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resistance dated to the pre-treatment era
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Abstract

Background: Multidrug-resistant (MDR) Mycobacterium tuberculosis complex strains not detected by commercial
molecular drug susceptibility testing (mDST) assays due to the RpoB I491F resistance mutation are threatening the
control of MDR tuberculosis (MDR-TB) in Eswatini.

Methods: We investigate the evolution and spread of MDR strains in Eswatini with a focus on bedaquiline (BDQ)
and clofazimine (CFZ) resistance using whole-genome sequencing in two collections ((1) national drug resistance
survey, 2009–2010; (2) MDR strains from the Nhlangano region, 2014–2017).

Results: MDR strains in collection 1 had a high cluster rate (95%, 117/123 MDR strains) with 55% grouped into the
two largest clusters (gCL3, n = 28; gCL10, n = 40). All gCL10 isolates, which likely emerged around 1993 (95%
highest posterior density 1987–1998), carried the mutation RpoB I491F that is missed by commercial mDST assays.
In addition, 21 (53%) gCL10 isolates shared a Rv0678 M146T mutation that correlated with elevated minimum
inhibitory concentrations (MICs) to BDQ and CFZ compared to wild type isolates. gCL10 isolates with the Rv0678
M146T mutation were also detected in collection 2.

Conclusion: The high clustering rate suggests that transmission has been driving the MDR-TB epidemic in Eswatini
for three decades. The presence of MDR strains in Eswatini that are not detected by commercial mDST assays and
have elevated MICs to BDQ and CFZ potentially jeopardizes the successful implementation of new MDR-TB
treatment guidelines. Measures to limit the spread of these outbreak isolates need to be implemented urgently.
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Treatment escape, Treatment failure
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Background
Tuberculosis (TB) is a significant global health problem
that is exacerbated by the increasing incidence of drug-
resistant TB (DR-TB) [1]. Delayed diagnosis and inappro-
priate treatment of DR-TB, together with suboptimal im-
plementation of infection control measures, contribute to
the emergence and transmission of multidrug-resistant and
extensively drug-resistant (MDR, resistant to isoniazid
[INH] and rifampicin [RMP]; XDR, MDR strains with add-
itional resistance to a fluoroquinolone [FQ] and one
second-line injectable drug [SLID]) Mycobacterium tuber-
culosis complex (Mtbc) strains [2, 3].
Eswatini, a small kingdom bordered by South Africa

and Mozambique, has a high burden of TB, MDR-TB
and HIV-TB, with an estimated TB incidence of 308
cases per 100,000 and an HIV prevalence of 27% among
15–45 year olds [2, 4]. Between 1997 and 2009, the bur-
den of MDR-TB increased 7-fold from 0.9 to 7.7%
among patients newly diagnosed with TB. Among
retreatment cases, the proportions of MDR-TB quadru-
pled from 9.1% in 1997 to 33.9% in 2009 [4, 5]. To ad-
dress the expanding MDR-TB epidemic, Eswatini has
rolled-out the Xpert MTB/RIF, a rapid molecular TB
diagnostic with the additional benefit of diagnosing RMP
resistance; has expanded access to universal first- and
second-line drug susceptibility testing (DST); and has
decentralized DR-TB care [6].
A better understanding of the factors contributing and/

or driving the MDR-TB epidemic in Eswatini is needed to
inform these TB control strategies. This is particularly im-
portant because of two unusual findings in this setting.
First, we previously showed that one in three MDR-Mtbc
strains from the Eswatini 2009–2010 TB drug resistance
survey (DRS) harbour the RpoB I491F mutation that is
not interrogated by any of the molecular DST (mDST) as-
says endorsed by the World Health Organization (WHO)
[4]. Thus, it is likely that a considerable number of pa-
tients with MDR-TB are incorrectly diagnosed as having
drug-susceptible TB [4]. This mutation is estimated to ac-
count for 0.5% of RMP resistance globally but is frequent
in Eswatini because of the clonal transmission of an out-
break strain that has also been described in neighbouring
South Africa [7, 8]. By contrast, it is not clear to what ex-
tent clonal transmission is responsible for the proportion
of RMP resistance that is detected by Xpert (i.e. strains
with mutations in the RMP resistance determining region
of rpoB).
Second, we have demonstrated that some of the RpoB

I491F outbreak isolates harbour mutations in Rv0678,
which encodes the repressor of the MmpS5-MmpL5 ef-
flux pump [7]. If these mutations abolish or reduce the
function of Rv0678, an increase in the minimum inhibi-
tory concentrations (MICs) to both bedaquiline (BDQ)
and clofazimine (CFZ) via increased efflux of both agents

would be expected [9]. Both drugs have been prioritized
for the longer MDR-TB regimens in the most recent
WHO guidelines and are used in the standardized
shorter MDR-TB regimen [10]. Moreover, CFZ is used
throughout the entire duration of the recently WHO-
endorsed shorter all-oral, BDQ-containing MDR-TB
regimen [10, 11]. Clinically significant MIC increases to
one or both drugs pre-dating the approval of BDQ
would be a serious concern [7].
To investigate the resistance mechanisms, evolution,

population structure, and transmission dynamics of
MDR/XDR strains in Eswatini in detail, we first per-
formed high-resolution genotyping, including whole-
genome sequencing (WGS), for the isolates collected as
part of the aforementioned national DRS from 2009 [4,
5]. Moreover, we conducted MIC testing for BDQ and
CFZ to explore the potential effects of Rv0678 mutations
on the resistance to both agents. Finally, we used WGS
to assess the population structure of MDR strains and
the frequency of Rv0678 mutations collected in the
Nhlangano region between 2014 and 2017.

Methods
Strain collections
Collection 1
The isolates included in this analysis were collected as
part of the TB-DRS in 2009–2010, which has been de-
scribed in detail elsewhere [4]. Ethical approval was ob-
tained from the Ministry of Health Scientific and Ethics
Committee of Eswatini/Swaziland and the Ethics Review
Board of Médecins Sans Frontières (MSF). Inclusion in
the study was voluntary and after signing of an informed
consent form. A total of 412 Mtbc strains were included
in this study: 124 MDR, 1 XDR, 267 fully susceptible
(DS), and 20 single-drug-resistant (SDR) or poly-drug-
resistant (PDR) isolates but non-MDR. For general strain
identification, genotyping by 24-loci mycobacterium in-
terspersed repetitive unit-variable number of tandem re-
peat (MIRU-VNTR) typing and spoligotyping was
performed. Additionally, WGS was undertaken for 273
isolates, including all DR isolates and a random selection
of DS isolates (122 MDR [two MDR isolates could not
be regrown to obtain sufficient DNA for WGS], 1 XDR,
20 SDR/PDR, and 130 DS isolates).
Four genomes from other sources (EMBL-EBI European

Nucleotide Archive sequence read archive [study accession
IDs: PRJNA393767 [12], PRJEB20942 [13], PRJEB5280 [14],
and PRJNA395592 [15]]) were used to demonstrate that
the Rv0678 N98D, G121R, and M146T mutations were ho-
moplastic (Additional file 1: Table S1) [16, 17].

Collection 2
The genomes of 21 MDR isolates from a study evaluat-
ing thin-layer agar (TLA) DST conducted at the
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Nhlangano Health Centre microbiology laboratory were
included to investigate cluster rates and genome charac-
teristics of strains from a more recent period (i.e. be-
tween 2014 and 2017, with the majority of isolates from
2015 to 2016; Additional file 1: Table S2). The study
protocol was approved by the Institutional Review Board
of the Institute of Tropical Medicine (ITM); the Ethics
Committee of the University Hospital of Antwerp,
Belgium; and the Ministry of Health Scientific and Ethics
Committee of Eswatini. Inclusion in the study was vol-
untary and after signing of an informed consent form.
All consecutive patients investigated in Nhlangano (Shi-
selweni) for presumptive TB, older than 15 years, who
had not received TB treatment in the previous month,
and consented to be part of the study were included.
Further details can be found in the supplementary
methods (Additional file 2).

Laboratory procedures
Culture and drug susceptibility testing
Culture and phenotypic DST was performed as stated previ-
ously [4, 5]. CFZ and BDQ MICs were measured using the
1% proportion method with the MGIT960 system and the
EpiCenter TBeXiST software according to the manufac-
turer’s instructions (Becton Dickinson, USA). The following
concentrations were tested for both drugs: 0.125, 0.25, 0.5,
0.75, and 1mg/L. Isolates susceptible at 0.125 or resistant at
1mg/L tests were retested using an extended concentration
range (i.e. 0.0312 and 0.0625, or 2 and 4 μg/mL, respectively).
BDQ and CFZ MIC of Rv0678 mutant isolates (n= 25; 24
MDR and 1 DS), wild type isolates (n= 12; 7 MDR, 2 SDR/
PDR, 4 DS; 4 of these were closely related to the Rv0678mu-
tant strains [3 gCL 10 strains, 1 S-type strain] and eight were
randomly selected) were determined. H37Rv ATCC 27294
was included for quality control in each batch but excluded
from the statistical analysis (see Additional file 2 and
Additional file 1: Table S3).

Classical genotyping
Twenty-four-loci MIRU-VNTR typing and spoligotyping
was done using standard approaches as described in sup-
plemental methods previously (Additional file 2). Results
were analysed using Bionumerics (version 7.6.3; Applied
Maths [bioMérieux, Belgium]). Phylogenetic strain clas-
sification and MLVA-MTBC 15-9 nomenclature assign-
ment was performed using the MIRU-VNTRplus
database [18]. Clusters were defined as two or more
Mtbc isolates sharing identical genotyping patterns ac-
cording to both methods used.

Whole-genome sequencing and data analysis
Genomes were sequenced as described previously [19].
The analysis of WGS data was done with bioinformatic
pipelines and parameters described before including

those for evolutionary studies [19, 20]. A detailed
description is provided in the supplement (Additional
file 2). WGS data was submitted to the EMBL-EBI
European Nucleotide Archive sequence read archive
under the study IDs: PRJEB37777 [21], PRJEB6273 [22],
PRJEB9680 [23], and PRJEB7281 [24] (Additional file 1:
Tables S2 and S4).

Statistical analysis
Genotyping results were recorded at the molecular typ-
ing laboratory and added to the survey database.
Distributions of categorical variables between two

comparison groups were compared with Fisher’s exact
test. Comparisons of continuous variables were per-
formed with a 2-sample t test or Wilcoxon rank-sum
test. BDQ and CFZ MICs of mutant and wild type iso-
lates were compared with the Mann-Whitney U test.
We used an alpha level of 5% for all statistical tests.

Results
Population structure, clustering rates, and evolution of
Mycobacterium tuberculosis complex strains from national
drug resistance survey from 2009 to 2010
Based on classical genotyping, the 412Mtbc strains in-
vestigated were classified into nine previously defined
phylogenetic lineages and sublineages, which showed no
difference in distribution across the four study regions
of HhoHho, Lubombo, Manzini, and Shiselweni (Table 1,
Additional file 3: Fig. S1 and S2). Cluster (CL) analysis
revealed that 278 of the 412 isolates investigated (67%)
grouped into 60 MIRU-VNTR/spoligotype clusters
(mCL) that comprised between 2 and 34 isolates (Add-
itional file 1: Table S5). The mCL rate was significantly
higher among MDR/XDR isolates (90%) compared to
DS, SDR, or PDR isolates (58%) (p < 0.001). In fact, the
two largest clusters mCL6 (n = 34, S-type) and mCL15
(n = 23, X-type) consisted of MDR isolates only (Add-
itional file 1: Table S5).
To further investigate the phylogeny and degree of

clonality of MDR-Mtbc strains and to identify potential
success markers on the genome level (e.g. potential com-
pensatory mutations [19]), we performed WGS of a subset
of 273 isolates (Additional file 3: Fig. S3). These included
all drug-resistant isolates (122 MDR, 1 XDR, and 20 SDR/
PDR) and a random selection of 130 DS isolates.
The genome-based phylogeny confirmed the strain

classification based on classical genotyping (Fig. 1).
WGS-based cluster analysis (gCL) based on a 12 SNP
distance revealed that 173 of the 273 isolates were in 32
clusters ranging in size from 2 to 40 isolates (Fig. 1 and
Additional file 1: Table S5). With 95%, the cluster rate
among MDR/XDR was very high (117/123 analysed
MDR/XDR isolates), whereas the rate of SDR/PDR/DS
was only 37% (56/150 analysed SDR/PDR/DS isolates).
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Isolates of the two largest clusters (i.e. gCL3 [n = 28, X-
type] and gCL10 [n = 40, S-type]) represented 55% of the
M/XDR isolates investigated (Additional file 1: Table S5).
Bayesian coalescent analysis suggested that the most

recent common ancestors of each of the 11 MDR gen-
ome clusters, respectively, emerged approximately 6.9 to
20.5 years prior to the Eswatini DRS in 2009–2010
(Table 2). The two largest MDR clusters, gCL10 and
gCL3, likely emerged 17.2 years (12.4–22.6 years 95%
HPD) and 20.5 years (13.6–24.5 95% HPD) prior to the
DRS.

Resistance mediating and compensatory mutations
One hundred twenty-three isolates had variations in
KatG, 129 in RpoB, 113 in EmbB, 120 in PncA, 67 in rrs
(streptomycin [SM]), 8 in GyrA, and 65 had variations in
RpsL (Fig. 1 and Additional file 1: Table S6). The most
common mutations found in katG and rpoB were the
low fitness cost mutations resulting in S315T amino acid
substitution (84%, 117/139 INH-resistant isolates) and
S450L (47%, 60/127 RMP-resistant isolates; S531L E. coli
numbering), respectively. The second most frequent mu-
tation in RMP-resistant isolates was RpoB I491F (31%,
40/127 RMP-resistant isolates; I572F E. coli numbering)
(Additional file 1: Table S6). Twenty-five isolates were
found to have mutations in Rv0678, a gene involved in
resistance to BDQ and CFZ (one Beijing isolate, and 24
gCL10 MDR outbreak cluster isolates, see below and
Additional file 1: Table S6).
The analysis of compensatory mutations revealed that

45 isolates had a variant in RpoB, 11 in RpoA, and 52 in
RpoC (Additional file 1: Table S6). Among gCL and
non-gCL RMP-resistant isolates, 73% (86/118) and 44%
(4/9) harboured putative compensatory mutations,
respectively.

We then correlated the detected resistance mutations
with the gCL classification. This underlined the high
clonality of the outbreak cluster isolates defined by the
cluster analysis. For example, all 40 gCL10 isolates carried
the same mutations in KatG (S315T), RpoB (I491F), EmbB
(M306I), and PncA (H51D), including a subgroup of 24
isolates with additional mutations in Rv0678 (Add-
itional file 1: Table S3). All 28 gCL3 isolates shared the
same mutations in KatG (S315T), RpoB (S450L), EmbB
(M306I), and PncA (R154G) (Additional file 1: Table S7).
Based on Bayesian coalescent analysis, we calculated a

dated maximum clade credibility tree (MCCT) for the S-
type lineage and mapped the identified drug resistance-
associated mutations to the MCCT (Fig. 2). This analysis
showed that isolates of gCL10 acquired resistance to all
four first-line drugs and streptomycin (SM) before they
started spreading in the community. Isolates of gCL10 ac-
quired further variants in Rv0678 and compensatory mu-
tations in RpoB and RpoC (Additional file 1: Table S6).

Phylogenetic analysis of Rv0678 mutations and their
impact on clofazimine and bedaquiline minimum
inhibitory concentrations
We observed four different Rv0678 mutations in collec-
tion 1 (Additional file 1: Table S6). A single DS Beijing
isolate harboured an A110V mutation, whereas the
remaining three occurred in 24 of the 40 gCL10 MDR
outbreak cluster isolates with the RpoB I491F mutation
(21 isolates with Rv0678 M146T, 2 isolates with Rv0678
N98D, and 1 isolate with Rv0678 G121R; Fig. 2). The
three mutations associated, i.e. Rv0678 G121R, N98D,
and M146R, with lineage 4 (S-type) strains in the gCL10
MDR cluster evolved independently 5-8 years prior to
the DRS (Additional file 1: Table S7). Further, all three
mutations were found in other strain collections and im-
portantly other Mtbc lineages such as lineage 4

Table 1 M. tuberculosis phylogenetic lineages identified in the isolates analysed

Lineage (sublineage) Non-MDR/DS (n = 287) MDR1 (n = 125) Overall (n = 412)

No. % No. % No. %

Beijing 82 28.6 6 4.8 88 21.4

Delhi/CAS 3 1.1 0 0.0 3 0.7

East African/Indian 18 6.3 15 12.0 33 8.0

Euro-American (Haarlem) 13 4.5 6 4.8 19 4.6

Euro-American (LAM [Latin-American/Mediterranean]) 72 25.1 5 4.0 77 18.7

Euro-American (S-type) 10 3.5 46 36.8 56 13.6

Euro-American (Swaziland 1) 11 3.8 0 0.0 11 2.7

Euro-American (Swaziland H37Rv like) 18 6.3 91 7.2 27 6.6

Euro-American (URAL) 1 0.4 0 0.0 1 0.2

Euro-American (X-type) 43 15.0 38 30.4 81 19.7

Euro-American superlineage 16 5.6 0 0.0 16 3.9
1Includes one XDR strain
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(Haarlem sublineage) and lineage 2 (Beijing) (Additional
file 1: Table S1). This homoplasy (i.e. independent acqui-
sition of one trait/mutation in distinct phylogenetic
backgrounds) is often a sign of positive selection [26].
To investigate their impact on resistance levels, we

measured the BDQ and CFZ MICs for all Rv0678 mu-
tants in comparison with genotypically wild type (gWT)
control isolates that did not harbour any mutations in
Rv0678, three of which were gCL10 strains without
Rv0678 mutations (see the “Methods” section, Fig. 3A,
B). The 21 gCL10 outbreak isolates with the Rv0678
M146T mutation had significantly elevated MICs for
BDQ and CFZ relative to gWT strains (p < 0.001 for
both drugs; Fig. 3A, B) as well as compared to gWT
gCL10 strains (p < 0.05). This was also apparent when

comparing the modes of the MIC distributions of the
M146T mutation, which were three times higher than
those of gWT isolates (i.e. 0.75 mg/L vs. 0.25 mg/L), al-
though both distributions overlapped considerably. In
fact, even if areas of technical uncertainty (ATUs, as out-
lined in Additional file 2) were introduced at 0.75–1mg/
L for both drugs, a proportion of these mutants would
still be classified as susceptible because of the technical
variation in MIC testing (i.e. the non-wild type cut-off
value (NCOFF) for CFZ was 0.25 and 0.125 mg/L for
BDQ, which would have to be tested to reliably detect
this mutation, Fig. 3A–C).
The MIC increases for both drugs were also statisti-

cally significant for the two strains with the Rv0678
N98D mutation (BDQ: 100% of MICs ≥ 0.5 mg/L, p

Fig. 1 Phylogenetic diversity of 273 M. tuberculosis complex isolates from Eswatini. Data are presented in a maximum likelihood tree (MLT) based
on 12,062 SNP positions. Phylogenetic lineages are displayed. Cluster genome: isolates in one cluster share the same colour. Occurrence of
resistance mediating and putative compensatory mutations in RpoB and RpoC are highlighted; identical mutations share the same colour
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Table 2 Emergence of main MDR genome clusters and association with putative compensatory mutations

gCL (N isolates) Lineage Cluster age [years] (95% HPD) Isolates with putative compensatory mutation

1 (8) EAI 15.8 (9.7–22.3) 0 (0%)

3 (28) X-type 20.5 (13.6–24.5) 28 (100%)

6 (7) EAI 16.5 (11.2–22.7) 7 (100%)

8 (5) Beijing 7.8 (4.7–11.3) 2 (40.0%)

9 (4) S-type 6.9 (3.5–11.2) 0 (0%)

10 (40) S-type 17.2 (12.4–22.6) 33 (82.5%)

12 (3) Haarlem 7.3 (3.0–12.4) 3 (100%)

16 (6) Swaziland H37Rv like 10.8 (6.6–15.4) 3 (50.0%)

19 (3) X-type 12.8 (5.0–18.3) 3 (100%)

21 (3)1 X-type 18.4 (11.4–22.3) 0 (0%)

30 (4) X-type 7.2 (3.0–8.4) 0 (0%)

HPD highest posterior density
1MDR isolates only

Fig. 2 Maximum clade credibility tree of the S-type lineage. gCL10, the largest MDR cluster in Eswatini, has been circulating for 17.2 years prior to
the DRS conducted in 2009–2010. Three different Rv0678 mutations occurred within this cluster. The M146T mutation was the most common
(n = 21) and likely arose 6.7 years prior to the DRS. The N98D (n = 2) and G121R (n = 1) must have evolved within 5.5 and 7.8 years prior to the
DRS, respectively. Isolates, for which BDQ and CFZ MICs were measured, are highlighted (Fig. 3 and Additional file 1: Table S3)
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value 0.03297; CFZ: 100% of MICs ≥ 0.5 mg/L, p value
0.01099). The BDQ and CFZ MICs for the strain with
Rv0678 mutation G121R were 2 mg/L and, thus, fell into
the resistant range but could not be evaluated statisti-
cally as this mutation was observed only once. Similarly,
statistical analyses could not be performed for the
Rv0678 A110V mutation, which tested susceptible to
CFZ and BDQ with MICs of 0.5 mg/L.

Population structure of multidrug-resistant
Mycobacterium tuberculosis complex strains from the
Nhlangano region between 2014 and 2017
The genome-based cluster analysis of MDR-Mtbc strains
from the TLA study revealed a high cluster rate (20 out of
21) with isolates from four genome clusters already found
in collection 1 (Additional file 1: Table S2). Isolates of the
two dominant outbreaks now accounted for seven (gCL3,
33%) and nine (gCl10, 43%) of the 21 MDR strains investi-
gated (because of the different sampling strategies, these
frequencies could not be directly compared with those
from the DRS). Six of the nine gCl10 isolates (67%) shared
the aforementioned Rv0678 M146T mutation.

Discussion
This study confirmed that clonal transmission of par-
ticular MDR-Mtbc outbreak clones has been the main
driver of the MDR-TB epidemic in Eswatini. In fact, the
two dominant gCL3 and gCL10 outbreak strains had
already acquired resistance to all first-line drugs and SM
when they began to circulate approximately 30 years
ago. Our data show that in the DRS from 2009, the most
frequent outbreak strain (gCL10) accounted for 30% of
MDR isolates. Thereafter, it continued to spread, as
shown by our analysis of collection 2, to reach 56% in
the latest national DRS from 2017 to 2018 as outlined in
the WHO Global tuberculosis report 2019 [1, 27].
Unfortunately, we did not have access to the genomes of
the strains from this latest DRS, which would have pro-
vided an even clearer picture of the MDR-TB epidemi-
ology in Eswatini. Nevertheless, our results supported a
number of notable conclusions.
Although all WHO-endorsed mDST assays do not in-

terrogate the RpoB I491F that is common to all gCL10
strains, we found that these strains all shared the KatG
S315T mutation that is covered by all WHO-endorsed
line probe assays for first-line drugs. Therefore, isolates
with this KatG mutation could be prioritized for reflex
testing with assays capable of detecting RpoB I491F to
inform treatment decisions [28]. To this end, we have
started to implement the targeted next-generation se-
quencing (NGS) assay Deeplex-MycTB in Eswatini,
which not only covers all major resistance genes to trad-
itional first- and second-line drugs as well as Rv0678 but
also enables genotyping based on the spoligotype and
phylogenetically informative mutations from primary
specimens, e.g. sputum [29, 30]. Such a triage approach
will, however, inevitably be slower than diagnosing RMP
resistance testing with Xpert, which may provide a con-
tinued evolutionary advantage to gCL10 [6]. Accord-
ingly, a prospective investigation of the current
epidemiological scenario related to the spread of the
gCL10 outbreak strains is planned.
In addition to being resistant to all first-line drugs,

the gCL10 clone acquired multiple Rv0678 mutations
that correlate with elevated MICs to BDQ and/or CFZ
and have been circulating since 2009 (and likely several
years earlier, as indicated in the dated phylogenies).
The evolutionary pressures for this phenomenon are
not clear. BDQ was not used in Eswatini at the time of
the first DRS and was not introduced on a larger scale
until 2015 in the first clinical trials [31]. Given that
CFZ featured in an MDR-TB treatment guideline from
2008 [32], we cannot exclude that individual patients
were treated with CFZ in Eswatini or neighbouring
countries. Alternatively, antifungal azoles, which are
commonly used in sub-Saharan Africa, may be respon-
sible [33].

Fig. 3 Effect of Rv0678 mutations on BDQ and CFZ MICs. The MICs
for the DS Beijing mutant with the Rv0678 A110V mutation were
compared with those of 24 gCL10-outbreak MDR isolates with either
the Rv0678 N98D, G121R, or M146T mutations (Fig. 2). The NCOFFs
for the Rv0678 M146T distributions for CFZ (part a) and BDQ (part b)
were set using the eyeball method, and a corresponding idealized
representation of the MIC distributions of the gWT and Rv0678
M146T populations for both drugs (and their area of overlap in grey)
was prepared for illustrative purposes (part c) [25]. The MIC increases
for M146T relative to gWT isolates were statistically significant for
both CFZ and BDQ. The Rv0678 G121R and A110V mutations could
not be evaluated statistically as the mutations only appeared once
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The dominant mutation Rv0678 M146T shared by 21
(53%) gCL10 isolates correlated with MICs to both drugs
that were approximately three times higher than for
gWT isolates (62% of MICs ≥ 0.75 mg/L). To prove con-
clusively whether M146T is causative of this increase
would require allelic exchange experiments, which were
beyond the scope of this study. It is not clear whether
these particular MIC increases are clinically significant
given that no pharmacokinetic/pharmacodynamic targets
for the efficacy of BDQ or CFZ have been set by the
European Committee for Antimicrobial Susceptibility
Testing (EUCAST) or WHO [9, 34]. Instead, conserva-
tive clinical breakpoints (CBs), as defined by EUCAST,
have been set that correspond to the likely epidemiologic
cut-off values (ECOFFs) of 1 mg/L [9, 35]. Consequently,
it was assumed that any MIC increase above the ECOFF
would result in worse treatment outcomes, until strong
evidence to the contrary is presented. In such a case, the
CB could be raised above the ECOFF and/or a second,
higher CB could be introduced to define a range of sus-
ceptibility at increased exposure (previously known as
“intermediate”) [35, 36]. This does not mean that isolates
with MICs at or below the current CB are necessarily
susceptible given that they could harbour a resistance
mechanism that results in only modest MIC increases.
To minimize the misclassification of such mutations, an
ATU for both drugs could be set and the concentration
below the CB would have to be tested, as opposed to just
the CB, as currently recommended by WHO (Fig. 3)
[36]. Indeed, Nimmo et al. have made a similar proposal
for 7H11 DST [33].
In practice, it will be impossible to study the effect

of all Rv0678 variants on resistance levels comprehen-
sively, considering the large number of possible muta-
tions with likely heterogeneous effects on MICs (i.e.
depending on whether they abolish the function of
the repressor completely or not, which is further
complicated by the fact that mutations can only con-
fer elevated MICs in strain backgrounds with a func-
tional efflux pump) [37–41]. Moreover, simply
correlating clinical outcomes with MICs is compli-
cated by the overlap between MIC distributions.
Compared with resistance mechanisms that confer
marked MIC increases (e.g. delamanid), BDQ and
CFZ will, therefore, pose significant challenges to
regulatory agencies and diagnostic laboratories [9, 39,
42]. Nevertheless, the evidence is mounting that par-
ticular Rv0678 mutations emerge in patients on failing
regimens, confer elevated MICs to both drugs, and
adversely affect clinical outcomes [37–40, 43–46]. In-
deed, Eswatini will likely provide a unique opportun-
ity to study the effect of a single Rv0678 variant on
clinical outcomes because the M146T mutation is so
frequent in this setting, which would provide

invaluable data regarding the efficacy of the all-oral
shorter MDR-TB regimen.
A limitation of this study is selection bias, due to ex-

clusion of some (mostly poorly growing) isolates from
the genotyping analysis for the strains from the TB-DRS
in 2009–2010. Because the excluded isolates were mainly
DS, our findings about the MDR-TB clusters are unlikely
to be biased significantly. But, any comparison between
DS and MDR-TB results has to be interpreted with cau-
tion. Another limitation is the fact that the majority of
the isolates were from 2009, and the overall number of
MDR-Mtbc strains likely represents only about 30% of
all MDR-Mtbc strains emerging in that period in Eswa-
tini [4, 5, 47]. This is even more relevant for our second
collection that sampled MDR-Mtbc strains from just
one region that represents a small fraction (below 5%) of
the MDR-Mtbc strains in that period [47]. Still, our ana-
lysis of collection 2 isolates and the recently presented
data from the recent DRS survey performed in years
2017–2018 underline the current importance of RpoB
I491F MDR outbreak cluster isolates in Eswatini [1, 27],
but prospective more comprehensive data are needed to
detail the ongoing MDR-TB transmission in the country.

Conclusions
From a public health perspective, our findings that
transmission and increasing prevalence of highly resist-
ant strains plays a key role in Eswatini’s expanding
MDR-TB epidemic underline the urgent need to
prioritize breaking transmission chains in the country.
This, in turn, means focusing on interventions, such as
improving diagnosis of MDR-TB, including RpoB I491F
mutants, tracing of MDR-TB patient contacts, imple-
menting effective infection control measures within
healthcare facilities and communities, and careful epi-
demiological monitoring of the spread of MDR outbreak
clones on a regional scale and beyond. Moreover, the ef-
fect of the Rv0678 M146T mutation on treatment out-
comes with BDQ- and CFZ-containing regimens and
enhanced transmission rates should be studied as a pri-
ority, including using the most recent DRS data.
Our study raises fundamental points regarding the de-

velopment and introduction of novel anti-TB agents.
First, just because an agent is novel, the assumption that
isolates are equally susceptible to this agent or that iso-
lates with elevated MICs are rare does not apply in all
settings [26, 48]. In fact, it has been recently demon-
strated that Rv0678 mutations also confer elevated MICs
to OPC-167832, which is currently in phase 1 and 2 tri-
als, illustrating the value of elucidating the genetic basis
of resistance [49]. Second, companion DST assays with
breakpoints that are set based on modern microbio-
logical principles are needed at the time approval of
novel agents, as opposed to years later [39, 45, 50].
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Third, if new drugs are used as part of weak regimens,
resistance will inevitably evolve and may transmit rap-
idly. Consequently, molecular and phenotypic DST for
BDQ, CFZ, and other drugs need to be scaled up, and
further research on resistance mechanisms and the rates
of pre-existing resistance in different settings is required,
ideally, before novel regimens are introduced. In this
context, targeted NGS assays or WGS could play a key
role for reflex testing to rapidly rule-in resistance to the
vast majority of drugs and enabling real-time surveil-
lance of DR isolates [28, 29, 51].
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