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Abstract

Background: Mitochondrial DNA copy number (mtDNA-CN) has been associated with a variety of aging-related
diseases, including all-cause mortality. However, the mechanism by which mtDNA-CN influences disease is not
currently understood. One such mechanism may be through regulation of nuclear gene expression via the
modification of nuclear DNA (nDNA) methylation.

Methods: To investigate this hypothesis, we assessed the relationship between mtDNA-CN and nDNA methylation in
2507 African American (AA) and European American (EA) participants from the Atherosclerosis Risk in Communities
(ARIC) study. To validate our findings, we assayed an additional 2528 participants from the Cardiovascular Health Study
(CHS) (N = 533) and Framingham Heart Study (FHS) (N = 1995). We further assessed the effect of experimental
modification of mtDNA-CN through knockout of TFAM, a regulator of mtDNA replication, via CRISPR-Cas9.

Results: Thirty-four independent CpGs were associated with mtDNA-CN at genome-wide significance (P < 5 × 10− 8).
Meta-analysis across all cohorts identified six mtDNA-CN-associated CpGs at genome-wide significance (P < 5 × 10− 8).
Additionally, over half of these CpGs were associated with phenotypes known to be associated with mtDNA-CN,
including coronary heart disease, cardiovascular disease, and mortality. Experimental modification of mtDNA-CN
demonstrated that modulation of mtDNA-CN results in changes in nDNA methylation and gene expression of specific
CpGs and nearby transcripts. Strikingly, the “neuroactive ligand receptor interaction” KEGG pathway was found to be
highly overrepresented in the ARIC cohort (P = 5.24 × 10− 12), as well as the TFAM knockout methylation (P = 4.41 × 10− 4)
and expression (P = 4.30 × 10− 4) studies.

Conclusions: These results demonstrate that changes in mtDNA-CN influence nDNA methylation at specific loci and
result in differential expression of specific genes that may impact human health and disease via altered cell signaling.

Keywords: Epigenomics, Mitochondrial DNA, Cardiovascular disease, Mortality

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: arking@jhmi.edu
1McKusick-Nathans Department of Genetic Medicine, Johns Hopkins
University School of Medicine, Baltimore, MD, USA
12Division of Cardiology, Department of Medicine, Johns Hopkins University
School of Medicine, Baltimore, MD, USA
Full list of author information is available at the end of the article

Castellani et al. Genome Medicine           (2020) 12:84 
https://doi.org/10.1186/s13073-020-00778-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-020-00778-7&domain=pdf
http://orcid.org/0000-0001-8980-8695
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:arking@jhmi.edu


Background
Mitochondria are cytoplasmic organelles primarily re-
sponsible for cellular metabolism and have pivotal roles
in many cellular processes, including aging, apoptosis,
and oxidative phosphorylation [1]. Dysfunction of the
mitochondria has been associated with complex disease
presentation including susceptibility to disease and se-
verity of disease [2]. Mitochondrial DNA copy number
(mtDNA-CN), a measure of mitochondrial DNA
(mtDNA) levels per cell, while not a direct measure of
mitochondrial function, is associated with mitochondrial
enzyme activity and adenosine triphosphate production.
mtDNA-CN is regulated in a tissue-specific manner and
in contrast to the nuclear genome, is present in multiple
copies per cell, with the number being highly dependent
on cell type [3, 4]. mtDNA-CN estimates can be derived
from DNA isolated from blood and is therefore a rela-
tively easily attainable biomarker of mitochondrial func-
tion. Cells with reduced mtDNA-CN show reduced
expression of vital complex proteins, altered cellular
morphology, and lower respiratory enzyme activity [5].
Variation in mtDNA-CN has been associated with nu-
merous diseases and traits, including cardiovascular dis-
ease [6–8], chronic kidney disease [9], diabetes [10, 11],
and liver disease [12, 13]. Lower mtDNA-CN has also
been found to be associated with frailty and all-cause
mortality [10].
Communication between the mitochondria and the

nucleus is bi-directional and it has long been known that
crosstalk between nuclear DNA (nDNA) and mtDNA is
required for proper cellular functioning and homeostasis
[14, 15]. Specifically, bi-directional crosstalk is essential
for the maintenance and integrity of cells [16, 17], and
interactions between mtDNA and nDNA contribute to a
number of pathologies [18, 19]. However, the precise re-
lationship between mtDNA and the nuclear epigenome
has not been well defined despite a number of reports
which have identified a relationship between mitochon-
dria and the nuclear epigenome. For example, mtDNA
polymorphisms have been previously demonstrated to
be associated with nDNA methylation patterns [20],
DNA methylation levels of PolgA are associated with
mtDNA regulation in embryonic stem cells [21, 22], and
hyper- and hypo-methylation of nuclear sites has been
observed in mitochondria-depleted cancer cell lines [23].
Additionally, differential DNA methylation in brain tis-
sue and corresponding differential gene expression were
observed between strains of mice having identical
nDNA, but different mtDNA [18] and reduced mtDNA-
CN has been associated with inducing cancer progres-
sion via hypermethylation of nuclear DNA promoters
[24]. Further, mtDNA-CN has been previously associ-
ated with changes in nuclear gene expression [25] in-
cluding in glioblastoma tumors where modulation of

mtDNA-CN induced changes to both DNA methylation
and gene expression of the nuclear genome [26, 27].
Thus, gene expression changes identified as a result of

mitochondrial variation may be mediated, at least in
part, by nDNA methylation. Further, given that it has
been well-established that mtDNA-CN influences a
number of human diseases, we propose that one mech-
anism by which mtDNA-CN influences disease may be
through regulation of nuclear gene expression via the
modification of nDNA methylation.
To this end, we report the results of cross-sectional

analysis of this association between mtDNA-CN and
nDNA methylation in 5035 individuals from the Athero-
sclerosis Risk in Communities (ARIC), Cardiovascular
Health Study (CHS), and Framingham Heart Study
(FHS) cohorts. Further, to determine the causal direction
of the association between mtDNA-CN and nDNA
methylation, we present results from experimental
knockout as well Mendelian randomization. First, to de-
termine if modification of mtDNA-CN leads to changes
to nDNA methylation, we modified mtDNA-CN via
three independent stable heterozygous knockouts of the
TFAM gene (a regulator of mtDNA replication) followed
by assessment of nDNA methylation and gene expres-
sion profiles in mtDNA-CN-depleted cell lines. Con-
versely, to determine if modification of nDNA
methylation leads to changes in mtDNA-CN, we used
Mendelian randomization with methylation quantitative
trail loci (meQTLs) as the instrument variable to assess
causality between mtDNA-CN (the outcome) and nu-
clear methylation (the exposure).

Methods
Additional methods are available in Additional file 1:
Supplementary Methods.

Discovery study analysis
The atherosclerosis risk in communities cohort (ARIC)
The ARIC study is a prospective cohort intended for the
study of cardiovascular disease in subjects from four
communities across the USA: Forsyth County, NC,
northwest suburbs of Minneapolis, MN, Jackson, MS,
and Washington County, MD [28]. Sample characteris-
tics are available in Additional file 2: Table S1. Following
quality control, 1567 African Americans (AA) and 940
European Americans (EA) were used as a discovery co-
hort (race was self-identified). Participants for ARIC EA
were derived from two existing projects, Brain MRI
(81.7%) and OMICS (18.3%). DNA was extracted from
peripheral blood leukocyte samples from visit 2 or 3
using the Gentra Puregene Blood Kit (Qiagen; Valencia,
CA, USA) according to the manufacturer’s instructions
(www.qiagen.com) and hybridized to the Illumina
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Infinium Human Methylation 450K BeadChip and the
Genome-Wide Human SNP Array 6.0.

Estimation of mtDNA-CN from Affymetrix Human SNP 6.0
arrays
The Affymetrix Genome-Wide Human SNP 6.0 array
was used to estimate mtDNA-CN for each participant as
previously described [29]. Briefly, mtDNA copy number
(mtDNA-CN) was determined utilizing the Genvisis
software package (http://www.genvisis.org). Initially, a
list of high-quality mitochondrial SNPs were hand-
curated by employing BLAST to remove SNPs without a
perfect match to the annotated mitochondrial location
and SNPs with off-target matches longer than 20 bp.
The probe intensities of the 25 remaining mitochondrial
SNPs was determined using quantile sketch
normalization (apt-probeset-summarize) as implemented
in the Affymetrix Power Tools software. To correct for
DNA quality, DNA quantity, hybridization efficiency and
other technical artifacts, surrogate variable analysis was
applied to the BLAST filtered, GC corrected log R ratio
(LRR) of 43,316 autosomal SNPs. These autosomal SNPs
were selected based on the following quality filters: call
rate > 98%, HWE P value > 0.00001, PLINK mishap for
non-random missingness P value > 0.0001, association
with sex P value 0.00001, linkage disequilibrium pruning
(r2 < 0.30), maximal autosomal spacing of 41.7 kb. The
median of the normalized intensity, LRR for all homozy-
gous calls was GC corrected and used as initial estimates
of mtDNA-CN for each sample. The final measure of
mtDNA-CN is represented as the standardized residuals
from a race-stratified linear regression adjusting the ini-
tial estimate of mtDNA-CN for 15 surrogate variables
(SVs), age, sex, sample collection site, and white blood
cell count. Technical covariates such as DNA quality,
DNA quantity, and hybridization efficiency were cap-
tured via surrogate variable analysis (SVA) as previously
described [7, 30].

Illumina Infinium Human Methylation 450K BeadChip
analysis
The Infinium Human Methylation 450K BeadChip was
used to determine DNA methylation profiles from blood
for > 450,000 CpGs across the human genome.

Bisulfite conversion Bisulfite conversion of 1 μg gen-
omic DNA was performed using the EZ-96 DNA Methy-
lation Kit (Deep Well Format) (Zymo Research; Irvine,
CA, USA) according to the manufacturer’s instructions
(www.zymoresearch.com). Bisulfite conversion efficiency
was determined by PCR amplification of the converted
DNA before proceeding with methylation analyses on
the Illumina platform using Zymo Research’s Universal
Methylated Human DNA Standard and Control Primers.

Normalization and quality control Probes included on
the list of cross-reactive 450K probes as reported by
Chen et al. were removed prior to analysis [31]. The
cross-reactive target had to match a minimum of 47
bases to be considered cross-reactive. This led to the re-
moval of ~ 28,000 probes. Genome studio background
correction and BMIQ normalization were performed
[32], and the wateRmelon R package was used to con-
duct QC filtering [33].
Samples were removed for the following reasons: (1)

failed bisulfite conversion, (2) call rate < 95%, (3) sex
mismatch using minfi, (4) weak correlation between
available genotypes and genotypes on 450K array, (5)
weak clustering according to sex in MDS plot, (6) PCA
analysis identified them as an outlier (≥ 4SD from mean),
(7) failed sex check, (8) sample pass rate < 99%, (9) only
sample to pass on a chip. These filtering settings led to
the removal of 68 samples in the AA group and 24 sam-
ples in the EA group. If samples were run in duplicate,
the sample with the lowest missing rate was retained.

Surrogate variable analysis (SVA) SVAs were gener-
ated using the package SVA in R and protecting
mtDNA-CN [30].

Control probe principal components in ARIC
European Americans The control probe principal com-
ponents are based on 42 measures, which are trans-
formed from control probes and out-of-band probes in
the 450K data [34].

Statistical analysis
All statistical analyses were performed using R (version
3.3.3).

Linear mixed model—association between mtDNA-
CN and nuclear DNA methylation Linear mixed ef-
fects regression analysis was performed to determine the
association between mtDNA-CN and nuclear DNA
methylation at specific CpGs (Additional file 3: Table
S2).
ARIC AA: Methylation ~ mtDNA-CN + Age + Sex +

Site + Visit + Chip Position + Plate + CD8 Count +
CD4 Count + B-Cell Count + Monocyte Count + Gran-
ulocyte Count + Smoking Status + First 10 Surrogate
Variables + Chip (as random effect).
ARIC EA: Same model as ARIC AA but further inclu-

sion of Project (Brain MRI or Omics) as well as the first
10 PCs derived from methylation microarray control
probes and the composition of natural killer (NK) cells.
Cell types were imputed using the method of House-

man et al. [35]. All correlations were performed using
the Pearson method.
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Global methylation distributions were assessed by a
chi-square test to compare observed to expected site-
specific methylation.

Discovery meta-analysis A meta-analysis was per-
formed to combine the results from the individual ARIC
AA and EA analyses (Additional file 3: Table S2). This
analysis was done using the standard error scheme im-
plemented in Metal [36]. CpGs had to have a P value
cutoff of P < 0.05 in ARIC AA and EA analyses to be in-
cluded in the meta-analysis. Associations that met
genome-wide significance were included in subsequent
analyses (P = 5.0 × 10− 8). A total of 100 meta-analysis
permutations were also performed (permuted P = 3.94 ×
10− 8).

Residual bootstrapping Residual bootstrapping was
used to determine the most appropriate genome-wide
significance cutoff in ARIC EA and AA cohorts (AA:
P < 6.22 × 10− 8, EA: P < 3.03 × 10− 7) (see Additional file
1: Supplementary Methods). Additionally, the qq plots
show minimal inflation in ARIC AA, EA, and meta-
analysis (Additional file 1: Fig. S1).
Significant CpGs with high correlation (R2 ≥ 0.6) were

identified as non-independent and the CpGs with the
more significant P value was retained. Highly correlated
CpGs were consistent between AA and EA results, spe-
cifically these CpGs were cg21051031 and cg03964851
(R2: AA = 0.62, EA = 0.63) and cg06809544 and
cg13393978 (R2: AA = 0.65, EA = 0.70).

Validation cohorts
The Cardiovascular Health Study (CHS)
The CHS is a population-based cohort study of risk fac-
tors for coronary heart disease and stroke in adults ≥ 65
years conducted across four field centers [37]. The ori-
ginal predominantly European ancestry cohort of 5201
persons was recruited in 1989–1990 from random sam-
ples of the Medicare eligibility lists; subsequently, an
additional predominantly African American cohort of
687 persons was enrolled in 1992–1993 for a total sam-
ple of 5888. The validation cohort includes 239 AA par-
ticipants and 294 EA participants from CHS with
mtDNA-CN and 450K methylation derived from the
same visit (Race was self-identified, Additional file 2:
Table S1).

mtDNA-CN estimation using quantitative PCR
mtDNA copy number (mtDNA-CN) was determined
utilizing a multiplexed real-time quantitative polymerase
chain reaction (qPCR) assay with ABI TaqMan chemis-
try (Applied Biosystems) as previously described [7]
(see Additional file 1: Supplementary Methods). The
final measure of mtDNA-CN is represented as the

standardized residuals from a race-stratified mixed linear
regression adjusting for age, sex, and sample collection
site.

Methylation analysis Methylation measurements were
performed at the Institute for Translational Genomics
and Population Sciences at the Harbor-UCLA Medical
Center Institute for Translational Genomics and Popula-
tion Sciences (Los Angeles, CA). DNA was extracted
from Buffy coat fractions and subsequently underwent
bisulfite conversion using the EZ DNA Methylation kit
(Zymo Research, Irvine, CA). Methylation was then
assayed using the Infinium HumanMethylation450 Bead-
Chip (Illumina Inc., San Diego, CA) (see Additional file
1: Supplementary Methods).

Regression analysis CHS was analyzed using linear re-
gression with methylation beta values as the dependent
variable and mtDNA-CN as the independent variable.
Analyses were adjusted for age, sex, batch, measured
white blood cell count, and estimated cell type counts.

The Framingham Heart Study (FHS)
FHS is a prospective study of individuals from Framing-
ham, Massachusetts [38]. The validation cohort includes
1995 EA participants from FHS with mtDNA-CN and
450K methylation derived from the same visit (Race was
self-identified, Additional file 2: Table S1).

mtDNA-CN estimation from whole genome
sequencing mtDNA copy number (mtDNA-CN) was
determined from whole genome sequencing data.
Cohort-specific mtDNA-CN residuals were obtained by
regressing mtDNA-CN on age, sex, and WBC counts.
Mitochondrial DNA copy number was estimated by ap-
plying the fastMitoCalc software [39] to harmonize build
37 mappings of TOPMed deep whole genome sequen-
cing data (freeze 5). The estimated mitochondrial copy
number is twice the ratio of average mitochondrial se-
quencing depth to average autosomal sequencing depth.
We applied inverse normal transformation to mtDNA-
CN residuals.

Methylation analysis DNA extraction, methylation
quantification (450K BeadChip), and QC were detailed
previously [40]. We obtained lab-specific and cohort-
specific DNA methylation residuals by regressing methy-
lation beta values on age, sex, batch effects (plate, col.,
row), and WBC counts. We applied inverse normal
transformation to DNA methylation residuals.

Regression analysis A linear mixed model was applied
with inverse normal transformed DNA methylation re-
siduals as the dependent variable and inverse normal
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transformed mtDNA-CN residuals as the independent
variable, accounting for family structure.

Power of validation study
The probability was 5% (CHS AA), 8% (CHS EA), and
91% (FHS EA) that the replication studies would detect
a relationship between mtDNA-CN and nDNA methyla-
tion equal to the minimal effect size detected in the
ARIC meta-analysis at a two-sided 0.0015 significance
level (based on 34 independent tests).

Validation and all-cohort meta-analyses
A meta-analysis was performed of all validation cohorts
(FHS EA, CHS EA, CHS AA). We also performed an all-
cohort meta-analysis (ARIC AA, ARIC EA, FHS EA,
CHS EA, CHS AA). Both meta-analyses were performed
using the standard error scheme implemented in Metal
[36] (Additional file 4: Table S3). Cohort-specific data is
available through the respective coordinating centers.

Mendelian randomization
meQTL analysis
meQTLs were identified using MatrixEQTL [41]. Im-
puted genotypes which were previously derived from
ARIC for the relevant participants as well as normalized
residuals from our 450K methylation dataset were used
in regression analysis (see Additional file 1: Supplemen-
tary Methods). Metasoft [42] was used for meta-analysis;
in addition to the fixed effects (FE) model, a random ef-
fects (RE) and Han and Eskin’s Random Effects model
(RE2) were also used and yielded very similar results.

Mendelian randomization methods
Independent meQTLs were used for Mendelian
randomization (MR). Independence was defined by in-
cluding SNPs in the same linear model. MR with
mtDNA-CN as the outcome and methylation as the ex-
posure was undertaken. meQTLs served as the known
relationship of genotype on exposure (methylation) and
the results of the linear model, lm (mtDNA~meQTL
SNP +Genotyping PCs [4 for EA, 10 for AA]), were cal-
culated. Power for the MR was calculated using the YZ
association function in mRnd [43].

Phenotype analysis
We compared methylation at the six validated CpGs to
phenotypes that are known to be associated with
mtDNA-CN. Phenotypes included prevalent diseases
(CHD, CVD) as well as incident diseases (CHD, CVD,
mortality). The analysis was performed as follows for
each cohort:

A) Prevalent diseases (CHD, CVD): glm (PRVCVD ~
resids (methyl) + AGE + SEX + CENTER + RACE,
family = binomial (logit))

B) Incident diseases (CHD, CVD, mortality): coxph
(Surv (STime,dead) ~ resids (methyl) + AGE + SEX
+ CENTER + RACE))

Where resids (methyl) represents methylation adjusted
for all relevant covariates from the EWAS. The event ad-
judication process in ARIC, CHS, and FHS consisted of
expert committee review of hospital records, telephone
interviews, and death certificates (see Additional file 1:
Supplementary Methods).
Results from each of the five individual cohorts were

meta-analyzed across cohorts using an inverse weighted
standard error method [36] to derive an overall pheno-
type association for each CpG of interest.
We also assessed the relationship between mtDNA-

CN and each positive phenotype at the individual cohort
level using logistic regression (glm) for prevalent dis-
eases and cox proportional hazards models for incident
diseases adjusted for age, sex, center, and genotyping
PCs (4 PCs in EA and 10 PCs in AA). We performed
this analysis with and without the inclusion of mtDNA-
CN-associated CpGs.

CRISPR-CAS9 knockout of TFAM
Generation of TFAM knockout
The stable TFAM CRISPR-Cas9 knockout was generated
in HEK293T cells using the Origene TFAM – Human
Gene Knockout Kit via CRISPR (catalog number:
KN215488) following the manufacturer’s protocol. The
following sgRNA guide sequence was used to generate
the stable TFAM knockout lines: GCGTTTCTCCGAAG
CATGTG. Lipofection was conducted using Turbofectin
8.0 (catalog number: TF81001). Puromycin was used for
selection at a concentration of 1.5 μg/mL. Fluorescence-
activated cell sorting (FACS) was used for single cell
sorting and clonal expansion. HEK293T cells were
grown in DMEM containing 10% FBS and 1% penicillin-
streptomycin at 37 °C and 5% CO2. Sequencing primers
used to confirm the TFAM knockout and proper inser-
tion of the Donor plasmid are as follows: TFAM_Left_
Forward_Primer_2: AGCGACTGTGGACAACTAGC,
GFP_Reverse_Primer_2: TCATCTTGTTGGTCAT
GCGG, Puro-Forward_Primer_1: CACAACCTCCCCTT
CTACGAG, TFAM_Right_Reverse_Primer_1: CCCCAA
ACTCCTTACCTGGG.
DNA/RNA/protein isolation, mtDNA-CN estima-

tion, and qPCR to determine TFAM DNA quantity
and TFAM expression as well as Western blotting
were performed (see Additional file 1: Supplementary
Methods).
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Methylation analysis of TFAM knockout lines
TFAM KO cell lines were hybridized to the Illumina
Infinium EPIC BeadChip at The University of Texas
Health Science Center at Houston (UTHealth) [44]. Bi-
sulfite conversion efficiency was reviewed in the labora-
tory using the Bead Array Controls Reporter (BACR)
tool, and Illumina chemistry (sample independent con-
trols) performed within acceptable specifications.
All samples passed with detected CpG (0.01) > 97%.
EPIC BeadChip analysis was performed using the minfi

package [45]. Data was normalized using functional
normalization [34], and differential methylation was cal-
culated using the dmpFinder function in minfi (Add-
itional file 5: Table S4).
In the cases where the CpG from the 450K array was

not represented on the EPIC array, a CpG surrogate was
chosen if there was a nearby CpG within 1000 bp up-
stream or downstream of the original CpG that was
highly correlated with the original CpG (R2 ≥ 0.6) and as-
sociated with mtDNA-CN in the ARIC analysis (P < 5 ×
10− 8).

RNA sequencing of TFAM knockout lines

RNA preparation RNA quantification was performed
using the Qubit RNA BR Assay (Invitrogen #Q10211)
and Qubit 2.0 Fluorometer. The Agilent BioAnalyzer
was used for quality control of the RNA prior to library
creation, with a minimum RIN of 8.5. Samples were di-
luted to 300 ng/μL in 12 μL molecular biology-grade
water, and then submitted to the Genetic Resources
Core Facility for RNA sequencing.

Library preparation and sequencing Illumina’s TruSeq
Stranded Total RNA kit protocol was used to generate
libraries (see Additional file 1: Supplementary Methods).

Primary analysis Illumina HiSeq reads were processed
through Illumina’s Real-Time Analysis (RTA) software
generating base calls and corresponding base call quality
scores. CIDRSeqSuite 7.1.0 was used to convert com-
pressed bcl files into compressed fastq files [46].

Secondary analysis Each independent cell line was se-
quenced twice. RNA sequencing fastq files were pseu-
doaligned to Genome Reference Consortium Human
Build 37 (GRCh37) using Kallisto [47]. A total of 100
bootstraps were performed using Kallisto. The R package
Sleuth was used for RNA sequencing analysis [48] (Add-
itional file 6: Table S5). Lane was included as a covariate
in the Sleuth model. Differentially expressed genes were
defined as those with a P < 0.05.

Integrated analysis of TFAM knockout methylation and
expression
The linear-gwis method in FAST (genotype mode) was
used to collapse TFAM KO methylation data into one
gene level P value per gene [49]. These gene-level
methylation results were combined with gene-level gene
expression results for the same gene using the Fisher P
value combination method to generate an integrated
gene-level methylation/RNA sequencing P value.

GO/KEGG analysis
Each CpG was annotated with the nearest gene as de-
fined by the closest gene which harbors the CpG within
1500 bp of the transcriptional start site and extending to
the polyA signal. A bias exists when performing gene set
analysis for genome-wide methylation data that occurs
due to the differing numbers of CpG sites profiled for
each gene [50]. Due to this, we used gometh for GO and
KEGG analysis since it is based off of the goseq method
which accounts for this bias [51]. We analyzed our indi-
vidual ARIC/TFAM datasets as well as our TFAM inte-
grated (meth/expression) dataset. We also combined
GO/KEGG results for ARIC, TFAM methylation, and
TFAM RNA sequencing using the Fisher P value com-
bination method to generate an overall combined P
value for each term. Final P value cutoffs used for each
analysis were as follows: ARIC Discovery Meta-Analysis
(300 CpGs maximized signal-to-noise, P = 5.24 × 10− 12),
TFAM methylation (300 CpGs reflected ARIC cutoff,
P = 4.41 × 10− 4), TFAM expression (169 differentially
expressed genes, P = 4.30 × 10− 4), TFAM integrated
(methylation/expression) (188 genes met Bonferroni cut-
off, P = 8.77 × 10− 6).

Results
mtDNA-CN is associated with nuclear DNA methylation at
independent genome-wide loci in cross-sectional analysis
We performed an epigenome-wide association study
(EWAS) in DNA derived from blood for 2507 individ-
uals from the ARIC study, comprised of 1567 African
American (AA) and 940 European American (EA) sub-
jects (Additional file 2: Table S1, Additional file 3: Table
S2). Thirty-four independent CpGs were significantly as-
sociated with mtDNA-CN (P < 5 × 10− 8) in a meta-
analysis combining the race groups (Fig. 1, Additional
file 1: Fig. S1, Additional file 4: Table S3A) (discovery
meta-analysis). This conservative P value cutoff was con-
firmed by permutation testing. In stratified analysis of
ARIC AA and EA participants, we identified 23 and 15
independent CpGs at epigenome-wide significance, re-
spectively (Additional file 1: Fig. S2, Additional file 4:
Table S3B,C). Two CpGs were shared by both race
groups (cg26094004 and cg21051031). ARIC AA and EA
effect sizes for significant results were strongly
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correlated (R2 = 0.49) (Additional file 1: Fig. S3). Further,
16/23 (70%) of AA cohort-identified CpGs showed the
same direction of effect in EA participants (P = 0.06) and
12/14 (86%) of EA cohort-identified CpGs displayed the
same direction of effect in AA participants (P = 0.008).
Given these observations, we have focused on the ARIC
results from combining both races (N = 2507) in further
analyses. Additionally, an association was observed be-
tween increased mtDNA-CN and global hypermethyla-
tion (P < 2.2 × 10− 16, ß = 0.1487) in ARIC AA; however,
no such association was seen in ARIC EA (P < 0.77, ß =
0.013) (Additional file 1: Fig. S4).

Pathway and biological process analysis displays
associations with cell signaling functions and the
“neuroactive ligand-receptor interaction” pathway
To assess the potential mechanism underlying the iden-
tified associations, we performed GO and KEGG path-
way analysis. mtDNA-CN-associated CpGs were
annotated with their nearest gene. KEGG analysis identi-
fied the neuroactive ligand-receptor interaction pathway
(path:hsa04080) to be the top overrepresented pathway
(P = 5.24 × 10− 12, permuted P = 3.84 × 10− 5) (Table 1a).
Further, GO analyses identified a number of biological
processes related to cell signaling and ligand interactions
which included cell-cell signaling (P = 1.42 × 10− 3),
trans-synaptic signaling (P = 1.88 × 10− 3), and synaptic
signaling (P = 1.88 × 10− 3), among others (Table 1b).
These results met permutation tested P value cutoffs.

Validation of CpG associations in independent cohorts
We performed a validation study to replicate findings from
the ARIC discovery population in blood samples from 239
AA and 294 EA participants from CHS as well as 1995 EA
participants from FHS, for a total of 2528 individuals (Add-
itional file 2: Table S1). In total, 7/34 CpGs identified in the
discovery cohort were nominally significant (P < 0.05 and

same direction of effect as the ARIC cohort results) (Add-
itional file 4: Table S3), and the effect sizes from the ARIC
results and the validation meta-analysis were largely corre-
lated (R2 = 0.36) (Fig. 2). Overall, the results were consistent
across individual cohorts (Additional file 1: Fig. S5, Add-
itional file 4: Table S3) and analysis of the results from the
34 CpGs across all three cohorts (ARIC, CHS, and FHS,
N = 5035) identified six CpGs as validated mtDNA-CN as-
sociated CpGs (P < 5 × 10− 8) (Additional file 4: Table S3,
Additional file 1: Fig. S6).

Pathway and biological process analysis of TFAM KO
methylation and expression results independently
identify pathways observed in cross-sectional analysis
To assess if modification of mtDNA-CN drives changes to
nuclear DNA methylation, we used CRISPR-Cas9 to knock
out the TFAM gene, which encodes a regulator of mtDNA
replication (Fig. 3). TFAM levels correlate with the level of
mtDNA-CN and knockout of TFAM has been shown to re-
duce mtDNA-CN [52–54]. Stable heterozygous knockout
of the TFAM gene (confirmed by qPCR of TFAM DNA) in
HEK293T cells resulted in a 5-fold reduction in the steady-
state expression levels of TFAM, a marked reduction in
protein production (> 81%), and an 18-fold reduction in
mtDNA-CN across three independent knockout events
(Fig. 4, Additional file 1: Fig. S7). We assayed methy-
lation and expression of genes in the three knockout
lines using the Illumina Infinium Methylation EPIC
BeadChip and RNA sequencing (Additional file 5:
Table S4, Additional file 6: Table S5).
We hypothesized that if similar mechanisms are at play

in blood and kidney then consistent pathways would be
identified between the cross-sectional cohort analysis and
our TFAM KO analysis. We therefore identified overrepre-
sented terms resulting from GO and KEGG analysis of dif-
ferentially methylated CpGs and differentially expressed
genes as well as gene-level integrated methylation and

Fig. 1 ARIC discovery meta-analysis (AA and EA) results. In total, 34 independent genome-wide significant CpGs were identified in ARIC meta-
analysis to be associated with mtDNA-CN. Dotted line represents genome-wide significance cutoff (P = 5 × 10− 8). CpGs had to be independent
and nominally significant in both cohorts (P < 0.05), as well as meet the meta-analysis significance cutoff (P = 5 × 10− 8) to be considered
significant (red dots). Gray and black dots represents CpGs that were not significant based on this criteria
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expression results (cutoffs used: TFAM Methylation—top
300 differentially methylated CpGs, TFAM Expression—dif-
ferentially expressed genes (169 genes), TFAM integrated
methylation/expression—top 188 genes). The TFAM KO
pathway analysis results are consistent with the findings
from our ARIC cross-sectional analysis. Specifically, KEGG
analysis identified the neuroactive ligand-receptor inter-
action pathway (path:hsa04080) to be the second most
overrepresented pathway in the TFAM knockout methyla-
tion analysis (P = 4.41 × 10− 4) and the top overrepresented
pathway in the TFAM knockout RNA sequencing analysis
(P = 4.30 × 10− 4) (Table 1a). Accordingly, integration of re-
sults from TFAM knockout methylation and expression
also resulted in strong association with this pathway (P =
8.77 × 10− 6). Further, combining of P values (Fisher’s
method) across the ARIC meta-analysis, TFAM knockout
methylation, and TFAM knockout expression analyses
yielded a combined P value of 8.96 × 10− 16 for this pathway
which was also the top pathway identified in integrated
analysis (Table 1a).
The specific genes identified by each analysis to be

part of the neuroactive ligand receptor interaction path-
way were unique to each study (Additional file 2: Table
S6), with only one gene (GABRG3) in common between

ARIC analyses and TFAM knockout methylation analysis
and only one gene (GABRB1) in common between
TFAM knockout methylation and expression analyses
(Additional file 2: Table S6).
GO analyses of TFAM knockout cell lines also con-

firmed the finding from cross-sectional analysis that bio-
logical processes related to cell signaling and ligand
interactions including cell-cell signaling (combined P =
7.63 × 10− 8), trans-synaptic signaling (combined P =
2.89 × 10− 7), and synaptic signaling (combined P =
2.97 × 10− 7) were overrepresented, among others
(Table 1b). These results suggest that mtDNA-CN drives
changes to nDNA methylation at sites nearby genes re-
lating to cell signaling processes which in turn may
cause gene expression changes to these genes and con-
tribute to disease.

mtDNA-CN is causative of changes in nuclear DNA
methylation and nuclear gene expression
Although we do not a priori expect site-specific
methylation results to be consistent with those we
have identified in blood due to the fact that
HEK293T lines represent a different tissue and are
subject to the inherent variability of cell culture

Table 1 Results of pathway and functional analysis in ARIC discovery meta-analysis and TFAM knockout methylation and expression
datasets with combined P value and ARIC P value < 0.05. TFAM integrated (INT) P value represents combined methylation and
expression results. Combined P value represents combined ARIC and TFAM methylation and expression results

ARIC P value TFAM METH
P value

TFAM RNA
P value

TFAM INT
P value

Combined pathway
P value (ARIC,
TFAM-METH, TFAM-RNA)

A. KEGG pathways sorted by combined P value

Pathway Name

path:hsa04080 Neuroactive ligand receptor interaction 5.24E−12 4.41E−04 4.30E−04 8.77E−06 8.96E−16

path:hsa05033 Nicotine addiction 8.99E−04 6.30E−05 9.32E−04 7.72E−06 1.61E−08

path:hsa04024 cAMP signaling pathway 1.29E−05 2.32E−02 2.23E−01 3.25E−01 1.03E−05

path:hsa04614 Renin-angiotensin system 1.04E−05 5.11E−02 1.00E+ 00 1.00E+ 00 6.37E−05

path:hsa04723 Retrograde endocannabinoid signaling 1.89E−04 1.84E−02 1.56E−01 3.66E−03 6.48E−05

path:hsa05032 Morphine addiction 1.26E−02 4.38E−02 5.15E−02 1.40E−03 1.88E−03

path:hsa05031 Amphetamine addiction 3.54E−02 9.64E−02 4.23E−01 1.19E−01 4.18E−02

path:hsa04724 Glutamatergic synapse 1.80E−02 9.49E−02 1.00E+ 00 1.00E+ 00 4.73E−02

B. GO pathways sorted by combined P value

Function Name

GO:0007267 Cell-cell signaling 1.42E−03 1.71E−05 1.19E−02 1.42E−02 7.63E−08

GO:0099537 Trans-synaptic signaling 1.88E−03 1.06E−05 6.27E−02 1.92E−02 2.89E−07

GO:0099536 Synaptic signaling 1.88E−03 1.08E−05 6.34E−02 1.92E−02 2.97E−07

GO:0007268 Chemical synaptic transmission 1.88E−03 2.22E−05 6.05E−02 1.87E−02 5.47E−07

GO:0098916 Anterograde trans-synaptic signaling 1.88E−03 2.22E−05 6.05E−02 1.87E−02 5.47E−07

GO:0099095 Ligand-gated anion channel activity 4.30E−02 8.02E−04 1.23E−04 3.74E−07 8.74E−07

GO:0045202 Synapse 1.98E−04 9.81E−05 2.74E−01 5.92E−03 1.07E−06

GO:0045211 Postsynaptic membrane 8.33E−03 1.03E−04 1.45E−01 6.19E−04 1.78E−05
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systems, we note that three validated mtDNA-CN-
associated CpGs showed nominally significant differ-
ential expression (P < 0.05) and two were significant
after Bonferroni correction (P < 0.01,Additional file 2:
Table S7, Additional file 1: Fig. S8). We also observe

no difference in global CpG methylation patterns
(across all CpGs sites interrogated) between negative
control and TFAM knockout cell lines (Additional file
1: Fig. S9). RNA-seq resulted in clustering of knock-
out and control lines (Additional file 1: Fig. S10). All
nominally differentially expressed genes (P < 0.05)
within 1Mb of the TFAM knockout differentially
methylated CpGs were identified (Additional file 2:
Table S8). Five genes nearby the three differentially
methylated CpGs were differentially expressed after
Bonferroni correction for the number of genes within
1Mb of each CpG (P < 6.41 × 10− 4) (Table 2). The
five differentially expressed genes were as follows:
IFI35 (P = 3.76 × 10− 5) and RAMP2 (P = 5.51 × 10− 4)
near cg26094004; RPIA near cg26563141 (P = 5.04 ×
10− 6); and HLA-DRB5 (P = 6.50 × 10− 7) and MSH5
(P = 2.50 × 10− 4) near cg08899667.

Establishing causality via Mendelian randomization (MR):
nuclear DNA methylation does not appear to be
causative of changes in mtDNA-CN at identified CpGS
Mendelian randomization (MR), a form of instrument
variable analysis, is a well-established method for the
assessment of causal relationships. Specifically, MR
seeks to establish causality by exploiting the fact that
SNPs are assigned at conception and randomly dis-
tributed in the population making them an excellent
instrument variable to determine the relationship be-
tween modifiable exposures and relevant outcomes.
We used MR to further test the direction of causality
between mtDNA-CN (outcome) and nuclear methyla-
tion (exposure) by exploring the relationship between

Fig. 2 Validation of meta-analysis identified CpGs in CHS and FHS
combined cohorts (N = 2528, R2 = 0.36, Kendall tau = 0.19)

Fig. 3 Methods used to establish causation
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methylation quantitative trait loci (meQTLs) (instru-
ment variable) and mtDNA-CN (Fig. 3, Additional file
2: Table S9). Specifically, if nDNA methylation at our
sites of interest is causative of changes in mtDNA-
CN, then meQTL single nucleotide polymorphisms
(SNPs) for these CpGs of interest would be expected
to also be associated with mtDNA-CN. Alternatively,
if mtDNA-CN is not associated with meQTL SNPs,
then it would follow that changes to nDNA methyla-
tion likely do not drive changes to mtDNA-CN at
these CpGs, or suggest that other factors are modu-
lating these interactions.
We identified four independent cis meQTLs in the

ARIC EA cohort (permuted P = 7.84 × 10− 4) and six in-
dependent cis meQTLs in the ARIC AA cohort (per-
muted P = 9.12 × 10− 4) across five mtDNA-CN
associated CpGs for use as an instrument variable for
MR (Additional file 2: Table S9A). We further identified
two independent discovery meta-analysis-derived
meQTLs by combining results from ARIC EA and AA
cohorts (permuted P = 3.97 × 10− 5, fixed effects (FE)
model) (Additional file 2: Table S9B).
We then assessed the relationship between meQTL

SNPs and mtDNA-CN. The results of the MR were null
for each independent meQTL (Bonferroni P = 0.005)
(Additional file 2: Table S9). While our power for a sin-
gle meQTL varied depending on the specific meQTL
assessed, with power to detect an individual association
ranging from 0.18 to 0.99 across the 12 meQTLs, overall
power was > 99% to detect at least one associated
meQTL. These results support the experimentally estab-
lished direction of causality by suggesting that modifica-
tion of nDNA methylation at CpG sites of interest does
not drive alterations in mtDNA-CN.

Association of CpG methylation with mtDNA-CN-
associated phenotypes
Since decreased mtDNA-CN has been associated with a
number of aging-related diseases, and given our hypoth-
esis that mtDNA-CN leads to nDNA methylation
changes which influence disease outcomes, associated
CpGs should also be associated with mtDNA-CN-
related phenotypes. To test these associations, we per-
formed logistic regression and survival analysis for
prevalent and incident diseases, respectively, for each of
the six validated CpGs as they relate to coronary heart
disease (CHD), cardiovascular disease (CVD), and mor-
tality in the ARIC, FHS, and CHS cohorts (Table 3, Add-
itional file 7: Table S10). Results from each cohort were
meta-analyzed to derive an overall association for each
validated CpG with each outcome of interest.
We identify nominally significant phenotype associa-

tions with at least one of the mtDNA-CN-associated
traits of interest for four of the six validated mtDNA-
CN-associated CpGs (P < 0.05). Specifically, results in
the expected direction of effect for prevalent CHD
and prevalent CVD were identified for two mtDNA-
CN associated CpGs (cg26094004 and cg08899667).
Similarly, results in the expected direction of effect
were identified for the association between all-cause
mortality and cg26563141 and cg08899667. Thus, we found
cg08899667 to be nominally associated with three of the five
mtDNA-CN-associated phenotypes, including all-cause mor-
tality (Table 3).
The association between mtDNA-CN and each related

phenotype does not change considerably with and with-
out inclusion of mtDNA-CN-associated CpGs in the
model (Fig. 5). This likely reflects mtDNA-CN acting on
multiple biological pathways and the requirement for an

Fig. 4 CRISPR-Cas9-induced heterozygous knockout of TFAM reduced RNA expression, mtDNA-CN, and protein levels. a RNA expression was
reduced by over 80% relative to negative control (NC) expression (left) (passage 45). mtDNA-CN levels showed an ~ 18-fold reduction in TFAM
knockout cell lines, (passage 32) (right). b Western blot of CRISPR TFAM heterozygous knockout showed a significant reduction (> 81%) in TFAM
protein (passage 35). NC = negative control lines. CRISPR = CRISPR TFAM knockout lines. Control is Tubulin
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accumulation of many methylation changes at multiple
CpGs to impact disease outcomes.

Discussion
We report evidence that changes in mtDNA-CN influ-
ence nDNA methylation at specific, validated loci, in-
cluding those acting in the “neuroactive ligand receptor
interaction” pathway which may impact human health
and disease via altered cell signaling. A number of these
associations were validated across two independent

cohorts and identified both cross-sectionally and experi-
mentally. It is important to note that the methods used
to estimate mtDNA-CN differed between the three co-
horts with a qPCR-based approach used for CHS, a
whole genome sequencing approach for FHS and micro-
array analysis for ARIC. This may reflect the robustness
of results across mtDNA-CN estimation methods and
also explain why some but not all CpGs replicated in
our validation analysis [55]. We also note that as ex-
pected, our experimental approach using kidney cell

Table 3 Summary of phenotype associations from all-cohort meta-analysis for Validated CpGs. Bold entries highlight nominally
significant associations (P < 0.05). *Significant after stringent multiple test correction

All cohorts Meta
direction

Expected
direction
of
phenotype
association

Prevalent CHD Prevalent CVD Incident CHD Incident CVD Mortality

Beta Std.
Error

P
value

Beta Std.
Error

P
value

Beta Std.
Error

P
value

Beta Std.
Error

P
value

Beta Std.
Error

P
value

cg21051031 Positive Negative −0.56 1.95 7.74E
−01

−0.67 1.88 7.23E
−01

0.96 1.80 5.94E
−01

−0.28 1.41 8.43E
−01

−0.79 0.81 3.31E
−01

cg26094004 Negative Positive 2.91 1.48 4.89E
−02

3.13 1.40 2.55E
−02

0.89 0.93 3.39E
−01

−0.13 0.77 8.63E
−01

−0.78 0.49 1.16E
−01

cg26563141 Negative Positive 0.22 1.33 8.69E
−01

−0.31 1.24 8.00E
−01

0.13 0.94 8.88E
−01

1.10 0.75 1.40E
−01

0.98 0.45 2.87E
−02

cg14575356 Positive Negative −1.80 2.04 3.79E
−01

−2.19 1.88 2.45E
−01

2.71 1.34 4.36E
−02

1.75 1.08 1.04E
−01

0.12 0.68 8.63E
−01

cg23513930 Positive Negative 1.99 3.37 5.54E
−01

0.88 3.07 7.75E
−01

2.24 1.84 2.24E
−01

0.50 1.49 7.39E
−01

1.07 0.94 2.53E
−01

cg08899667 Negative Positive 3.65 1.76 3.81E
−02

3.35 1.61 3.81E
−02

1.57 1.10 1.54E
−01

0.06 0.93 9.44E
−01

2.08 0.59 3.93E
−04*

Fig. 5 Cohort-specific phenotype associations with mtDNA-CN. All models were adjusted for age, sex, center, genotyping PCs, and where
indicated for mtDNA-CN-associated CpGs

Castellani et al. Genome Medicine           (2020) 12:84 Page 12 of 17



lines replicated some but not all of the pathway-level re-
sults from blood. These findings likely reflect both the
intrinsic differences between cell line data and cross-
sectional data as well as the inherent complexity of
mitochondrial-to-nuclear signaling which would be ex-
pected to vary across cell types, developmental time-
points, and environmental conditions.

DNA methylation as a link between mtDNA-CN and
changes in nuclear gene expression
The relationship between the nuclear and mitochondrial
genomes strongly implicates communication between
them as vital for proper cell functioning. Given the func-
tion of the mitochondria in meeting cellular energy de-
mands, mitochondria may play an important role in
translating environmental stimuli into epigenetic
changes. Accordingly, mtDNA-CN levels are sensitive to
a number of chemicals [56], highlighting the role of
mtDNA as an environmental biosensor. We hypothesize
that modification of nDNA methylation via mitochon-
drial signaling modifies gene expression which in turn
may lead to disease outcomes or influence severity of
disease. Supporting this, epigenetic changes in nuclear
DNA correlate with reduced cancer survival and low
mtDNA-CN correlates with poor survival across a num-
ber of cancer types [57, 58]. Thus, retrograde signals
from the mitochondria to the nucleus may be crucial in
sensing homeostasis and translating extracellular signals
into altered gene expression [18].
Our results implicate the neuroactive ligand receptor

interaction pathway and in general additional processes
involved in cellular signaling. The results also show that
although the same pathways are implicated across our
independent datasets, the specific genes affected differ
between conditions. Interestingly, the neuroactive ligand
receptor interaction pathway has been identified as hav-
ing the second highest number of atherosclerosis candi-
date genes of any KEGG pathway, harboring 53
atherosclerosis candidate genes (272 total genes in the
pathway) [57–59]. This is an interesting finding given
the association of mtDNA-CN with cardiovascular dis-
ease [6–8]. Perhaps unsurprisingly, this pathway also be-
longs to the class of KEGG pathways that are
responsible for environmental information processing
and signaling molecules/interactions. Genes from this
pathway are highly expressed across a wide variety of tis-
sues including whole blood, heart tissue, and cardia
myocytes, among others (http://software.broadinstitute.
org/gsea/). We further observe synaptic signaling to be
significantly associated, which is supported by observa-
tions that synaptic signals can induce changes in nDNA
methylation leading to plasticity-related gene expression
changes [60].

Proposed mechanisms for the methylation of nDNA as a
result of changes in mtDNA
The precise identity of the signal(s) coming from the
mitochondria that might be responsible for modifying
nDNA methylation has not yet been identified and war-
rants further experimentation. It is however possible that
histones may play a role in this signaling process. Sup-
porting this, mitochondria-to-nucleus retrograde signal-
ing has been shown to regulate histone acetylation and
alter nuclear gene expression through the heterogenous
ribonucleoprotein A2 (hnRNAP2, 25]. In fact, histone
modifications co-vary with mitochondrial content and are
linked with chromatin activation, namely H4K16,
H3L4me3, and H3K36me2 [61]. In addition, perturbations
to oxidative phosphorylation alter methylation processes
by modifications to the methionine cycle. Methionine me-
tabolism is essential for production of S-adenosylmethio-
ninine (SAM), a methyl donor for histone and DNA
methyltransferases [62]. Specifically, three DNA methyl-
transferases (DNMTs), DNMT1, DNMT3a, and
DNMT3b, mediate methyl transfer from SAM to cytosine
whereby SAM is the electrophilic methyl source to pro-
duce 5-methylcytosine at CpG sites in double-stranded
DNA [63]. Alpha-ketoglutarate, a krebs cycle intermedi-
ate, is also involved in cytosine demethylation as a cofac-
tor for the Tet family of dioxygenases via oxidation of 5-
methylcytosine to 5-hydroxymethylcytosine by flipping
the target cytosine out and into the active site [64]. Fur-
ther experimentation to determine the biological mecha-
nisms at play is essential.
Uncovering the precise nature of this signaling from

mitochondria to the nucleus would be expected to ex-
pose essential clues that will integrate epigenetic regula-
tion, mitochondrial and genomic polymorphisms, and
complex phenotypes. Further assessment of the func-
tional mechanisms underlying the crosstalk between
mtDNA-CN, methylation, and disease through sophisti-
cated cell culture models will be required to fully appre-
ciate the diagnostic and therapeutic utility of the
interaction between mtDNA and nDNA as identified in
this study.

Influence of findings on complex disease etiology
The observation that differential methylation occurred at
specific-sites throughout the nuclear genome as a result
of changes to mtDNA-CN, provides an explanation for
how mtDNA could alter normal homeostasis as well as
susceptibility and/or severity of diseases. The association
of mtDNA-CN-associated CpGs with mtDNA-CN-
related disease states lends further support to the hy-
pothesis that modulation of mtDNA-CN not only modi-
fies the nuclear epigenome, and the expression of nearby
genes, but does so at locations which may be relevant to
disease outcomes, including cardiovascular disease and
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all-cause mortality. In particular, these observations may
explain how mitochondrial-to-nuclear signaling could
influence polygenic traits with complex etiology and in
particular those for which environmental insults play a
role. However, mtDNA-CN is likely acting through a
number of biological pathways to impact disease and
thus mtDNA-CN-associated CpGs would be expected to
account for a subset of the effect of mtDNA-CN on
disease.
Further, these findings have direct implications for the

recent emergence of mitochondrial donation in humans
as they suggest that mitochondrial replacement into re-
cipient oocytes may lead to unexpected changes to the
nuclear epigenome. Thus, unraveling the complex inter-
play of the mitochondria and nucleus is also critical to
properly informing medical decision makers.
This study design had a number of strengths and limi-

tations. A possible limitation of the cross-sectional ana-
lysis is the potential for some common factor we have
not been able to account for to influence both mtDNA-
CN and nDNA methylation. We also note that future
analyses in larger admixed cohorts can identify and val-
idate race-specific loci of interest. In experimental ana-
lysis, we used HEK293T cells for our knockdown studies
due to the optimized protocols available as well as their
propensity for transfection; however, we note that the
use of a blood cell line may be more relevant to direct
interpretation of the results. Further, the TFAM knock-
out reduced mtDNA-CN to levels which represent a
greater reduction than that seen in population samples
reflecting a more drastic change than is likely to be
caused by natural variation alone. We also note that the
TFAM knockout may independently influence nDNA
methylation though unknown mechanisms that we did
not account for in this study and/or TFAM may have an
effect on differentially expressed genes that is independ-
ent of the epigenome. Additionally, given that transcrip-
tional activation/repression can be regulated over large
distances in the genome, our approach using the nearest
gene for pathway analysis may have limited the number
of associations identified. Further, prevalent disease is
subject to reverse causality and therefore the results on
prevalent phenotypes should be interpreted with caution.
Strengths of this study include the well phenotyped and
carefully collected incident disease data, the robustness
of the findings across multiple cohorts and ethnic
groups, and the careful quality control employed. Fur-
ther, our results stood up to rigorous permutation test-
ing which increases the reliability of these observations.

Conclusions
Cross-sectionally, we have shown that variation in
mtDNA-CN is associated with nuclear epigenetic modi-
fications at specific CpGs across multiple independent

cohorts. Specifically, six mtDNA-CN-associated CpGs
were robustly identified across three independent co-
horts. Second, we found meQTL SNPs to not be associ-
ated with mtDNA-CN, suggesting that nuclear
methylation at these CpGs does not result in alterations
to mtDNA-CN. Third, functional results show that
modulation of mtDNA-CN leads to differential methyla-
tion and expression of genes relating to cell signaling
processes. Further, mtDNA-CN-associated CpGs display
association with mtDNA-CN-related phenotypes,
namely cardiovascular disease and all-cause mortality.
These findings demonstrate that the mechanism(s) by
which mtDNA-CN influences disease is at least in part
via regulation of nuclear gene expression through modi-
fication of nDNA methylation. Specifically, the data pre-
sented here support the model that modification of
mtDNA-CN leads to changes to nDNA methylation
which in turn influence nuclear DNA expression of
nearby genes which contribute to disease pathology.
These results have implications for understanding the
mechanisms behind mitochondrial and nuclear commu-
nication as it relates to complex disease etiology as well
as the consequences of mitochondrial replacement
therapeutic strategies. Taken together, the results con-
firm that in elucidating the underpinnings of complex
disease, knowledge of only nuclear DNA dynamics is not
sufficient to fully elucidating disease etiology.
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