Trzupek et al. Genome Medicine (2020) 12:55

https://doi.org/10.1186/513073-020-00756-z Ge nome M ed |C| ne

?.)

Check for
updates

Discovery of CD80 and CD86 as recent
activation markers on regulatory T cells by
protein-RNA single-cell analysis

Dominik Trzupek', Melanie Dunstan', Antony J. Cutler!, Mercede Lee', Leila Godfrey', Lorna Jarvis?,
Daniel B. Rainbow', Dominik Aschenbrenner?, Joanne L. Jones?, Holm H. Uhlig?, Linda S. Wicker',
John A. Todd" ™" and Ricardo C. Ferreira'"

Abstract

Background: Traditionally, the transcriptomic and proteomic characterisation of CD4™ T cells at the single-cell level
has been performed by two largely exclusive types of technologies: single-cell RNA sequencing (scRNA-seq) and
antibody-based cytometry. Here, we present a multi-omics approach allowing the simultaneous targeted
quantification of mMRNA and protein expression in single cells and investigate its performance to dissect the
heterogeneity of human immune cell populations.

Methods: We have quantified the single-cell expression of 397 genes at the mRNA level and up to 68 proteins
using oligo-conjugated antibodies (AbSeq) in 43,656 primary CD4" T cells isolated from the blood and 31,907
CD45™ cells isolated from the blood and matched duodenal biopsies. We explored the sensitivity of this targeted
scRNA-seq approach to dissect the heterogeneity of human immune cell populations and identify trajectories of
functional T cell differentiation.

Results: We provide a high-resolution map of human primary CD4" T cells and identify precise trajectories of Th1,
Th17 and regulatory T cell (Treg) differentiation in the blood and tissue. The sensitivity provided by this multi-omics
approach identified the expression of the B7 molecules CD80 and CD86 on the surface of CD4™ Tregs, and we
further demonstrated that B7 expression has the potential to identify recently activated T cells in circulation.
Moreover, we identified a rare subset of CCRO™ T cells in the blood with tissue-homing properties and expression of
several immune checkpoint molecules, suggestive of a regulatory function.

Conclusions: The transcriptomic and proteomic hybrid technology described in this study provides a cost-effective
solution to dissect the heterogeneity of immune cell populations at extremely high resolution. Unexpectedly, CD80
and CD86, normally expressed on antigen-presenting cells, were detected on a subset of activated Tregs, indicating
a role for these co-stimulatory molecules in regulating the dynamics of CD4" T cell responses.
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Background

Our understanding of the human immune system has
been greatly influenced by the technological advances
leading to the ability to precisely quantify mRNA and/or
protein expression at the single-cell level. In particular,
the implementation of flow cytometry as a routine and
widely accessible research tool has shaped much of our
current knowledge about the complexity of the immune
system. With increased availability of fluorochrome-
conjugated antibodies and more powerful lasers, flow cy-
tometric assays allow typically 15-20 parameters that
can be assessed in parallel. Developments in single-cell
mass cytometry (CyTOF) have similarly allowed the sim-
ultaneous assessment of the expression of up to 50 pro-
tein targets using heavy metal-labelled antibodies [1].

The advent of single-cell RNA sequencing (scRNA-seq)
has provided an unprecedented opportunity to investigate
the global transcriptional profile at the single-cell level. In
contrast to cytometry-based technologies, which are lim-
ited to the concurrent detection of up to a few tens of pro-
tein markers, scRNA-seq technologies allow to profile the
entire transcriptome, with a recent explosion in different
platforms becoming available to immunologists [2, 3].
These fundamentally differ in the cell capture methods
and resulting sensitivity, ranging from a few hundreds of
cells profiled with high sensitivity using plate-based capture
methods such as SMART-seq2 [4], to tens of thousands of
cells profiled with lower sensitivity using whole-
transcriptome scRNA-seq platforms, such as 10x Genomics
[5], Seq-Well [6] or Drop-seq [7].

Despite  the growing popularity of  whole-
transcriptome scRNA-seq, two main issues still affect
the performance of these platforms: cost and sensitivity.
Even at high sequencing coverage, resulting in increased
sequencing costs, stochastic dropout is a well-known
problem in scRNA-seq, leading to an inflation of zero
expression measurements. Furthermore, although several
methods have been developed to impute missing expres-
sion values, questions remain about the performance of
these methods [8]. This technical limitation is particu-
larly relevant for resting primary cells, such as CD4" T
cells, and mainly limits the robust detection and quanti-
fication of lowly expressed genes, including lineage-
defining transcription factors, which are critical for cell
type identification and functional annotation. An
important recent technical advance has been the devel-
opment of new methods, such as CITE-seq [9] and
REAP-seq [10], allowing the combination of whole-
transcriptome scRNA-seq with measurement of protein
expression at the single-cell level using oligo-conjugated
antibodies. These methods provide increased clustering
resolution and critical insight into the cell function, al-
though the resulting sequencing cost, especially when
combining large numbers of antibodies targeting highly
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expressed proteins, still limits the use of this technology
as a widely applicable immunophenotyping tool.

In this study, we describe an integrated targeted
scRNA-seq workflow, which we employ to simultan-
eously quantify the expression of 397 genes at the
mRNA level and up to 68 genes at the protein level
(using the Becton Dickinson (BD) AbSeq technology).
We sought to assess the sensitivity and cost-effectiveness
of this multi-omics system to immunophenotype human
primary CD4" T cells at the single-cell level and to iden-
tify discrete cell states providing potential new insight
into the functional heterogeneity of T cells. By combin-
ing the expression of a targeted set of genes with the
highly quantitative measurement of key protein markers,
we have generated a high-resolution map of human
CD4" T cells in the blood and tissue and delineated dis-
tinct trajectories of T cell differentiation associated with
a gradient of activation, apparent even in resting primary
cells. Our data also showed very clearly the frequent low
correlation between mRNA and protein expression in
primary CD4" T cells, thereby challenging the current
view that our understanding of the cellular heterogeneity
of the immune system can be re-defined based on
single-cell transcriptional data alone. These attributes
provided novel evidence for the expression of the B7
family molecules CD80 and CD86 on the surface of hu-
man primary Tregs ex vivo, thus revealing a biomarker
for activated Tregs in circulation. We confirmed the up-
regulation of B7 molecules in CD4" T cells activated
in vitro and showed that IL-2 signalling was sufficient
for the maintenance of B7 protein expression. Further-
more, we also identified a subset of CCR9" effector T
cells (Teffs) in circulation characterised by the expres-
sion of homing receptors and immune checkpoint mole-
cules such as ICOS, CTLA-4, TIGIT, LAG-3 and TIM-
3. These data provide insight into the function and spe-
cific surface markers that could be used to monitor the
frequency of this rare CCR9" T cell subset in the context
of gut inflammatory diseases.

Methods
Subjects
Study participants included one systemic lupus erythemato-
sus (SLE) patient (37-year-old female), recruited from the
Cambridge BioResource, and one T1D patient (16-year-old
male) and one autoantibody-negative healthy donor (14-
year-old male) recruited from the JDRF Diabetes—Genes,
Autoimmunity and Prevention (D-GAP) study.
Characterisation of total CD45" immune cells isolated
from a paired blood and duodenal biopsy was performed
in cells isolated from two paediatric coeliac disease (CD)
patients with active disease (one 5-year-old male with
Marsh scale disease score of 3c and one 15-year-old
male with Marsh scale disease score of 3b).
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Flow cytometric assessment of the expression of CD80
and CD86 in CD4" T cells was performed in four adult
healthy donors (two females 46 and 67 years old and two
males 41 and 51 years old), recruited from the Oxford
Biobank and Cambridge BioResource. Treg in vitro ex-
pansion assays were performed in three adult healthy
volunteers recruited via the CAMSAFE study either lo-
cally or from NHS Blood and Transplant (Cambridge).

Cell preparation and FACS sorting

T cell assays were performed on cryopreserved periph-
eral blood mononuclear cells (PBMCs). Cryopreserved
PBMCs were thawed at 37 °C and resuspended drop-by-
drop in X-VIVO15 (Lonza) with 1% heat-inactivated, fil-
tered human AB serum (Sigma). Total CD4" T cells
were isolated by negative selection using magnetic beads
(StemCell Technologies) and incubated with Fixable Via-
bility Dye eFluor 780 (eBioscience) for 15 min at room
temperature. After washing in PBS with 0.02% BSA, cells
were stained in 5mL FACS tubes (Falcon) with the
fluorochrome-conjugated antibodies used for cell sorting
and the BD AbSeq oligo-conjugated antibodies (BD Bio-
science), according to the manufacturer’s instructions.

Cell sorting was performed using a BD FACSAria Fu-
sion sorter (BD Biosciences) at 4°C into 1.5 mL DNA
low bind Eppendorf tubes containing 500 pL of X-VIVO
with 1% heat-inactivated, filtered human AB serum. Fol-
lowing cell sorting, the three assessed T cell subsets were
incubated with Sample Tag antibodies (Sample multi-
plexing kit; BD Bioscience), washed 3 times in cold BD
sample buffer (BD Biosciences) and counted. Samples
were then pooled together in equal ratios in 620 pL of
cold BD sample buffer at the desired cell concentra-
tions—ranging from 20 to 40 cells/pL for an estimated
capture rate of 10,000—20,000 single-cells—and immedi-
ately loaded on a BD Rhapsody Cartridge (BD Biosci-
ences) for single-cell capture.

For the in vitro-stimulated condition, sorted CD4" T
cell subsets were incubated in 96-well round-bottom tis-
sue culture plates (20,000 cells/well) at 37 °C for 90 min
in X-VIVO with 5% heat-inactivated, filtered human AB
serum with a PMA and ionomycin cell stimulation cock-
tail (eBioscience), in the absence of protein transport in-
hibitors. Cells were harvested into FACS tubes, washed
with cold BD sample buffer and further incubated with
the BD AbSeq oligo-conjugated antibodies, according to
the manufacturer’s instructions. All FACS/sorting and
AbSeq antibodies used in this study are listed in Add-
itional file 1: Table S1.

CD80/86 immunophenotyping

Immunophenotyping of the co-stimulatory molecules
CD80/CD86 and CTLA-4 was performed in freshly iso-
lated PBMCs. Cells were initially stained with
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fluorochrome-conjugated antibodies against surface re-
ceptors (see Additional file 1: Table S1) in BD Brilliant
Stain Buffer (BD Biosciences) for 30min at room
temperature then washed three times with PBS 0.02%
BSA to remove any residual antibody before cell perme-
abilisation. Fixation and permeabilisation were per-
formed wusing the FOXP3 Fix/Perm Buffer Set
(eBioscience) according to the manufacturer’s instruc-
tions. Cells were then immunostained with
fluorochrome-conjugated antibodies against intracellular
markers (including CTLA-4, where indicated) in BD
Brilliant Stain Buffer for 45 min at room temperature.

For the in vitro stimulation assays, total CD4" T cells
were isolated by negative selection using magnetic beads
(StemCell Technologies) from PBMCs from two of the
healthy donors used for ex vivo phenotyping. One
million CD4"* T cells, resuspended at a concentration of
10° cells/mL, were incubated in X-VIVO with 5% heat-
inactivated, filtered human AB serum, 1x GlutaMAX +
Pen/Strep in 24-well flat-bottom tissue culture plates
(TPP, Techno Plastic Products AG) in the presence of 0,
50 or 500IU IL-2 (IL-2 stimulation assay), or with
aCD3/CD28 beads (1 bead, 3 cells; Dynabeads Human
T-activator CD3/CD28, Thermo Fisher) and 0 or 500 IU
IL-2 (TCR stimulation assay). Cells were harvested every
four days for immunophenotyping as described for the
ex vivo cells; residual cells were restimulated using the
same original cell culture conditions. At day 15, a resting
condition was also included, whereby CD4" T cells were
no longer restimulated with aCD3/CD28 beads.

Immunostained samples were acquired using a BD
Fortessa (BD Biosciences) flow cytometer with FACS-
Diva software (BD Biosciences) and analysed using
FlowJo (Tree Star, Inc.). Live, single, CD4" T cells were
assessed following exclusion of dead cells based on the
Fixable Viability Dye eFluor 780 (eBioscience) and exclu-
sion of CD56", CD14" and CD8" cells.

Sorting and expansion of regulatory T cells

CD25MCD127°Y Tregs were flow-sorted from three
healthy donors and expanded using the Treg expansion
kit (Miltenyi Biotec) in X-VIVO containing 1% heat-
inactivated human AB serum, 500 U/mL IL-2 and 50 ng/
mL rapamycin (Miltenyi Biotec). Tregs were expanded
for cycles of two weeks for up to six additional rounds
of re-stimulation in G-rex G10 flasks (Wilson Wolf).
Cells were harvested either when they were actively
expanding (8 days after re-stimulation) or at the end of
the expansion cycle (day 15 after re-stimulation). Treg
expansion beads were then removed and cells stored in
cell-freezing media for flow cytometry analyses (Sigma)
or RLT buffer for mRNA analyses (Qiagen). Regulatory
phenotype and proliferative state were confirmed by flow
cytometric analysis at the time of sample collection and
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storage. mRNA expression of CD80 and CD86 was
assessed by NanoString (NanoString Technologies), ac-
cording to the manufacturer’s instructions.

Tissue dissociation and isolation of CD45" immune cells
from duodenal biopsies

For the characterisation of CD45" immune cells from
the intestine, duodenal biopsies were cryopreserved in
CryoStor CS10 reagent (StemCell) and stored in liquid
nitrogen until sample processing. Paired blood-derived
PBMCs were processed as described above. The paired
duodenal biopsies were thawed at 37 °C in X-VIVO with
1% heat-inactivated, filtered human AB serum then sub-
jected to gentle mechanical dissociation using gentle-
MACS (Miltenyi Biotec) followed by short 20-min
enzymatic dissociation at 37 °C using a very low concen-
tration of Liberase TL (0.042 mg/mL; Sigma), 10 nM
HEPES and 1 mg/mL DNase I in X-VIVO with 10% EFBS.
Following enzymatic dissociation, the biopsies were
homogenised using a more vigorous gentleMACS cycle
and strained through a 70-pm filter with physical macer-
ation to generate single-cell suspensions. CD45" im-
mune cells were further enriched using a 70/35% Percoll
gradient (Sigma). The dissociation protocol and low con-
centration of Liberase TL enzyme were optimised to
show a minimal effect on the degradation of surface pro-
tein expression levels, as assessed by flow cytometry.
This was critical to ensure maximal sensitivity and speci-
ficity of the AbSeq protein quantification in these
samples.

Blood- and tissue-derived single-cell suspensions were
incubated with Fixable Viability Dye eFluor 780 for 15
min at room temperature, and total CD45" cells were
isolated by FACS. Following cell sorting, the individual
blood- and tissue-derived subsets were incubated with
Fc block reagent (BD Biosciences) and Sample Tag anti-
bodies for 20 min at room temperature. Following three
rounds of washing, cells were counted and equal num-
bers (35,000 cells) of blood- and tissue-derived cells
from the same donor were pooled together and incu-
bated with AbSeq antibody mastermix (Additional file 1:
Table S1) according to the manufacturer’s instructions.
Cells were then washed two times in cold sample buffer,
counted and resuspended in 620 puL of cold sample buf-
fer at a final concentration of 40 cells/uL for loading on
a BD Rhapsody Cartridge.

cDNA library preparation and sequencing

Single-cell capture and ¢cDNA library preparation were
performed using the BD Rhapsody Express Single-Cell
Analysis System (BD Biosciences), according to the
manufacturer’s instructions. Briefly, cDNA was ampli-
fied—10 cycles for resting cells and 9 cycles for in vitro-
stimulated cells—using the Human Immune Response
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Primer Panel (BD Biosciences), containing 399 primer
pairs, targeting 397 different genes. The resulting PCR1
products were purified using AMPure XP magnetic
beads (Beckman Coulter), and the respective mRNA and
AbSeq/Sample Tag products were separated based on
size selection, using different bead ratios (0.7x and 1.2x,
respectively). The purified mRNA and Sample Tag PCR1
products were further amplified (10cycles), and the
resulting PCR2 products purified by size selection (1x
and 1.2x for the mRNA and Sample Tag libraries, re-
spectively). The concentration, size and integrity of the
resulting PCR products were assessed using both Qubit
(High-Sensitivity dsDNA Kit; Thermo Fisher) and the
Agilent 4200 TapeStation system (High Sensitivity
D1000 ScreenTape; Agilent). The final products were
normalised to 2.5ng/pL (mRNA), 0.5ng/pL (Sample
Tag) and 0.275ng/pL (AbSeq) and underwent a final
round of amplification (6 cycles for mRNA and 8 cycles
for Sample Tag and AbSeq) using indexes for Illumina
sequencing to prepare the final libraries. Final libraries
were quantified using Qubit and Agilent TapeStation
and pooled (~ 60/38/2% mRNA/AbSeq/Sample Tag ra-
tio) to achieve a final concentration of 5nM. Final
pooled libraries were spiked with 10% PhiX control
DNA to increase sequence complexity and sequenced
(75 bp paired-end) on HiSeq 4000 sequencer (Illumina).

Data analysis and QC

The FASTQ files obtained from sequencing were ana-
lysed following the BD Biosciences Rhapsody pipeline
(BD Biosciences). Initially, read pairs with low quality
were removed based on read length, mean base quality
score and highest single-nucleotide frequency. The
remaining high-quality R1 reads were analysed to iden-
tify cell label and unique molecular identifier (UMI) se-
quences. The remaining high-quality R2 reads were
aligned to the reference panel sequences (mRNA and
AbSeq) using Bowtie2. Reads with the same cell label,
the same UMI sequence and the same gene were col-
lapsed into a single molecule. The obtained counts were
adjusted by BD Biosciences-developed error correction
algorithms—recursive  substitution error correction
(RSEC) and distribution-based error correction
(DBEC)—to correct sequencing and PCR errors. Cell
counts were then estimated, using the second derivative
analysis to filter out noise cell labels, based on the as-
sumption that putative cells have much more reads than
noise cell labels. Thus, when cells are sorted in the de-
scending order by the number of reads, the inflexion
point can be observed on a log-transformed cumulative
curve of the number of reads. For the CD45"-sorted
cells, due to the heterogeneity of the sample, we ob-
served two inflexion points (and two corresponding sec-
ond derivative minima), and therefore, only cell labels
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after the second inflexion point were considered noise
labels. Barcoded oligo-conjugated antibodies (single-cell
multiplexing kit; BD Biosciences) were used to infer the
origin of sample (i.e. sorted cell population) and multi-
plet rate by the BD Rhapsody Analysis pipeline.

The DBEC-adjusted molecule counts obtained from the
Rhapsody pipeline were imported, and the expression
matrices were further analysed using the R package Seurat
3.0 [11]. Most cells identified as undetermined by the
Rhapsody pipeline had a low number of features (mRNA
and protein reads). These cells along with other cells with
similarly low (< 35) number of features were filtered out.
Identified multiplet cells were also filtered out at this
stage. A detailed summary of the number of putative cap-
tured cells, multiplet rate and number of cells filtered
from the analysis in each of the three experiments per-
formed in this study is provided in Additional file 2: Table
S2. The resulting matrices were log normalised using the
default parameters in Seurat, and the UMI counts were
regressed out when scaling data. In this approach, protein
(AbSeq) UMI counts were included in the same normal-
isation along with mRNA UMI counts. To investigate the
relative contribution of the protein library to the identified
clusters, we also tested two alternative normalisation
methods: (i) a hybrid method that integrates protein and
mRNA data and uses different normalisation methods for
them—for protein data, we use a centred log-ratio (CLR)
normalisation, computed independently for each feature,
and for mRNA data, we use typical log normalisation—
and (ii) using only the mRNA data. Uniform Manifold Ap-
proximation and Projection (UMAP) was used for dimen-
sionality reduction. The default number of used
dimensions of PCA reduction was increased to 30 based
on Seurat elbow plot. For clustering, we increased the de-
fault clustering resolution parameter value to 1.2 to obtain
a more fine-grained set of clusters. We note that the
choice of the clustering parameter can depend on several
experimental factors, such as cell number and heterogen-
eity of the starting cell population. Although we observed
relatively stable cluster assignment around the value of the
clustering parameter chosen for this study, the optimal
parameter may depend on the aim of the analysis and on
the desired granularity of the resulting cell clusters. Differ-
ential expression analysis was performed using negative
binomial generalised linear model implemented in Seurat,
and integration of data from multiple experiments was
performed using a combination of canonical correlation
analysis (CCA) and identification of mutual nearest
neighbours (MNN), implemented in Seurat 3.0 [12].
For integrated datasets, the differential expression
testing was performed for each integrated dataset, and
the p values were combined using meta-analysis
methods from the Metap R package implemented in
Seurat.
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The Seurat objects were further converted and
imported to the SCANPY toolkit [13] for consecutive
analyses. We have computed diffusion pseudotime ac-
cording to Haghverdi et al. [14] which is implemented
within SCANPY and used the partition-based graph ab-
straction (PAGA) method [15] for formal trajectory in-
ference and to detect differentiation pathways. For
visualisation purposes, we discarded low-connectivity
edges using the threshold of 0.7. Additionally, we have
also performed a pseudotime analysis using another in-
dependent method: single-cell trajectories reconstruction
(STREAM) [16]. In this case, to generate appropriate in-
put files, the Seurat objects were subsampled to include
N =2500 cells. The values of other parameters not men-
tioned here were set to default.

Detection of FOXP3 expression in Tregs using whole-
transcriptome scRNA-seq data

Expression of FOXP3 was assessed in two publicly avail-
able 10x Genomics datasets combining 3" mRNA and
surface protein expression: a 10k PBMC dataset gener-
ated using the v3 chemistry (7865 cells passing QC, with
an average of 35,433 reads per cell for the mRNA li-
brary) and a 5k PBMC dataset using the NextGEM
chemistry (5527 cells passing QC, with an average of 30,
853 reads per cell for the mRNA library; available at
https://support.10xgenomics.com/single-cell-gene-ex-
pression/datasets/). Treg and non-Treg gates were delin-
eated using the filtered cell matrixes with SeqGeq™
(FlowJo, Tree Star, Inc.), using the same strategy
employed to sort the CD127'°*CD25"™ Treg population
in this study. FOXP3" cells were defined as cells express-
ing one or more copy (UMI) of FOXP3.

Results

Simultaneous protein quantification increases the power
of scRNA-seq to dissect the functional heterogeneity of
human CD4" T cells

In this study, we wanted to investigate the power of a
unified high-throughput experimental workflow combin-
ing targeted scRNA-seq and the quantification of protein
expression at the single-cell level, to dissect the hetero-
geneity of human primary CD4" T cells in the blood. To
address this question, we initially profiled the expression
of 397 genes at the mRNA level, coupled with 37 protein
targets (Additional file 1: Table S1) using the BD AbSeq
technology, in CD4" T cells isolated from the blood of
an SLE patient. To enrich for the relative distribution of
two less abundant CD4" T cell subsets: (i)
CD127°%CD25" T cells, predominantly containing the
Treg population; and (ii) CD127°"CD25"" T cells, con-
taining a subset of non-conventional CD25°“FOXP3*
Tregs previously characterised in autoimmune patients
[17], we devised a FACS-sorting strategy to isolate and
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profile equal numbers of cells from the three defined T
cell subsets (Fig. 1a). Following sorting, cells from each
subset were labelled with a barcoded oligo-conjugated
antibody (Sample Tag) prior to cell capture—a method
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[18]—to identify their original sorting gate and to assess
the frequency of cell multiplets obtained in this
experiment.

A total of 9898 captured cells passed the initial quality

related to the recently described cell-hashing technique control (QC), of which a small proportion (1.9%;
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(See figure on previous page.)

Fig. 1 Combined single-cell transcriptional and proteomics immunophenotyping provides a high-resolution map of human primary CD4™ T cells
in the blood. a Summary of the experimental workflow. FACS plot depicting the sorting strategy for the isolation of the three assessed CD4" T
cell populations. b Two-dimensional plot depicting the expression of IL-7R and IL-2RA at the protein level using oligo-conjugated antibodies
(AbSeq). Cells are coloured according to their respective sorting gate, as assessed using oligo-conjugated sample-tagging antibodies. ¢ Uniform
Manifold Approximation Projection (UMAP) plot depicting the clustering of all captured CD4" single cells using the combined proteomics and
transcriptomics data. Expression levels of the CD45RA (black to green) and CD45RO (black to red) isoforms obtained using the AbSeq technology
are depicted in the plot. d UMAP plot depicting the clustering of resting primary CD4" T cells (n = 9708) isolated from the blood of a systemic
lupus erythematosus (SLE) patient. Dashed lines delineate the naive Teff (black), memory Teff (red), and Treg (blue) clusters, annotated manually
based on their respective protein and mRNA expression profiles. @ Heatmap displaying the top 10 differentially expressed genes in each resting
CD4* Teff cluster. f UMAP plots depicting the expression of the CD4" T cell lineage-defining transcription factors TBET (Th1) and RORyt (Th17) in
resting CD4" T cells. Arrows recapitulate the identified axis of Th1 and Th17 differentiation and are supported both on the gradient of expression
of the respective lineage-restricted transcription factors (TBET and RORyt, respectively) and on the developmental trajectories identified by the
pseudotime analysis depicted in Fig. 3. g Expression of the effector-type cytokine transcripts IFNG, NKG7, PRF1, CCL5, GZMH and GZMK in resting

CD4™ T cells

Additional file 2: Table S2) were assigned as multiplets
and excluded from the analysis. Of note, we observed
complete sequencing saturation of the mRNA library,
assessed as the number of cDNA molecules with a novel
unique molecular identifier (UMI) identified with in-
creasing sequencing coverage, for a read depth of > 2700
reads/cell (Additional file 3: Figure Sla). In contrast, we
obtained approximately 80% sequencing saturation at a
read depth of >6000 reads/cell for the AbSeq library
(Additional file 3: Figure S1b). This is illustrated by the
large dynamic range of expression of the protein targets,
reaching up to thousands of unique copies in cells dis-
playing higher levels of expression (Additional file 3: Fig-
ure Slc). Of note, the median expression of most
assessed proteins, including all those that are known not
to be expressed on CD4" T cells, was zero copies (Add-
itional file 3: Figure Slc), which demonstrates the high
specificity of the AbSeq system. To test the sensitivity of
this targeted approach to detect lowly expressed genes at
the mRNA level at these sequencing coverages com-
pared to whole-transcriptome scRNA-seq methods, we
quantified the frequency of cells expressing at least one
copy of FOXP3 within the Treg population. To standard-
ise this comparison between studies, we took advantage
of two publicly available PBMC datasets from 10x Gen-
omics, with deep paired cell-surface protein expression
data, and delineated the CD127°*CD25™ Treg popula-
tion using the same sorting strategy employed here
(Additional file 3: Figure S2a,b). While FOXP3 was de-
tected in only 232% and 18.3% of Tregs in whole-
transcriptome datasets (using the v3 and NextGEM
chemistries, respectively), it was detected in 68.3% of
Tregs using the targeted approach described in this
manuscript (Additional file 3: Figure S2c). A similar dif-
ference was observed within the non-Treg gate, although
as expected, the frequency of FOXP3" cells was substan-
tially lower (Additional file 3: Figure S2c). In addition,
we observed different FOXP3 UMI count distributions,
with a distinct skew towards higher UMI counts using

the targeted approach (Additional file 3: Figure S2d).
These data demonstrate the sensitivity of targeted
scRNA-seq to detect lowly expressed genes, even at a
fraction of the sequencing coverage (approx. 1/10th),
therefore allowing to allocate additional sequencing re-
sources to the protein expression libraries, which display
much higher dynamic range of expression.

To further test the sensitivity of the AbSeq protein
measurements, we next generated a two-dimensional
plot depicting the AbSeq expression of IL-2RA (CD25)
and IL-7R (CD127), which recapitulated the flow cyto-
metric profile obtained with the same two markers used
for the sorting of the assessed T cell subsets (Fig. 1b).
Furthermore, by overlaying the Sample Tag information,
we were able to confirm that the expression profiles of
CD127 and CD25 mimicked the sorting strategy pre-
cisely for all three sorted CD4" T cell subsets (Fig. 1b),
therefore illustrating the highly quantitative nature of
the protein measurements. We note that in our study,
the read depth devoted to the protein library (approx.
6000 reads/cell) was insufficient to reveal the complete
spectrum of CD127 and CD25 expression, resulting in
reduced power to fully resolve CD25'%/™™* T cells, when
compared to flow cytometry. Although increased se-
quencing coverages in our experiment would provide
only minimal gain for the functional characterisation of
single cells and clustering, they are necessary to describe
the complete dynamic range of protein expression, espe-
cially for highly expressed proteins such as CD127 and
CD25, thereby leading to similar sensitivity between mo-
lecular flow cytometry, as previously demonstrated for
CITE-seq [9], REAP-seq [10] and BD AbSeq [19].

Next, we performed unsupervised Louvain clustering
combining the mRNA and protein expression data and
visualised the clusters in a two-dimensional space using
Uniform Manifold Approximation and Projection
(UMAP) [20]. One of the main discriminators of func-
tional differentiation in CD4" T cells is the acquisition
of a memory phenotype in response to antigen
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stimulation, typically marked by the expression of
CD45RA on naive cells and CD45RO on memory cells.
However, because these are splice isoforms of the same
gene (PTPRC; CD45), discrimination cannot be achieved
using UMI-based scRNA-seq systems targeting the 3" or
5" ends of the transcript. By measuring the expression of
the two isoforms at the protein level, we were able to
identify a marked expression gradient associated with a
gradual loss of CD45RA and concomitant gain of
CD45RO along the first component of the UMAP plot,
indicating that the acquisition of a memory phenotype is
indeed the main source of biological variation driving
the clustering of CD4" T cells in both the Teff and Treg
compartments (Fig. 1c). One notable exception was the
re-expression of CD45RA in the most differentiated
memory cells (Fig. 1c). This observation is consistent
with the phenotype of differentiated effector memory
CD4" T cells that re-express CD45RA (TEMRAs) [21]
and illustrates the power of this highly multiparametric
approach to identify subtle alterations in CD4" T cell
states, while mitigating the potential issue of cell-type
misclassification based on a few prototypical markers
such as CD45RA/RO.

In this study, we have opted to integrate the mRNA
and protein data using standard normalisation methods,
which have been developed for traditional scRNA-seq
technologies. In the first approach, we do not differenti-
ate between mRNA and protein libraries. To further in-
vestigate the relative contribution of the protein library
to the underlying clustering, we also applied two alterna-
tive normalisation methods: (i) a hybrid method involv-
ing independent normalisation of protein and mRNA
libraries and (ii) using only the mRNA library for clus-
tering (Additional file 3: Figure S3a,b). Overall, we ob-
served good concordance between the resulting cell
clusters and their assigned functional annotation regard-
less of the normalisation method used, although small
differences could be observed in the resolution of the
smaller clusters (Additional file 3: Figure S3c,d). These
data suggest that for this dataset, containing a relatively
small number of protein markers, this issue does not sig-
nificantly alter the functional annotation of the clusters
and the interpretation of the results. Nevertheless, the
transcriptomics-only approach provided slightly inferior
cell-cluster resolution and spatial separation of the
naive-memory differentiation trajectory, indicating the
added value of protein data for the functional annota-
tion of the clusters. With the growing popularity of
molecular cytometry and increasing number of pro-
teins assessed, it will be important to consider the ef-
fects of data normalisation to the interpretation of
the results, and therefore, further work is warranted
to develop better methods to integrate multi-omics
datasets.
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Single-cell mRNA and protein immunophenotyping
identifies distinct trajectories of CD4™ T cell

differentiation in blood

Integration of the multiparametric transcriptional and
proteomics data identified discrete clusters of CD4" T
cells along the naive/memory differentiation axis
(Fig. 1d). We observed an increased number of clusters
within the memory compartment, marked by the differ-
ential expression of defined sets of signature genes
(Fig. 1e and Additional file 3: Figure S4a), which was
consistent with the increased functional heterogeneity in
differentiated CD4" T cell subsets. Moreover, we ob-
served that the expression of the canonical Thl (TBX21,
encoding TBET) and Th17 (RORC, encoding RORyt)
lineage-defining transcription factors was restricted to
specific clusters within the memory Teff (mTeff) popula-
tion (Fig. 1f), indicating that these clusters are highly
enriched for Thl and Th17 Teffs. More importantly, we
observed a distinct gradient of expression of these tran-
scription factors. Consistent with this gradient of func-
tional differentiation, we observed marked co-expression
of canonical Thl effector-type molecules and TBET
(Fig. 1f), revealing a subset of highly activated Thl T
cells with a putative cytotoxic profile in the blood of this
SLE patient. Similarly, a gradient of expression of Th17
signature genes, including RORC, could be observed
from clusters 8 to 7 (Fig. le, f), indicating a trajectory of
Th17 differentiation.

In addition to resting CD4" T cells, we also profiled
the same subsets of cells following short in vitro stimula-
tion (90 min) with PMA + ionomycin, to assess cell type-
specific cytokine production. Similarly to the resting
condition, in vitro-stimulated CD4" T cells formed
discrete clusters along the naive-memory differentiation
axis (Additional file 3: Figure S5a,b). Furthermore, we
observed a consistent induction of expression of Thl
(IFNy) and Th17 (IL-22) type cytokines that were re-
stricted to the respective Thl and Th17 clusters (Add-
itional file 3: Figure S5c,d). Although primers for the
Th2 transcription factor gene GATA3 were not included
in this assay, therefore precluding the annotation of Th2
cells in resting CD4" T cells, we noted that in vitro
stimulation revealed a distinct cluster of Th2 mTeffs
cells marked by the expression of Th2-type cytokines,
such as IL-13 (Additional file 3: Figure S5e), IL-4, IL-5
and IL-9 (Additional file 3: Figure S4b).

Recently, several scRNA-seq studies have refined our
understanding of the heterogeneity of CD4" Tregs and
their functional adaptation in tissues, in both mice and
humans [22, 23]. Given the sorting strategy used in this
study, we were able to significantly enrich our CD4" T
cell dataset for Tregs, which are highly enriched within
the CD127'°¥CD25™ population. Consistent with this
enrichment strategy, we identified a large Treg
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population, marked by the expression of the transcrip-
tion factor FOXP3 and other classical Treg signature
genes, including HELIOS (encoded by IKZF2), IL-2RA,
CTLA-4 or TIGIT (Fig. 2a, b). In agreement with their
Treg-specific transcriptional programme, we found a
marked suppression of IL-2 transcription in Tregs fol-
lowing in vitro stimulation (Additional file 3: Figure S5f).
We also identified a naive Treg cluster (cluster 0, Fig. 1d)
marked by elevated expression of the canonical naive T
cell marker CD45RA and concurrent low expression of
CD45RO (Fig. 1c). Furthermore, naive Tregs also dis-
played elevated expression of additional naive T cell sig-
nature genes, including CD62L (SELL), CCR7 and CD7
(Additional file 3: Figure S4a), highlighting a population
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of thymically derived naive Tregs that have been previ-
ously characterised in the thymus and cord blood, de-
creasing with age in adults [24]. In particular, we found
that the differentiation of Tregs from a naive to memory
phenotype was strongly associated with the expression
of two transcription factors: BACH2 and BLIMP1
(encoded by PRDM1I). These two key transcription fac-
tors displayed a distinct mutually exclusive expression
pattern, with high expression of BACH2 mRNA in naive
cells, declining gradually—with a concomitant gradual
increase in PRDMI expression—along the naive-
memory differentiation axis (Fig. 2c¢). The gradual in-
crease of PRDMI expression was found to be strongly
associated with the expression of Treg activation
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markers such as HLA-DRA, DUSP4 and CD39 (Fig. 2d),
and revealed a trajectory of Treg activation in resting
primary CD4" T cells. These data suggest that the tran-
scriptional interplay between BACH2 and BLIMP-1 is
critical to regulate the differentiation of memory Treg
subsets, which is in agreement with previous data in
both mice and humans [22]. The dynamic interplay of
BACH?2 and PRDM]1 in the differentiation of Tregs was
even more pronounced following in vitro stimulation
(Additional file 3: Figure S6), which further supports the
hypothesis that they are primary regulators of the tran-
scriptional programme associated with the differenti-
ation of activated Tregs in humans, in response to
antigen stimulation.

Statistical methods are currently being developed to
identify and reconstruct developmental trajectories from
heterogeneous scRNA-seq datasets using pseudotime
analysis. To validate our findings, we next applied the re-
cently developed partition-based graph abstraction
(PAGA) method [15] to reconstruct the developmental
trajectories in our dataset. Consistent with our previous
findings, the pseudotime analysis revealed a gradient of
T cell differentiation along the naive-memory differenti-
ation axis, which lead to the identification of three dis-
tinct differentiation pathways associated with the
acquisition of a Thl, Th17 or Treg phenotype (Fig. 3a,
b). These identified differentiation trajectories were
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associated with gradually increased expression of the
lineage-specific transcription factors TBET, RORyt and
FOXP3, respectively, which regulate the transcriptional
programme associated with the respective T cell lineages
(Fig. 3c—e). In particular, we confirmed a very distinct
and gradual differentiation of the Thl lineage in this
SLE patient, leading to the temporal acquisition of ac-
tivated Thl cells expressing IEN-y in cluster 5 and
the terminal differentiation of a subset with a cyto-
toxic profile (cluster 9). Of note, this analysis identi-
fied cluster 2 as an intermediate memory Teff cell
state, leading to the differentiation of either Thl
(cluster 5 and 9) or Th17 (cluster 7) T cells. More-
over, the pseudotime analysis also recapitulated the
Treg differentiation trajectory from naive Tregs (clus-
ter 0) to activated memory Tregs (cluster 3), which
was regulated by the mutually exclusive expression of
the BACH2 and BLIMP-1 transcription factors
(Fig. 3e). An intriguing observation was the identifica-
tion of cluster 8 representing a potential intermediate
T cell state on a Treg-Thl7 developmental pathway,
which is consistent with the plasticity and putative
common co-evolutionary origin between these two
lineages [25].

The identification of the temporal differentiation of
these T cell lineages was also recapitulated using single-
cell trajectories reconstruction, exploration and mapping
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(STREAM) [16], another method that has been devel-
oped to visualise developmental trajectories using multi-
omics data (Fig. 3f). Further supporting a putative com-
mon developmental pathway of Treg and Thl17 cells,
STREAM analysis identified FOXP3" memory Tregs
(mTregs) as a less differentiated T cell state, which
shares a developmental trajectory with differentiated
RORyt" Th17 cells, with cluster 8 representing an inter-
mediate transitional cell state in this trajectory (Fig. 3g).
These data illustrate not only the potential of the tar-
geted scRNA-seq approach to sensitively quantify lowly
expressed transcription factor genes, but also highlight
the power of this integrated multi-omics approach to
identify subtle cell-state transitions and underlying dif-
ferentiation trajectories in resting human primary T
cells.

Protein expression of CD80 and CD86 marks a subset of
recently activated CD4" Tregs in circulation

A feature of the most activated mTreg cluster (cluster 3)
was the marked increased expression of the B7 proteins
CD80 (B7.1) and CD86 (B7.2; Fig. 2b, d), two T cell co-
stimulatory molecules usually expressed in antigen-
presenting cells (APCs). These findings were recapitulated
on the pseudotime analysis, which identified CD80/CD86
protein expression as markers of the temporal Treg differ-
entiation trajectory (Fig. 3e). Although we observed virtu-
ally no detectable expression of either CD80 or CD86 at
the mRNA level in either resting or in vitro-stimulated
CD4" T cells (Additional file 3: Figure S7ab), previous
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reports have demonstrated endogenous expression of both
genes in human CD4" T cells upon activation [26-28].
Furthermore, an increasing body of work points to a func-
tional role of both B7 proteins in T cell function [29].
Consistent with our AbSeq data, we detected the expres-
sion of CD80 and CD86 by flow cytometry on the surface
of a small proportion resting CD4" T cells isolated from
the blood of four healthy donors (Fig. 4a, b). The expres-
sion of the B7 proteins was restricted to the CD45RA™
memory compartment and showed predominant expres-
sion in Tregs (Fig. 4a, b). In agreement with these data, a
significant proportion of CD80", and especially CD86" T
cells, displayed co-expression of the Treg transcription
factor FOXP3 (Fig. 4c). Furthermore, both CD80" and
CD86" mTregs displayed normal profiles of FOXP3 and
HELIOS expression, supporting a bona fide Treg pheno-
type; although we noted an increased frequency of
the HELIOS FOXP3" subset within B7" Tregs
(Fig. 4d). Notably, we detected co-expression between
CD86 and the activation markers CTLA-4 and HLA-
DR, as indicated by the increased frequency of
CTLA-4" HLA-DR* cells within CD86" mTregs
(Fig. 4e, f). In contrast to CD86, the co-expression
between CD80 and CTLA-4 on mTregs was less pro-
nounced, although still displaying preferential co-
expression with the activation markers CTLA-4 and
HLA-DR in mTregs (Additional file 3: Figure S7c,d).
Taken together, these data support our AbSeq data
and identify CD80 and especially CD86 as a specific
marker of activated Tregs in circulation.
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In vitro activation drives endogenous expression of CD80
and CD86 expression in human CD4™ T cells

Owing to the high sensitivity of Tregs to IL-2, we next in-
vestigated the dynamics of endogenous B7 protein acquisi-
tion and its dependence on IL-2 signalling in purified
CD4" T cells from two healthy donors incubated in vitro
for up to two weeks in the presence or absence of IL-2. In-
cubation with IL-2 was found to be sufficient to induce
the upregulation of CD80 and CD86 expression in the ab-
sence of TCR stimulation and was mostly pronounced in
FOXP3" mTregs, which express higher levels of IL-2RA
than mTeffs (Fig. 5a—c). Of note, the expression of CD80
was upregulated earlier and increased until day 15, where
the majority of CD4 T cells were CD80", while CD86 ex-
pression was only robustly detected from day 12 (Fig. 5b,
¢). In addition, we observed some level of inter-individual

-
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variation associated with the initial timing of CD86 acqui-
sition, which was more rapid in one of the two assessed
donors. In the absence of IL-2, the majority of cells died
before day 15.

In contrast to incubation with IL-2 alone, CD4" T cells
activated in vitro with TCR stimulation (using aCD3/
CD28-conjugated beads) showed robust proliferative
capacity, as assessed by increased cell numbers, and in-
creased expression of both B7 molecules in the
CD45RA™ memory compartment, which reached max-
imal expression between days 15 and 20 post-
stimulation (Fig. 5d and Additional file 3: Figure S7e).
No systematic differences were observed in T cells cul-
tured in the presence or absence of IL-2, which was
likely due to the high levels of IL-2 production by acti-
vated Teffs in this model. However, if cells were not
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TCR re-stimulated at day 15, we observed a rapid down-
regulation of CD80 and CD86 expression in cells incu-
bated in the absence of IL-2. In sharp contrast, expression
of both B7 proteins in mTeffs was stably maintained for
up to 7 days when cells were incubated with high doses
(500 U) of IL-2 (Fig. 5e). The acquisition of B7 molecules
was associated with T cell activation and was particularly
pronounced for CD86 in cells expressing the T cell activa-
tion markers CTLA-4 and HLA-DR (Additional file 3: Fig-
ure S7f,g). Of note, we observed a distinct pattern of co-
expression of these two activation markers in CD80" and
CD86" mTeffs. CTLA-4 expression on the cell surface
was rapidly and transiently expressed on B7" mTeffs,
peaking at day 4, while HLA-DR expression gradually in-
creased over time, showing striking co-expression with
both CD80 and CD86 at the later stages of activation
(Fig. 5f). In the presence of IL-2, co-expression with CD25
and HLA-DR could be observed in resting cells as late as
day 40 post-stimulation, particularly in CD86" T cells. In
contrast, membrane-bound CTLA-4 expression was virtu-
ally absent at this time point, although the few CTLA-4"
cells remaining co-expressed both B7 molecules (Fig. 5g).
These data not only demonstrate the stability of B7 pro-
tein expression on CD4" T cells following activation, but
could also provide a rationale for the observed restricted
expression of CD80, and especially CD86, in primary T
cells by AbSeq.

The increased proliferative capacity of mTeffs in this
model precluded the investigation of the effects of TCR-
induced in vitro activation on B7 upregulation in Tregs.
To address this question, we next investigated the ex-
pression of B7 molecules in flow-sorted CD127'°¥CD25M
Tregs activated in vitro under conditions that promote
Treg expansion. Similarly to total CD4" T cells, we ob-
served that expanded Tregs showed very high expression
of both B7 molecules, which was maintained in cycling
cells (assessed as Ki-67"), harvested 8 days after «CD3/
CD28 restimulation (Fig. 5h). The expression of B7 mol-
ecules in expanded Tregs was also confirmed at the
mRNA level (Fig. 5i). Given the absence of APCs in
these in vitro activation models, these data strongly sup-
port an endogenous upregulation of B7 molecules by
CD4" T cells in response to activation.

Multi-omics immunophenotyping identifies a rare subset
of circulating CCR9™ T cells expressing immune
checkpoint molecules

Another example of a rare T cell population that we
were able to identify in circulation using this multimodal
immunophenotyping strategy was a subset of T cells
marked by the specific expression of the small intestine-
homing chemokine receptor CCR9, as well as increased
expression of a number of other classical homing
markers, such as ITGA4 (CD49d) and ITGAE (CD103)
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(cluster 10; Fig. 6a and Additional file 4: Table S3). Ana-
lysis of surface-expressed markers identified an increased
expression of CD38 in this cluster, along with the co-
expression of IL23R, ILI2RB1 and KLRB1 (CD161;
Fig. 6a). Recently, a subset of CD38"CD62L" effector T
cells expressing gut-homing receptors, including CCRY,
has been described in the blood in humans [30]. These
cells were shown to have strong immunomodulatory
properties mediated by the expression of T cell inhibi-
tory receptors such as TIGIT, and their frequency was
shown to be decreased in the blood of IBD patients [30].
In agreement with this putative regulatory function, our
data confirmed the increased expression not only of
TIGIT, but also of the T cell immune checkpoint mole-
cules ICOS, HAVCR2 (TIM-3) and LAG3 (Fig. 6a). Con-
sistent with their effector T cell phenotype, this cluster
of CCRY" T cells displayed increased expression of
several classical genes associated with T cell effector
function, including FAS, ANXAS, CASP5 and SELPG
(Fig. 6a). Furthermore, the pseudotime analysis demon-
strated that these cells correspond to a highly differenti-
ated cell state, located within the Treg and Thl7
differentiation trajectories (Fig. 3a).

Of the 75 cells assigned to cluster 10, 36 (48.0%) were
originally sorted from the CD127"°¥CD25'" gate, while
37 (49.3%) were sorted from the CD127°¥CD25™ gate.
These data further support the differentiated state of this
T cell subset and indicate that the sorting strategy
employed in this study, strongly enriching for the fre-
quency of cells in these two gates, allowed for the robust
detection of this rare subset, which may have been
missed in a more heterogeneous total CD4" T cell popu-
lation. In addition, these data also suggest that CCR9™ T
cells display intermediate to elevated levels of IL-2RA
(CD25) expression, consistent with their frequent detec-
tion within the conventional CD127"°*CD25™ Treg gate.
To investigate the putative regulatory function of these
cells, we then compared the transcriptional profile of
these cells with the identified memory Teff clusters
(clusters 2, 5, 7, 8 and 9; Fig. 6b) or with the memory
Treg clusters (clusters 3 and 4; Fig. 6¢). In both compari-
sons, we observed a systematic upregulation of similar
sets of genes in the CCR9" T cells (cluster 10), consist-
ent with the highly differentiated state of this cluster,
and putative immunomodulatory properties. We did not
observe a distinct upregulation of a set of Treg signature
genes, suggesting that these cells do not represent a
bona fide Treg subset. In addition, we observed a mod-
est increased expression of FOXP3, when compared to
memory Teffs, but lower than memory Tregs (Fig. 6a).
As FOXP3 expression is known to be an imperfect
marker of Tregs in humans, this intermediate expression
could therefore represent transient upregulation in this
subset of activated T cells. Moreover, despite the
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Fig. 6 Characterisation of a rare subset of circulating CCR9* T cells with putative immunomodulatory properties. a Heatmap depicts the average
scaled expression in each identified T cell cluster of selected differentially expressed genes in cluster 10. Markers are grouped according to their
functional annotation into gut-homing markers (red), surface receptor (blue), immune checkpoint molecules (green), T cell effector markers
(purple), cluster 10 signature genes (pink) and T cell transcription factors (TFs; orange). b, ¢ Volcano plots depict the differential expression of the
assessed mRNA transcripts between cluster 10 and either the mTeff (b) or mTreg (c) clusters. Colour coding depicts the functional annotation

expression of several surface markers usually associated
with Th17 cells, we observed no evidence for the expres-
sion of RORC (RORyt; Fig. 6a). These data suggest that
CCR9" T cells may respond to the same signalling and
migration cues as Th17 cells, for example, IL-23, which
could be responsible for their co-localisation and poten-
tial regulatory interaction in mucosal sites.

One distinguishing feature of this subset was the
expression of the transcription factor POU2AFI
(Fig. 6a). Although POUZ2AFI (encoding OCA-B) has
been mainly characterised as a B cell-specific tran-
scription factor in the blood, where it plays a role in
B cell maturation [31], it has also been recently
shown in mice to regulate the maintenance of mem-
ory phenotype and function in previously activated
CD4* T cells [32] and the differentiation of T follicu-
lar helper (Tfh) cells in the tissue [33].

Single-cell comparison of mRNA and protein expression
levels reveals modest and variable levels of correlation in
primary CD4* T cells

Given that the main advantage of this combined targeted
scRNA-seq and proteomic approach is the ability to

immunophenotype large numbers of cells from multiple
donors, we next investigated whether we were able to in-
tegrate data generated from independent experiments.
We replicated the initial experiment using the same pre-
sorting strategy to isolate the three assessed CD4" T cell
subsets from an individual with type 1 diabetes and one
healthy donor. To further test the potential of the pro-
tein quantification, we extended the AbSeq panel to 43
protein targets expressed on CD4" T cells (Add-
itional file 1: Table S1). In agreement with the initial ex-
periment, unsupervised clustering of the 23,947 cells
passing QC revealed a similar discrimination of CD4" T
cell subsets (Fig. 7a) and good alignment of the data
from the three donors (Fig. 7b). Analysis of the donor-
specific distribution of the identified CD4" T cell
clusters showed that the frequency of the putative CD4"
cytotoxic Thl subset (cluster 11), marked by the co-
expression of TBET and effector-type cytokines, was
highly increased in the SLE patient (Fig. 7c—e). To avoid
age-specific differences in the relative distribution of the
CD45RA" naive and CD45RO* memory compartments
in these donors, we normalised the analysis to the mem-
ory T cell clusters only, which we were able to robustly
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Fig. 7 Data from independent experiments can be robustly integrated. a UMAP plot depicting the clustering of resting primary CD4" T cells from
one systemic lupus erythematosus (SLE; n = 9708 cells) patient, one type 1 diabetes (T1D; n= 7042 cells) patient and one healthy donor (n=7197
cells). Data were integrated from two independent experiments using the same CD4" T cell FACS sorting strategy (described in Fig. 1a). b
Alignment of the integrated targeted transcriptomics and proteomics data generated from the three assessed donors in two independent
experiments. ¢ UMAP plots depicting the donor-specific clustering of the CD4" T cells. d Relative proportion of the identified CD4" T cell clusters
in each donor. Frequencies were normalised to either the annotated naive or memory compartments to ensure higher functional uniformity of
the assessed T cell subsets and to avoid alterations associated with the declining frequency of naive cells with age. @ UMAP plots depicting the
relative expression of the canonical Th1 transcription factor 7TBX21 (encoding TBET) and the effector cytokines NKG7 and PRF1 on the three
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annotate using the AbSeq data for the expression of
CD45RA and CD45RO. Although we detected a few
cells with this activated Thl phenotype in circulation
from every donor, there was a very substantial expansion
in the SLE patient (2.5% of memory CD4" T cells com-
pared to 0.3% and 0.1% in the T1D patient and healthy
donor, respectively; Fig. 7d), suggesting that it could rep-
resent a pathogenic CD4" T cell subset associated with
systemic autoimmunity in this patient. In addition, we
also integrated the full dataset of resting and in vitro-
stimulated CD4" T cells from the three donors,
resulting in a combined dataset of 43,656 cells. Des-
pite the known activation-induced changes in the
transcriptional profile of in vitro-stimulated T cells—
including cytokine expression—we observed a good
integration of the datasets, yielding similar annotation
of the resulting T cell clusters (Additional file 3:
Figure S8 and Additional file 5: Table S4). The only
exception was the separation of the in vitro-activated
naive T cells into a distinct cluster (cluster 3), caused
by the upregulation of cytokine expression (most not-
ably IL-2), which was completely absent in resting
cells. In contrast, we observed a more consistent inte-
gration of the memory clusters, and particularly the
memory Teff cells, thereby providing additional infor-
mation and increased cell numbers for the functional
annotation of this dataset.

The parallel quantification of mRNA and protein ex-
pression for a large number of genes expressed in CD4"
T cells in this experiment provided a unique opportunity
to investigate their systematic correlation at the single-
cell level. From the 43 proteins quantified with AbSeq,
26 were also assessed at the transcriptional level and de-
tected in our CD4" T cell dataset. Generally, we ob-
served relatively weak (mean Pearson correlation
coefficient = 0.214) but variable levels of correlation in
total resting CD4" T cells, ranging from 0.049 for
TNFRSF9 to 0.808 in KLRBI1 (encoding CD161; Fig. 7).
Furthermore, we note that with the exception of
CXCRS, the estimated correlations were very consist-
ent between the two independent donors (Fig. 7f).
These findings were consistent with previous observa-
tions [9, 10] and suggest that primary CD4" T cells
are highly specialised cells, where transcription is
subject to tight regulation to avoid excessive energy
consumption by the cell and to control effector func-
tion. As expected, by normalising our analysis to a
functionally more homogeneous population of mem-
ory CD4" T cells, we observed higher levels of correl-
ation (mean =0.233), which is consistent with their
increased expression of the majority of the assessed T
cell markers. A slightly decreased correlation (mean =
0.178) was observed in in vitro-stimulated CD4" T
cells (Fig. 7g).
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Parallel mRNA and protein profiling provides increased
cell-type resolution of the heterogeneous CD45" immune
cell population in blood and tissue

To investigate how this targeted scRNA-seq and tran-
scriptomics approach performed on a more heteroge-
neous population of immune cells, we isolated total
CD45™ cells from the blood and a matching duodenal bi-
opsy from two coeliac disease (CD) patients with active
disease. In this experiment, we captured 31,907 single
cells that passed QC and expanded the AbSeq panel to
the detection of 68 protein targets (Additional file 1:
Table S1). As expected, we observed a very defined clus-
tering of the different populations representing the
CD45" immune cells (Fig. 8a). Consistent with previous
data [34, 35], we found a clear separation of cells iso-
lated from either blood or the small intestine (Fig. 8b),
indicating a transcriptional signature of tissue residency.
Furthermore, clustering of cells isolated from blood
(Fig. 8c and Additional file 3: Figure S9a) or tissue
(Fig. 8d) separately revealed the expected cell popula-
tions. The main distinction was the relative distribution
of the immune populations, with a marked increased
representation of B cell, NK cell and CD14'CD16~
monocyte populations in the blood, and a significantly
increased proportion of plasma cells in the small intes-
tine. In agreement with our findings in CD4" T cells, we
found that the acquisition of a memory phenotype was
the main driver of the clustering of both CD4" and
CD8" T cells (Additional file 3: Figure S9b,c). In
addition, we identified other clusters of non-
conventional T cells, including a subset of y§ T cells and
mucosal-associated invariant T cells (MAIT) in the
blood, which shared similarities with the transcriptional
signature of memory CD8" T cells, marked by the ex-
pression of effector-type cytokines genes, such as NKG7
(Additional file 3: Figure S9c). In contrast, tissue-
resident CD4" T cells isolated from the small intestine
were restricted to the memory phenotype and displayed
a markedly different subset distribution, including a sub-
stantially enlarged population of FOXP3" Tregs (Fig. 8e,
f). Moreover, the simultaneous assessment of the protein
expression of CXCR5, ICOS and PD-1 identified a clus-
ter of Tth cells (Fig. 8e), which could be distinctly clus-
tered along a trajectory of Ttfh cell activation, as
illustrated by the gradient of expression of key Tth func-
tional transcripts, such as IL21, CXCLI3 and BTLA
(Fig. 8g).

Similarly, we also identified distinct trajectories of cell
differentiation in other immune cell types, as illustrated
by the gradient of differentiation and class switching of
B cells in the blood (Additional file 3: Figure S10a-c).
Peripheral B cells were clearly dominated by a naive
IgD*IgM* CD27" subset, and only a small fraction of
class-switched IgG* CD27" memory B cells, which was
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consistent with the young age of the CD patients. In
contrast, tissue-resident B cells were much less abundant
and contained mostly cells with a class-switched IgG*
CD27" memory phenotype. In addition, we identified a
vastly expanded population of antibody-secreting plasma
cells (Additional file 3: Figure S10d,e). Of note, because
we were able to specifically assess the expression of the
secreted Ig isotypes, we could discriminate the different
functional plasma cell subsets, including a very abundant
population of IgA-secreting plasma cells (Additional file 3:
Figure S10f), which are known to play a critical role in
the interaction with the microbiome in the gut. To-
gether, these data provide an example of the power of
this multi-omics approach to identify trajectories of cell
differentiation and cell states in diverse immune cell and
tissue types.

Discussion

The advent of scRNA-seq has proved to be transforma-
tive in shaping our understanding of the complexity and
function of the human immune system [36, 37]. How-
ever, currently, both the elevated costs to perform these

experiments and the reliance on transcriptional data
alone pose significant challenges to the widespread prac-
tical applicability of these technologies. In this study, we
present an integrated, cost-effective approach to sensi-
tively assess the simultaneous expression of mRNA and
protein for hundreds of key immune targets at the
single-cell level using the AbSeq technology.

Recently, two similar approaches, CITE-seq [9] and
REAP-seq [10], have been described to measure protein
expression using oligo-conjugated antibodies in parallel
with scRNA-seq data. Furthermore, other applications
are currently being developed to integrate the growing
portfolio of single-cell omics technologies [38, 39]. A
fundamental difference with the approach described in
this study is that these technologies all rely on whole-
transcriptome data, providing a high-level cross-
sectional representation of all polyA mRNA transcripts
in the cell. In contrast, by using targeted scRNA-seq, we
are relying on prior knowledge to specifically assess the
expression of hundreds of selected genes in single cells.
Moreover, we show here that a targeted approach pro-
vides sensitive quantification of the selected genes at a



Trzupek et al. Genome Medicine (2020) 12:55

fraction - approximately 1/10th - of the cost , as it avoids
the detection of highly expressed invariant housekeeping
genes, which take up the vast majority of the whole-
transcriptome scRNA-seq libraries. This reduced se-
quencing requirement for targeted scRNA-seq allows to
allocate a larger proportion of the sequencing resources
to the protein library, resulting in a 3- to 4-fold reduced
cost per cell—assuming similar coverage for protein
quantification—compared  to  whole-transcriptome
scRNA-seq (summarised in Additional file 6: Table S5).
The features and cost considerations are critical to in-
form on the optimal use of a targeted or whole-
transcriptome approach. The increased sensitivity of a
targeted approach is particularly relevant for the accur-
ate assessment of lowly expressed genes with critical
regulatory function, such as transcription factors, which
are often poorly quantified using traditional whole-
transcriptome scRNA-seq data. It therefore provides a
knowledge-based approach to validate and extend
whole-transcriptome scRNA-seq findings, which can be
widely implemented in any research or clinical setting.
Similar to other widely implemented knowledge-based
single-cell immunophenotyping tools such as flow cy-
tometry and CyTOF, the highly customisable nature of
this approach is critical to investigate specific research
questions with very high sensitivity and in a larger num-
ber of samples. However, in contrast to CyTOF, which is
inherently time-consuming and requires the availability
of large numbers of cells to maximise the information
generated by each run, this technology is ideally suited
for unique and highly valuable clinical samples, for
which cell availability and number are major practical
constraints. Furthermore, the digital nature and lack of
spectral overlap issues with the AbSeq measurements
can mitigate some of the limitations associated with flow
cytometry, allowing accurate quantification of zero or
very low copy numbers, which are usually difficult to
discriminate by flow cytometry, and could reveal mean-
ingful biological differences.

The increased sensitivity and the high number of pa-
rameters simultaneously assessed using this multi-omics
approach can also lead to unanticipated novel biological
findings. An illustrative example of this potential is the
identification of the APC-restricted B7 family molecules
CD80 and CDB86 co-stimulatory proteins as markers of
activated Tregs in peripheral blood. Despite their pre-
dominant function in APCs, endogenous expression of
CD80 [26, 27] and CD86 [28] has been previously dem-
onstrated on activated T cells in humans. Time-course
analysis of the expression of these molecules in an
in vitro activation model revealed the co-localisation of
these molecules with CD28 on the surface of activated T
cells [40]. Our data demonstrate that the expression of
CD80 and CD86 can also be detected in humans on the
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surface of primary T cells in blood, predominantly in
Tregs. Notably, our results also reveal that induction of
IL-2 signalling was sufficient for the maintenance of B7
protein expression on activated T cells, therefore provid-
ing a rationale for the observed AbSeq findings, showing
restricted expression of these molecules ex vivo, particu-
larly CD86, on the surface of a subset of activated
mTregs, which are known to display the highest sensitiv-
ity for IL-2 signalling. Consistent with these observa-
tions, CD86 expression in T cells has been previously
shown to be critically dependent on IL-2 signalling [41].
Taken together, these data provide further evidence
pointing to a functional role of B7 molecules in the
regulation of a T cell response and suggest an intriguing
potential uncharacterised role of CD86 in Treg function.

In contrast to CD86 protein expression which is often
associated with high levels of intracellular CTLA-4
(Fig. 4€), CD80 protein expression could also be detected
on Tregs with lower levels of CTLA-4 (Fig. S7c) and dis-
played a broader expression profile in other activated T
cell subsets. In particular, the pseudotime analysis per-
formed in our dataset identified CD80 as a marker of
the temporal differentiation of Th17 cells (Fig. 3d),
which may provide a mechanistic rationale for the re-
cently reported suppression of Th17 differentiation in
response to anti-CD80 treatment in mice [42]. Further-
more, we also note a distinct co-expression of CD80
protein and HLA class I mRNA (HLA-DRA) in a subset
of activated Thl cells (Fig. 2d), which could indicate re-
cent activation in the context of strong TCR signalling
required to induce the differentiation of Thl cells [43,
44].

Currently, we cannot rule out that CD80/CD86
molecules detected on Tregs could be acquired exogen-
ously through mechanisms such as CTLA-4-mediated
trans-endocytosis [45, 46] or TCR-mediated trogocytosis
[47-49]. Although these models are consistent with the
virtual lack of mRNA detection in our ex vivo T cell
datasets and with the observed co-expression with
CTLA-4, it is unlikely that such mechanisms could lead
to long-lasting protein expression on the surface of T
cells. In agreement with endogenous production ac-
counting for the majority of CD80/CD86 expression on
T cells, exogenous acquisition of B7 molecules from
APCs has been shown to be a rapid process that imme-
diately follows T cell activation [50, 51] and could there-
fore only account for transient surface expression. In
contrast, endogenous expression of B7 family molecules
by T cells has been shown to be a late-stage and more
stable activation marker, which is more consistent with
the broader pattern of expression observed in this study.
Interestingly, a recent study suggested a novel role for
B7 molecules in regulating CD8" T cell population dy-
namics, by controlling T cell expansion through T-T cell
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signalling via CD28 and CTLA-4 [29]. These findings
suggest a major function of B7 family molecules in T cell
biology, providing critical regulatory signals that curtail
chronic T cell activation, which could be particularly
relevant in the context of high T cell density in inflam-
matory environments. Consistently, ablation of B7/CD28
signalling in CD80/CD86 knock-out mice [52] or clinic-
ally with CTLA-4Ig (abatacept) has been shown to im-
pair T cell regulation and lead to aggressive secondary
autoimmunity [53, 54].

Another example of the potential of this multi-omics
approach to reveal novel biological findings was the
identification of a rare subset of highly differentiated T
cells marked by the expression of the small intestine-
homing marker CCR9 (cluster 10). Detailed characterisa-
tion of their cell surface and transcriptional profile
in vivo revealed specific expression of CD38 and a set of
immune checkpoint molecules: TIGIT, ICOS, CTLA-4
and LAG-3. This phenotype is consistent with a recently
described subset of gut-homing CD38 TIGIT CD62L"~
effector T cells with a putative immunoregulatory role in
IBD [30]. In contrast to Joosse et al., our multipara-
metric characterisation of the CCR9" T cells at the
single-cell level resulted in a much more restricted T cell
subset compared to the more frequent CD38'TI-
GIT*CD62L" T cell population described by flow cytom-
etry in their study. Nevertheless, given the very specific
expression of CCR9 in cluster 10 that we show in this
study, it is plausible that an enrichment of this subset
amongst the more heterogeneous CD38" TIGIT"CD62L"
T cell population could be responsible for the reported
gene expression signatures. In addition to CD38, another
feature of the CCR9" T cell subset was the increased ex-
pression of IL23R and ILI2RBI, which encode for the
two subunits of the IL-23 receptor. The clinical rele-
vance of the IL-12/IL-23 signalling pathway to gut in-
flammatory disease has been well established [55], and a
coding variant in the IL-23R gene has been strongly as-
sociated with the susceptibility to inflammatory bowel
disease (IBD) [56]. Together, these data point to a role
of this subset of CCR9" T cells in regulating pro-
inflammatory Th17 immunity in response to IL-23
signalling in the gut, thereby preventing chronic inflam-
mation, and provide new tools to monitor their fre-
quency in the blood in the context of gut inflammatory
conditions.

An important finding from this study and other re-
lated studies [9, 10] is the generally low levels of correl-
ation between mRNA and protein expression in
primary CD4" T cells at the single-cell level. One pos-
sible explanation for this observation is that reduced
sensitivity of scRNA-seq to quantify mRNA expression
may be leading to an underestimation of the correlation
coefficients. However, we note that there are notable
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exceptions, such as CD161, which displayed a high
correlation between mRNA and protein levels at 0.847
in memory CD4" T cells, demonstrating that a system-
atic error in the quantification of mRNA levels by
scRNA-seq technologies is not the only factor contrib-
uting to the observed low level of correlation. These
findings therefore underscore the importance of parallel
protein quantification to better identify stable cellular
phenotypes associated with cell function. In contrast to
mRNA expression, proteins display a much larger dy-
namic range of expression and longer half-life [57, 58],
resulting in much higher copy numbers and more ac-
curate and reliable quantification compared to their
mRNA counterparts. This is particularly relevant in dif-
ferentiated primary cells, such as CD4" T cells, where
transcription is tightly regulated to maintain effector
function. These low copy numbers result in increased
stochastic variation in mRNA quantification and
dropout rate, which impair the accuracy of single-cell
methods that rely only on transcriptional data. Further-
more, mRNA profiling provides only a snapshot of the
current functional state of the cell, which can be better
assessed with combined protein expression data. An il-
lustration of the power of this multi-omics approach is
the detailed trajectories of differentiation that we
identified in resting primary CD4" T cells, which were
recapitulated by precise gradients of mRNA expression.
The sensitivities of these measurements combined with
the high numbers of cells analysed lend themselves to
identify gradual and subtle changes in cell states, which
are critical to identify dynamic changes reflecting
mechanisms of functional adaptation in a heteroge-
neous cell population.

Conclusions

In this study, we show that combined targeted
scRNA-seq and protein expression analysis provides a
high-resolution map of the human immune cells in
blood and tissue and reveals novel biological insights
into the biology of CD4" T cells, as illustrated by the
identification of CD80/CD86 expression on activated
Tregs and a rare CCR9" T cell subset in the blood,
with tissue-homing properties and putative immuno-
modulatory function. Our data provide a proof-of-
principle for the implementation of this integrated
approach as a widely applicable and cost-efficient
research tool for immunologists. This approach could
be particularly valuable in a clinical setting for the
characterisation of rare patient samples with limited
cell numbers, as well as to assess the functional con-
sequence, at the single-cell level, of targeting key bio-
logical pathways in vivo, such as in patients treated
with immunotherapeutic drugs.
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