer cell line
linages. For example, knockout of HSPE1, HSPA9, and

DNAJC9 significantly reduced cell proliferation across 21
cancer cell lineages (Additional file 1: Fig. S3B). We also
confirmed the proliferation score from DRIVE, a project
experimentally that characterized the effects of cell pro-
liferation by gene knockdown [33]. By analyzing the pro-
liferation score for the knockdown of individual HSPs,
we observed that the knockdown of HSPE1, HSPA9, and
DNAJC9 decreased cell proliferation (difference ≥ 0.5
and FDR < 0.05, Additional file 1: Fig. S3C). Knockdown/
out experiments are known to be sensitive to loss-of-
functions [51], so these results confirmed the strong
effect of aberrant HSP expression, which positively cor-
related with ki67 in promoting cell proliferation. Taken
together, our multi-dimensional data analysis suggested
dual functional effects of HSPs in cell proliferation.

Dual functional effects of HSPs in cancer metastasis
Metastasis, another significant hallmark of cancer, is the
major cause of death among cancer patients [52], and epi-
thelial–mesenchymal transition (EMT) plays a critical role
in metastasis [53]. To investigate the functional roles of
individual HSPs in metastasis, we assessed their enrich-
ment associated with EMT [54] by comparing highly-
expressed and lowly-expressed HSP groups through gene
set enrichment analysis (GSEA) and defined FDR < 0.05 as
significant (see the “Methods” section) [55]. We identified
1513 significant HSP enrichments (FDR < 0.05), of which
749 were positive enrichments (promoting EMT) and 764
were negative enrichments (suppressing EMT) from all
HSPs (100%, 82/82), suggesting dual functional effects of
HSPs in cancer metastasis (Fig. 4a). Individual HSPs
showed consistent enrichment in EMT, suggesting their
consistent roles in promoting or inhibiting metastasis. For
example, HSPA12B was positively enriched in 23 cancer
types, including LUAD (FDR < 0.0001, Fig. 4b). In con-
trast, DNAJC19 was negatively enriched in 26 cancer
types, including BRCA (FDR < 0.0001, Fig. 4c). Several
HSPs were either positively or negatively enriched in EMT
in different cancer types. For example, DNAJC1 was posi-
tively enriched in 12 cancers, including BLCA (FDR <
0.0001, Fig. 4d), while it was also negatively enriched in 11
cancers, including KIRC (FDR < 0.0001 Fig. 4e). Of inter-
est, HSPs from the same family/subfamily showed either
promotion or suppression of metastasis (Fig. 4a). For ex-
ample, in the HSP20 family, HSPB7 was positively
enriched in 22 cancer types, while HSPB9 was negatively

(See figure on previous page.)
Fig. 2 Aberrant expression of HSPs in cancer. a Expression alterations of HSPs between tumor and paired normal tissue samples across cancer
types. Histogram height denotes the number of cancer types with differentially expressed HSPs. Dots denote upregulation (red) and
downregulation (blue). Dots with black edges denote significant difference (|FC| > 1.5 and FDR < 0.05). Multi-colored bar in the middle panel
denotes HSP families. b Clinically relevant HSPs across human cancers. Colored cells in outer circle denote significant events. Colored bars in
middle circle denote numbers of significant cases. Red, blue, green, and yellow denote significant cases in grade, stage, subtype, and survival.
Inner circle denotes HSP families
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enriched in 25 cancer types. In the HSP70 family, HSPA7
was positively enriched in 19 cancer types, while HSPA14
was negatively enriched in 19 cancer types. We also per-
formed GSEA analysis in TCGA normal samples and ob-
served that the enrichment score in normal tissues is
significantly lower than tumor samples (p = 0.0049, Add-
itional file 1: Fig. S4A).
We further confirmed these enrichments through cor-

relation analysis, in which we calculated the EMT score
for each TCGA sample, following a previous study [44].

We then estimated Spearman’s correlation between the
EMT score and the expression level of individual HSPs
across cancer types. We observed patterns similar to those
found in the EMT enrichment analysis (Additional file 1:
Fig. S4B). For example, HSPA12B positively correlated
with the EMT score in LUAD (Rs = 0.41, FDR < 2.2 ×
10−16, Additional file 1: Fig. S4C), while DNAJC19 nega-
tively correlated with the EMT score in BRCA (Rs = 0.36,
FDR < 2.2 × 10−16, Additional file 1: Fig. S4D). DNAJC1
positively correlated with the EMT score in BLCA (Rs =
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0.34, FDR = 2.5 × 10−12, Additional file 1: Fig. S4E), while
it negatively correlated with the EMT score in KIRC (Rs =
0.46, FDR < 2.2 × 10−16, Additional file 1: Fig. S4F). In the
HSP70 family, HSPB12B positively correlated with 25 can-
cer types, while HSPA9 negatively correlated with 11 can-
cer types. Taken together, our results demonstrated dual
functional effects of HSPs in tumor metastasis.

Dual functions of individual HSPs in cancer proliferation
and metastasis
The aforementioned analyses revealed dual functional ef-
fects among HSPs and HSP families in malignancy, but
individual HSPs usually showed consistent associations

across cancer types. Therefore, individual HSPs should
be valuable targets in cancer treatment. Given that most
HSPs correlated with cell proliferation and all HSPs cor-
related with EMT in human cancers, individual HSPs
should present functional roles in either cell prolifera-
tion or metastasis. Further analyses showed that 34 HSPs
could contemporaneously promote cell proliferation and
metastasis in the same cancer type (Fig. 5a and Add-
itional file 1: Fig. S5A), suggesting their potential utility
as therapeutic targets in cancer treatment. For example,
SACS, a DNAJC (HSP40) member, promoted both cell
proliferation and EMT in 12 cancer types, including
BLCA, head and neck squamous cell carcinoma (HNSC),
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Fig. 5 Dual functional effects of individual HSPs in proliferation and metastasis. a HSPs with dual functional effects in proliferation and metastasis.
Dots denote HSPs with dual functions in promoting both proliferation and metastasis (dark blue), inhibiting both proliferation and metastasis
(cyan), promoting proliferation but inhibiting metastasis (red), inhibiting proliferation but promoting metastasis (magenta), respectively. Only
instances have significant associations with both proliferation and EMT in a given cancer type were shown. Four arrows denote four directions,
including proliferation (+) EMT (+), proliferation (+) EMT (−), proliferation (−) EMT (+), and proliferation (−) EMT (−), respectively. b Correlation and
enrichment of DNAJC9 and HSPA14 with proliferation and EMT. c Reverse-transcription polymerase chain reaction was performed to confirm
siRNA knockdown of HSPA14 or siDNAJC9. d Cell proliferation. Growth rates of A549 cells using WST-1 reagent. Absorbance was measured at λ =
450. e Western analysis of E-cadherin and vimentin expression. GAPDH was used as loading control. f Representative images of A549 cells
transfected with siRNA for HSPA14 or DNAJC9 for 48 h and immunostained with E-cadherin (red) or vimentin (green). Scale bars, 10 μm. The plots
at the right show the quantification of the intensity of E-cadherin (siCON, n = 65 (cells); siHSPA14, n = 80; siDNAJC9, n = 64) or vimentin (siCON,
n = 64; siHSPA14, n = 64; siDNAJC9, n = 64). Error bars denote the standard deviation
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and LUAD. In contrast, 39 HSPs could contemporan-
eously suppress cell proliferation and metastasis. For ex-
ample, DNAJC28 inhibited both cell proliferation and
EMT in 14 cancer types, including BLCA, BRCA, and
KIRC. More complicated, we observed 378 instances of
opposite directions of promotion vs. suppression from
72 HSPs affecting cell proliferation and EMT (Fig. 5a
and Additional file 1: Fig. S5A). For example, DNAJC9
promoted cell proliferation while inhibiting EMT in 18
cancer types, including BLCA, LUAD, and STAD.
CRYAB, an HSP20 member, inhibited cell proliferation
while inhibiting EMT in 14 cancers, including BRCA,
LUAD, and prostate adenocarcinoma (PRAD). We found
significantly more instances of opposite HSP functions
in cell proliferation and EMT compared to instances of
consistent HSP functions (378 vs. 189, χ2 test, p = 1.78 ×
10−8, Additional file 1: Fig. S5B), which might be a hur-
dle for the development of HSP inhibitors. Furthermore,
the situation is also complicated within each HSP fam-
ily/subfamily. For example, in the HSP90 family,
HSP90B1 promoted proliferation and EMT, while
HSP90AA1, HSP90AB1, and TRAP1 promoted prolifera-
tion but inhibited EMT in BRCA. In the HSP70 family,
HSPA13 promoted proliferation and EMT, while
HSPA14 promoted proliferation but inhibited EMT in
LUAD. This may explain the failure of clinical trials of
HSP90 [23] and HSP70 [24] inhibitors.
Among these HSPs, DNAJC9 and HSPA14 are two top

genes with striking dual functions in that they promoted
cell proliferation but inhibited EMT in 18 and 17 cancer
types, respectively (i.e., in LUAD, Fig. 5b). We applied
siRNAs to knockdown DNAJC9 or HSPA14 in A549
cells and successfully repressed these two genes (Fig. 5c,
p < 0.01), respectively. With efficient reduction of expres-
sion, cell proliferation was reduced significantly upon
knockdown of DNAJC9 or HSPA14 (p < 0.01, Fig. 5d).
EMT is typically characterized as the loss of epithelial
cell adhesion and gain of mesenchymal phenotype [56].
Upon knockdown of DNAJC9 or HSPA14, we observed
decreased E-cadherin expression and increased vimentin
expression (Fig. 5e), which were confirmed by confocal
microscopy (Fig. 5f), suggesting the enhancement of EMT.
Taken together, our results demonstrated dual functional
roles of individual HSPs in cell proliferation and metasta-
sis. Those dual functional effects indicate that new thera-
peutic treatments should be carefully designed when
targeting individual or multiple HSPs in cancer.

Functional effects of HSPs associated with cancer
hallmarks
Beyond cell proliferation and metastasis, we further in-
vestigated the functional effects of HSPs associated with
the cancer hallmarks of genomic instability and muta-
tion, cancer cell stemness, angiogenesis, anti-apoptosis,

glycolysis, hypoxia, and inflammation (see the “Methods”
section). The majority of HSPs were associated with
these cancer hallmarks (Additional file 1: Fig. S6A) and
demonstrated strong functional effects among all these
hallmarks (Fig. 6a and Additional file 1: Fig. S6B). HSPs
showed dual functional effects across all the hallmarks.
For example, 258 positive associations and 234 negative
associations were found between HSPs and mutation
burden, 375 positive associations and 339 negative asso-
ciations between HSPs and angiogenesis, and 623 posi-
tive associations and 641 negative associations between
HSPs and inflammation (Fig. 6a). Furthermore, HSP
families also showed dual functional effects across these
cancer hallmarks. For example, in the HSP70 family,
HSPA5 and HSPA6 were positively associated with the
hypoxia score in 23 and 20 cancers, respectively, while
HSPA1L was negatively associated with hypoxia in 19
cancers. In the HSP40 family, DNAJC25 and DNAJC8
were positively associated with stemness in 16 and 14 can-
cers, respectively, while DNAJC11 and DNAJC3 were
negatively associated with stemness in 25 and 25 cancers,
respectively. In the HSP20 family, HSPB6 was negatively
associated with glycolysis in 14 cancers, while HSPB1 was
positively associated with glycolysis in 11 cancers. These
results suggest that interactively identifying associations
between HSPs and cancer hallmarks is necessary to detect
individual HSPs as targets in anti-cancer treatment.
To identify potential candidates, we combined all ten

hallmarks included in this study and highlighted individ-
ual HSPs that had a consistent direction of effect in ≥ 5
hallmarks. Fifteen genes showed positive associations
with hallmarks across 17 cancer types (Fig. 6b). For ex-
ample, HSP90B1 was positively associated with 9 cancer
hallmarks, such as proliferation [57], EMT [58], and in-
flammation [59], which is consistent with the findings of
other studies. This result suggested that HSP90B1 is a
potential target in anti-cancer treatment and that it will
be necessary to design a more specific inhibitor to target
HSP90B1. Other potential targets include individual
HSPs such as DNAJB11, an HSP40 member that is posi-
tively associated with 8 cancer hallmarks, and HYOU1, a
large HSP member that is associated with 5 cancer hall-
marks. In contrast, we identified 22 individual HSPs that
were negatively associated with ≥ 5 hallmarks across 22
cancer types (Fig. 6c). Of interest, 16 (16/22, 72.7%) of
them are HSP40 family members, including DNAJC28,
which was associated with 10 hallmarks across 8 cancers;
DNAJC19, which was associated with 8 hallmarks across 5
cancers; and DNAJC30, which was associated with 6 hall-
marks across 5 cancers. That result suggested that these
genes are broad suppressors of multiple cancer hallmarks.
We ranked HSPs with same direction of associations
across multiple cancer hallmarks (Additional file 1: Fig.
S6C). For example, HSP90B1 is positively associated with
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six hallmarks in BRCA, and HYOU1 is positively associ-
ated with six hallmarks in LUSC, suggesting they may be
candidate for targeted therapy in BRCA and LUSC.

Discussion
Given the critical role of HSPs in tumorigenesis, mul-
tiple HSP inhibitors, including pan-HSP inhibitors (e.g.,
KNK423 [25]) and HSP family-specific inhibitors (e.g.,
HSP90i 17AAG [23] and HSP20i quercetin [18]), have
been developed during the past decades. Unfortunately,
none of them has been approved by the FDA as anti-
cancer treatment, which may be due to either poor drug
responses or severe side effects [4, 5, 13]. To aid the de-
velopment of HSP inhibitors, we performed comprehen-
sive analyses in large-scale datasets to understand the
features of HSPs. Previous studies showed coordination
among HSPs (e.g., HSP40s and HSP70s [6]) in their
function as chaperones. Through a comprehensive ana-
lysis of a large number of samples across tens of normal
tissues and cancer types, we demonstrated a global dis-
ruption of the co-expression network of HSPs in tumor
samples, suggesting disruption of the chaperone func-
tions of HSPs in tumorigenesis. Furthermore, individual
HSPs play significant roles in tumorigenesis. For ex-
ample, DNAJA1, an HSP40 gene, stabilizes mutated p53
isoforms, including p53R156P and p53R157H in multiple
cancers [60]. Here, we showed global alterations of HSPs
across multiple cancer types, which 79.3% of HSPs
showed alterations in at least one cancer type. For ex-
ample, the HSP90 family was largely upregulated, while
the HSP20 family was mainly downregulated. Our re-
sults partially explain the failure of pan-HSP inhibitors
in anti-cancer therapy.
Drugs recently designed on the basis of an HSP family

(e.g., HSP90 inhibitor 17AAG [23] and HSP70 inhibitor
cmHsp70.1 [28]) have also failed in clinical trials. Here,
we showed the heterogeneity of HSPs within a family.
For example, in the HSP40 family, DNAJC9 promoted
cell proliferation, while DNAJB2 suppressed cell prolifer-
ation [51, 61]. Similar to this situation, in the HSP70
family, a druggable HSP family [29], HSPA12B promoted
metastasis, while HSPA9 suppressed metastasis. Current
HSP70 inhibitors, including 15-DSG [62], MAL3-101
[63], and VER155008 [64], have been designed to target
the domain or structure shared across HSP70 members
[65]. These HSP70-specific inhibitors may not distin-
guish HSPA9 from HSPA12B, which may lead to

complicated consequences in anti-cancer therapy. Our
results further explained the failure of HSP inhibitors
designed based on a certain HSP family.
We revealed a much more complicated phenomenon, in

that individual HSPs can be contemporaneously involved
with different cancer hallmarks. For example, 23 HSPs pro-
moted cell proliferation but suppressed metastasis, while 19
HSPs suppressed cell proliferation but promoted metasta-
sis. Among these, we experimentally validated the dual
functions of DNAJC9 and HSPA14 in a lung cancer cell
line. We further demonstrated the generalization of this
pattern across multiple cancer hallmarks, including angio-
genesis, hypoxia, and inflammation. Our results demon-
strated the complexity of developing HSP inhibitors, even
based on individual HSPs. It is necessary to design more
specific HSP inhibitors based on selected HSPs. In addition,
HSP and hallmark associations may have opposite effects in
different subtypes. We investigated PAM50 subtypes of
breast cancer, a classical subtype definition, to reveal the as-
sociations between HSP and hallmarks across different sub-
types (Additional file 1: Fig. S7). We observed the opposite
effects in different subtypes. For example, HSPB1 is posi-
tively associated with inflammation in basal but negatively
associated with inflammation in luminal B. The definition
of subtypes is significant and complicated across multiple
cancer types [66–69], suggesting the necessity to consider
subtype for tumor heterogeneity.

Conclusions
This study expands our knowledge of the involvement of
HSPs in tumorigenesis and may guide the development
of HSP inhibitors in the future. More importantly, our
research provides a novel paradigm based on integrative
analysis for other drug development, including HDAC
inhibitors [70] and RAS inhibitors [71].
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Fig. 6 Dual functional effects of individual HSPs among cancer hallmarks. a Association between HSPs and eight cancer hallmarks. Red and blue
bars in the outer rings denote the number of cancer types with positive and negative associations. The colored rectangles in the middle denote
HSP families. The colored sections of the inner ring denote the cancer hallmarks. b HSPs positively associated with ≥ 5 cancer hallmarks across
cancer types. c HSPs negatively associated with ≥ 5 cancer hallmarks across cancer types. The thickness of the curve denotes the number of
cancer types with associations between HSPs and cancer hallmarks in b and c
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