
REVIEW Open Access

Polygenic risk scores: from research tools to
clinical instruments
Cathryn M. Lewis1,2* and Evangelos Vassos1

Abstract

Genome-wide association studies have shown unequivocally that common complex disorders have a polygenic
genetic architecture and have enabled researchers to identify genetic variants associated with diseases. These
variants can be combined into a polygenic risk score that captures part of an individual’s susceptibility to diseases.
Polygenic risk scores have been widely applied in research studies, confirming the association between the scores
and disease status, but their clinical utility has yet to be established. Polygenic risk scores may be used to estimate
an individual’s lifetime genetic risk of disease, but the current discriminative ability is low in the general population.
Clinical implementation of polygenic risk score (PRS) may be useful in cohorts where there is a higher prior
probability of disease, for example, in early stages of diseases to assist in diagnosis or to inform treatment choices.
Important considerations are the weaker evidence base in application to non-European ancestry and the challenges
in translating an individual’s PRS from a percentile of a normal distribution to a lifetime disease risk. In this review,
we consider how PRS may be informative at different points in the disease trajectory giving examples of progress
in the field and discussing obstacles that need to be addressed before clinical implementation.
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Background
Over the last decade, genome-wide association studies
(GWAS) have uncovered the contribution of inherited
variants to common complex disorders. Our current un-
derstanding is that most non-communicable disorders
with a major public health impact have a genetic under-
pinning that is highly polygenic, comprising hundreds or
thousands of genetic variants (or polymorphisms), each
having a small effect on disease risk. Each genetic variant
associated with a disease is valuable in indicating a gene
or pathway of biological relevance to the disorder, but
there are also expectations that the genetic data could be
used to predict disease risk, with potential clinical utility.

In a polygenic disorder, a single variant is not informative
for assessing disease risk. Instead, a genetic loading con-
ferred by the combined set of risk variants is necessary to
obtain a measure that has sufficient information to identify
those at high risk. There are many possible approaches to
combine information across loci; the genetic risk is most
often assessed through the polygenic risk score (PRS), a
weighted sum of the number of risk alleles an individual
carries. Despite methodological concerns about construct,
content, and criterion validity of PRS [1], many studies have
shown that PRSs can predict disease status in research-
based case-control studies [2–4]. More convincingly, the
prediction is also valid in population-based cohort studies
and in electronic health record-based studies [5–7].
In this review, we consider how polygenic risk scores

may be informative at different points in the disease tra-
jectory, from unaffected individuals being tested for fu-
ture disease risk to diagnosed patients, assessing how
genetic information might inform their treatment or
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provide prognostic information on disease course. For
each stage, we illustrate how PRS might be used and give
examples of the current progress in the field.

Properties of polygenic risk scores
The PRS is formed from a set of independent risk vari-
ants associated with a disorder, based on the current evi-
dence from the largest or most informative genome-
wide association studies. For each individual, the number
of risk alleles carried at each variant (0, 1, or 2) is
summed, weighted by its effect size (i.e. log (OR) for bin-
ary traits or beta coefficient for continuous traits). The
outcome is a single score of each individual’s genetic
loading for a disease or for a continuous trait (Fig. 1).
Summing across variants assumes an additive genetic

architecture, with independence of risk variants. Although
simplistic, this reflects our best estimate of genetic architec-
ture of common complex disorders, where little evidence of
interaction between genetic variants is detected. These
additive polygenic risk scores do not model any gene-gene
or gene-environment interactions [9]; however, the largest
meta-analysis of heritability from twin studies supports a
simple additive model in most of the traits examined [10].
Several methods can be used to calculate polygenic risk

scores. These include ‘clumping/pruning and thresholding’
methods, where a reduced set of genetic variants is identi-
fied through pruning on linkage disequilibrium, and ac-
counting for evidence of association with the trait being
studied (clumping). Polygenic risk scores are then

calculated summing over all SNPs meeting a p value
threshold, or set of thresholds, as implemented in PRSice
[11] and PLINK [12]. In contrast, other methods assess the
best prediction genome-wide by explicitly modelling the
correlation structure between variants without attempting
to identify a minimal subset of SNPs for prediction; the
most widely used implementation is the Bayesian LDpred
approach [13]. Many novel risk score methods are under
development and may have increased power in comparison
with our current methods (for example, SBayesR [14]). We
will use the term ‘polygenic risk scores’ to cover all methods
that sum genetic data to provide individual risk measures
and will assume that these are transformed to have a stand-
ard normal distribution. The measures used to assess the
predictive ability of a PRS are summarised in Table 1.
The PRS measure is beguiling in its simplicity, but it is

limited in its ability to capture the full genetic loading
for a disorder. We currently have an incomplete list of
genetic variants associated with a disorder, and the effect
sizes used to construct the score are imprecise. The use
of tagging SNPs in place of the (unknown) causal variant
or variants also limits precision, but a novel method-
ology has been developed, for example, extensions of the
LDpred, in order to address this issue [18, 19]. Further,
it is becoming clear that genetic risk scores also capture
information from the environment. Evidence for this is
seen in family-based studies which show that contribu-
tions from the PRS computed from non-transmitted al-
leles of parents also affect offspring phenotypes. This

Fig. 1 Normal distribution of polygenic risk scores, for a disorder of prevalence 20% (prev), with cases having a mean PRS of t = 0.3. Black line:
population N(0,1) distribution. Grey shaded area: controls, unaffected with disorder, with mean PRS = − prev × t/(1 − prev) = − 0.075. Red shaded
area: cases, mean PRS t = 0.3. AUC = 0.605, calculated from Φ (Cohen’s d/√2), where Φ is the normal distribution cumulative distribution function,
and Cohen’s d is the difference between mean PRSs for cases and controls [8]
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‘genetic nurture’ phenomenon indicates, for example,
that educational attainment is influenced by both off-
spring genetics and the non-transmitted parental genet-
ics, which may determine the family environment [20].
There are four important considerations of the informa-

tion content of a polygenic score, and how it can be
interpreted:

1) The known information, which shows where an
individual lies compared to others on the risk scale

2) The unknown information from incomplete
genetics or unmodelled environment

3) The potential for incorrect information, for
example, where the individual differs from

characteristics of the research study used to
estimate the effect size of each genetic variant by
genetic ancestry, age, environmental load, or disease
definition, or where there is a technical bias in data
collection

4) The intended use of the PRS, for example, more
complete information would be required for
justifying a pharmacological intervention than for
using the PRS to motivate behaviour change

The first two properties of known and unknown infor-
mation are summarised by the proportion of disease li-
ability that the polygenic risk score captures, whilst our
understanding of the incorrect information is still
evolving.

Applicability of PRS across ethnic groups
One of the most challenging aspects of moving PRS to
the clinical arena is ensuring that they are equally applic-
able to all health care users across ethnic groups to limit
exacerbating health disparities [21]. This is an important
issue both for minority ethnic groups within high-
income countries, who may be under-represented in re-
search studies, and for low- and middle-income countries,
where genetic studies of the relevant ancestry may not
exist because of limited research infrastructure. Current
PRS methods rely on an individual’s genetic ancestry be-
ing similar to the large GWAS study from which reference
effect sizes are taken for PRS calculation and may require
access to an ancestry-matched genotype-level reference
panel. Such studies are currently only widely available in
European ancestries [22, 23], so polygenic risk scores are
applicable to only a small proportion of the world’s popu-
lation; in this paper, unless otherwise stated, study partici-
pants are of European ancestries. Transferability of PRS
across populations is limited, with PRS generated from
GWAS in one population usually providing attenuated
predictive accuracy in other populations [21, 24]. Reasons
for this include the use of tagging SNPs, differences in the
patterns of linkage disequilibrium between populations,
and SNP arrays biased to variants of European descent
[25]. More importantly, differential genetic drift can cause
unpredictable biases when scores inferred from one popu-
lation are applied in another [26]. At an individual level, it
is crucially important that an individual’s PRS is compared
to a population-specific distribution so that the interpret-
ation is valid. Progress in performing GWAS on non-
European ancestries has been slow, with, for example, <
3% of study participants in the GWAS Catalog were of Af-
rican ancestry [22]. Large-scale GWAS of diabetes and
schizophrenia have been performed in African and East
Asian populations [27–29], and novel initiatives of the col-
lection in worldwide populations like the Human Heredity
and Health in Africa (H3Africa) Initiative (https://h3africa.

Table 1 Assessing the clinical utility of polygenic risk scores

A: Population level

The predictive ability of polygenic risk scores can be measured in
research studies, where differences between cases and controls
(Fig. 1) or of a continuous trait in a population are assessed. Here, the
disease status or trait is pre-established, and the studies measure the
extent to which this is determined by the PRS. Outcome measures
from such studies include:

(1) R2 from linear regression, which quantifies the proportion of
variance in a continuous trait captured by the PRS, or equivalently
Nagelkerke’s R2 for logistic regression for case-control disease
status.

(2) R2 on a liability scale, which transforms Nagelkerke’s R2 to reflect
disease prevalence, instead of the case-control ratio of the research
study [15].

(3) The area under the receiver operating characteristic curve (AUC)
[16], which takes a value from 0.5 to 1. This gives an overall
summary of the predictive ability of the model. It is most easily
interpreted as the probability that a randomly selected case will
have a higher polygenic risk score than a randomly selected
control. Such models can also include risk factors such as age and
sex, which will increase the AUC values above that based on PRS
alone.

(4) The proportion of the population that has a k-fold increased
odds (k = 2, 3, …), compared to the population disease risk.

(5) Odds ratio of disease risk conferred by a 1-standard deviation in-
crease in PRS.

(6) Odds ratio of disease for an individual in the top PRS decile (or
other quantiles) compared to individuals in a different part of the
PRS distribution. The high-risk group may be compared to the low-
est decile, a mid-quintile (e.g. 40–60%), or those outside the high-
risk group (0–90%). Comparing the upper and lower tails maximises
the odds ratio for impact but raises concerns about the arbitrari-
ness of the quantile used.

B: Individual level

In a clinical setting, the focus is on a single person: what information
does their PRS give about their risk of disease? Possible outcome
measures that are relevant at an individual level include:

(a) At what percentile in the distribution of PRS does this individual
lie? This is between 0 and 100%, with scores having a normal
distribution.

(b) What is this person’s relative risk of disease compared to the
average risk in the population?

(c) What is this person’s absolute risk of disease, and by what age [17]?
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org/) and the African Mental Health Research Initiative
(https://amari-africa.org) are underway. Key methodo-
logical considerations for GWAS in ancestrally diverse
populations have been recently discussed, including the
choice between performing a meta-analysis stratified by
ethnic groups and performing a joint mixed-model across
all participants [23]. Novel methods for ‘polyethnic’ scores,
like XP-BLUP and Multi-ethnic PRS, which improve pre-
dictive accuracy by combining transethnic with ethnic-
specific information, are being developed [30–32].
Substantial investment will be needed to achieve the

equivalence of genetic information required for equity of
access when polygenic risk scores are applied in the
clinic [21, 33].

Clinical utility of PRS
The potential value of polygenic scores is supported by
the increasing number of research studies that show a
highly significant association between PRS and disease
status, but their clinical utility has yet to be established.
Can PRS be used by clinicians for disease prediction or
stratification, either now or in the future? For this to be
achieved, the focus must shift from association with
case-control status to the information in the PRS for a
single individual. Furthermore, to translate PRS to clin-
ical tools, relative risks that compare individuals across
the PRS continuum with a baseline group will eventually
need to be transformed to absolute risks for the disease
[34, 35]. Unlike monogenic disorders caused by high-
penetrance mutations, in complex disorders, the dis-
criminative ability of PRS is compromised by the multi-
factorial contributors to the disease, the imperfect
measurement of the full genetic signal, and the poten-
tially incorrect measurement.
Risk prediction models, including a combination of

clinical, biochemistry, lifestyle, and historical risk factors,
are currently used to predict 10-year risk of cardiovascu-
lar disease and diabetes [36–39]. These models combin-
ing risk factors achieve a good prediction (AUCs of 80–
85%) and are included in clinical guidelines for prevention
and public health [40]. Polygenic risk scores have much
lower AUCs, as expected from a single risk factor, and
should not be considered as an alternative to these clinical
risk models but as a possible addition. With the established
polygenic architecture of complex disorders, the improve-
ment of genetic and statistical methodology, and the in-
crease of global genotyped samples, it is reasonable to
anticipate that genetic prediction will improve. In the mean-
time, it may be timely to consider the use of PRS in specific
cohorts where there is a higher prior probability of disease.
The current focus is on identifying individuals at high

genetic risk of disease for risk stratification. This informa-
tion could be useful in decisions about participation in
screening programmes, lifestyle modifications, or preventive

treatment, when available and appropriate. PRS may also
be relevant at different points along disease diagnosis and
course (Fig. 2). An important consideration is the need to
avoid presenting a false impression of genetic determinism
(the notion that genes alone define biology). This could
otherwise detrimentally impact personal choices, harming
physical and mental well-being (e.g. diet, exercise, lifestyle),
and possibly even education, employment, or family plan-
ning. Research on measuring the beliefs of the public in
genetic determinism [41] should expand from single-gene
disorders to include polygenic prediction of complex dis-
eases. The widespread interest in PRS is illustrated by their
use by direct-to-consumer genetic testing companies; for
example, 23andMe now offers polygenic risk scores for
T2D. The Polygenic Score Catalog (http://pgscatalog.org/)
curates data and tables extracted from polygenic risk scores
for common disorders, capturing performance metrics of
the PRS developed.

Disease risk prediction
Although one’s genetic liability is fixed from conception,
the risk arising from one’s genes is dynamic, depending
on changing factors such as age, environmental expo-
sures, and previous illnesses. For example, if someone is
at high genetic risk for alcohol/drug dependence but is
never exposed to alcohol or drugs, the genetic risk is ir-
relevant. Even if sequencing at birth were to become
standard clinical practice [42], communicating risk
scores at birth is neither appropriate nor useful, and it is
likely that genetic data would be stored and interrogated
throughout life for both single-gene Mendelian disorders
and common polygenic disorders. The decision to assess
PRS might be triggered by age, onset of symptoms, fam-
ily history, or presence of relevant environmental factors.
The role that PRS will play in clinical care is currently
unclear, and any use of PRS must be predicated on clear
clinical utility, with a specific outcome activated by the
score. For example, a PRS for coronary artery disease
assessed in early adulthood may be useful to encourage
healthy behaviour throughout life, although we still lack
experience of how to use genetic data to motivate behav-
iour change [43–45]. Not all preventive strategies are so
benign; pharmacological interventions or surgical proce-
dures are more controversial. For example, it would be
very difficult to consider prophylactic mastectomy for
breast cancer prevention. Even simple decisions like
increased screening may result in false positives with sig-
nificant economic cost to society and unnecessary stress
of the individual. At its simplest, PRS may be used to
estimate an individual’s lifetime risk of disease. This ap-
plication follows the design of most genome-wide associ-
ation studies, differentiating between cases and controls.
From the studies performed in different clinical areas
assessing the predictive ability of PRS, we discuss below
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the strongest evidence for potential clinical utility, with
special reference to our research area, psychiatric disor-
ders [46].

Medical conditions
Much of the research to motivate moving polygenic risk
scores from research studies to clinical implementation
comes from cardiovascular disease, type 2 diabetes,
breast and prostate cancers, and Alzheimer’s disease
[47]. Khera et al. [2] recently demonstrated in the UK
Biobank that PRS can identify which percentage of the
sample have at least 3-fold increased risk for coronary
artery disease, atrial fibrillation, type 2 diabetes, inflam-
matory bowel disease, and breast cancer, with the pro-
portion of individuals identified varying between 1.5 and
8% depending on the disorder. Although these effects
appear modest, PRS can identify substantial larger frac-
tions of the population at high disease risk than mono-
genic mutations, making PRS potentially more clinically
relevant. Apart from the generic prediction of case-
control status, specific applications of PRS have been
proposed. For example, the PRSs of left ventricular car-
diovascular magnetic resonance phenotypes are predict-
ive of heart failure events independently of clinical risk
factors in the UK Biobank [48], whilst elevated genetic
score for albuminuria is strongly associated with in-
creased risk of hypertension [49].
In breast cancer, pioneering work in risk prediction,

modelling genetic susceptibility based on two genes,
BRCA1 and BRCA2, [50] has been expanded to the use of
polygenic scores, which have improved predictive ability.
In a recent study, a PRS based on 303 genetic variants had
an AUC of 0.63, with an odds ratio of 1.61 (95% confi-
dence interval, 1.57–1.65) per unit increase in PRS [3].
Whilst these figures are modest, they translate into a sub-
stantial spread of risk in the population: women in the top
1% of PRS have a 4-fold increased risk of developing ER-
positive breast cancer and a corresponding 6-fold de-
creased risk for those in the lowest 1% PRS (both com-
pared to women in the mid-quintile of the PRS
distribution). Despite the modest discriminative ability,

PRS could be utilised in improving screening programmes,
including defining the age at which breast cancer screen-
ing should start and the screening interval. In the UK,
mammogram screening is offered to women over age 47,
when the average 10-year risk of breast cancer is ~ 2.6%.
However, Mavaddat et al. [3] show that PRS is informative
in stratifying risk, with the 20% of women with the highest
polygenic risk scores reaching this level of risk before age
40 and the 20% of women with the lowest scores never
reaching this level of risk. This study shows that breast
cancer polygenic risk scores already capture sufficient in-
formation to identify a high-risk subgroup of women who
could be offered mammogram screening at an earlier age.
Commercial breast cancer risk tests based on polygenic
risk scores are already offered by Myriad Genetics (risk-
Score™) and Ambry Genetics (AmbryScore).
These PRS studies were all performed in European-

ancestry populations, and expansion to worldwide popula-
tions is essential. For example, a study of lung cancer-
associated variants in Chinese populations [51] demon-
strated that PRS was an independent risk stratification in-
dicator for lung cancer beyond age and smoking pack-
years. Polygenic risk scores have been less widely applied
to auto-immune disorders. In type 1 diabetes, strong gen-
etic risk scores have been created, with the large effect of
the HLA haplotypes increasing AUC values to > 0.8 in
European ancestry and Hispanic populations [52]. An
ancestry-specific genetic score using 7 SNPs outperformed
a European-based genetic score in African ancestry partic-
ipants (AUC 0.87 and 0.80, respectively) [53].
PRS also can be used to predict continuous traits in

the population like BMI, which is important as a risk
factor for cardiometabolic traits. A recent large study
showed that participants in the highest BMI PRS decile
have a BMI that is 2.6 kg/m2 higher than those in the
mid-quantile PRS—to put in context, this is half the
width of the ‘overweight category’ of BMI (from 25 to
29.9 mg/m2)—and corresponds to 31% of individuals
with a BMI > 40 (obesity class 3) [54]. Genetically dis-
sected trajectories of BMI across the lifespan help us
identify where genetic prediction starts to be relevant.

Fig. 2 Lifeline of the potential relevance of polygenic risk scores showing points through disease trajectory where polygenic risk scores have the
potential to impact clinical care
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BMI PRS is only minimally associated with birthweight;
it has increasing prediction through childhood, and by
age 18, the differences in BMI by PRS quartile are simi-
lar to that seen in adulthood [54]. Despite the significant
polygenic prediction of BMI in the general population, it
remains to be determined whether BMI PRS has clinical
utility in high-risk populations. For example, a common
adverse effect of antipsychotics or antidepressants is
weight gain; however, we do not know whether this is
determined or modified by the BMI PRS.

Psychiatric disorders
Polygenic risk scores for major depression can be calcu-
lated using results from recent genome-wide association
studies [4, 55]. Wray et al. identified 44 SNPs at
genome-wide significance and showed that a PRS built
from SNPs with a p value < 0.05 had the highest predict-
ive ability. Individuals in the upper PRS decile had ap-
proximately 2.5-fold increased risk of disease compared
to those in the lowest decile, which translates into a sub-
stantial change in absolute risk, given an approximate
15% lifetime risk of major depression. However, this
score has an AUC of 0.57 and captures only 2% of vari-
ance in disease risk (R2 on the liability scale), whilst the
remaining 98% is uncaptured by the PRS. An individual’s
risk of depression therefore comprises 2% of measurable
genetic risk score and 98% unaccounted variation from
unmodelled genetic and environmental factors. Even for
an individual at very high genetic risk, the PRS signal
would be overpowered by the unmodelled component.
Depression PRS is therefore not yet useful, and any fu-
ture utility would be based on substantially increasing
the variance explained by the PRS or by joint modelling
of genetic and environmental risk factors. Increasing the
sample size with the inclusion of broader self-reported
definitions of depression [55] resulted in a modest in-
crease of the variance explained by PRS, albeit at the
cost of specificity for major depression. Phenotypic re-
finement has been proposed as an alternative to produce
more clinically relevant findings [56].
For schizophrenia, the predictive ability is higher, with

the current score accounting for 7% of trait variance and
an AUC of 0.61, but these values are still far below that
needed for an individual’s score to have sufficient signal
for interpretation or for clinical utility [57]. There is
greater potential for using risk prediction from genetics
in schizophrenia, since the heritability of 65–80% [58,
59] is much higher than 37% for major depression [60],
but the substantially different disease lifetime risks (< 1%
for schizophrenia vs. 15% for major depressive disorder)
is also relevant. Even though polygenic scores are not
meaningful for general prediction [57], there are points
in the clinical care pathway where PRS could be useful
in achieving an earlier or a more precise diagnosis. For

example, in first-episode psychosis, we have shown that
schizophrenia PRS can differentiate schizophrenia from
other psychosis diagnoses (Nagelkerke’s R2 of 9% and
those in the top quintile of PRS having an approximately
2-fold increased risk of being subsequently diagnosed
with schizophrenia) [24]. This is a low predictive ability,
but the setting within first-episode psychosis cases
makes it more appealing because (1) it does not require
genotyping of the general population, only people with
psychosis, and (2) it is not relevant to major decisions
(like treat/not treat), but could provide additional infor-
mation potentially useful for the care plan. In addition
to assisting diagnosis, genotype data could be used to
calculate other PRS in secondary screening, for example,
cardiovascular disease, since psychosis cases are already
at high cardiometabolic risk.
In Alzheimer’s disease (AD), the three APOE variants

(ε2, ε3, and ε4) have been consistently associated with
disease risk, making it the strongest single-gene pre-
dictor at a population level in neuropsychiatry. However,
additional risk variants summarised in a PRS improve
the prediction model further. For example, Desikan et al.
[61] showed that amongst APOE ε3/3 carriers, PRS
modified the expected age of AD onset by more than 10
years between the lowest and highest deciles (hazard ra-
tio 3.34, p = 10−22).

PRS by environment interaction
All the common disorders considered here have both
genetic and environmental risk factors. Another area of
exploration in PRS is possible gene-environment inter-
action, which implies that the effect of the disease PRS
would depend on the level of the environmental risk fac-
tor. This interaction model contrasts with an additive
model, where PRS and environment contribute inde-
pendently to disease risk. With a positive interaction, the
effect of a high PRS would be amplified in the presence
of an environmental risk factor (E), putting this sub-
group of the population (G+, E+) at particularly high
risk of disease. These individuals could form a specific
target group for interventions, identified by either PRS
or environment, or both.
Despite the attraction of identifying PRS-E interac-

tions, currently, there is no strong evidence supporting
these interaction models.
In depression, childhood maltreatment is an important

risk factor for later diagnosis with depression. A meta-
analysis of 6000 individuals confirmed strong effects for
both PRS and childhood maltreatment contributing to
the risk of depression but showed no evidence of an
interaction [62]. In cardiovascular disease, an extensive
study of lifestyle effects (diet, exercise, BMI, smoking)
with polygenic risk scores showed strong effects from
both sources, but no evidence of an interaction [63].

Lewis and Vassos Genome Medicine           (2020) 12:44 Page 6 of 11



Similarly, a recent cohort study of UK Biobank partici-
pants aged > 60 without cognitive impairment, followed
up for 8 years, both genetic risk and lifestyle factors pre-
dicted incidence of dementia, but no interaction was
found [64]. Even though this paucity of confirmed inter-
actions in large samples is not helpful in identifying indi-
viduals at very high risk, testing and disproving
interactions are essential for correct joint modelling of
genes and environment for risk prediction [65].

PRS in treatment choice
Pharmacogenetic studies test how genetic variants affect
response to treatment, with the aim of assisting treat-
ment choices to maximise efficacy and minimise side ef-
fects. Most progress has been made in identifying rare
high-risk variants that increase risk of adverse drug
events (for example, abacavir and HLA-B*57:01, carba-
mazepine and HLA-B*15:02), whilst prediction of treat-
ment efficacy has largely evaded genetic dissection.
The potential impact of PRS in treatment response is

unknown, but an easy first target is to test whether gen-
etic disease susceptibility also plays a role in treatment
outcome. Currently, the strongest evidence for a role of
PRS in treatment response is in statin use to reduce the
risk of first coronary event, where studies have shown
that the relative risk reduction is higher in those at high
genetic risk for cardiovascular disease [66, 67]. These re-
sults are in line with the previous reporting of better ef-
ficacy of statins in high-risk samples, for example, due to
diabetes, hypertension, or high CRP concentrations [68].
A recent study demonstrated a potential role of PRS for
electrocardiogram parameters in predicting the cardiac
electrical response to sodium channel blockade [69].
In psychiatric disorders, only weak evidence exists to

suggest that the PRS for disorder susceptibility might be
predictive of treatment response in depression [70, 71]
or psychosis [72]. Further studies to identify specific
treatment response polygenic risk scores are in progress
in these disorders, but it is challenging to achieve suffi-
ciently large sample sizes, with accurately captured re-
sponse measures. Meta-analysis studies are underway,
pooling clinical trials and observational studies of re-
sponse to anti-depressants and to anti-psychotics. These
would identify polygenic predictors for treatment re-
sponse that might be useful in, for example, deciding be-
tween pharmacological and psychological treatment for
depression [73]. Only one third of patients respond to
the first anti-depressant prescribed [74], so a polygenic
predictor might be useful to guide treatment; even a
modest increase in the proportion of patients responding
could have a substantial impact on the effectiveness and
time to recovery. An important perspective in genetic
testing for treatment response is in identifying patients
who are unlikely to respond to a specific drug, as Gibson

highlights [75, 76]. This could reduce the time taken by
clinicians to find efficacious treatment, improve treat-
ment response, and prevent treatment-related adverse
effects, which is cost-effective for both the patient and
the healthcare system. When the choice of treatment is
not dictated by different effectiveness, but from personal
experience, preference, or intuition on a trial-and-error
basis, PRS can potentially give some quantifiable infor-
mation to be considered along other lines of evidence.

PRS to refine penetrance of high-risk variants
Evidence is accruing that polygenic risk scores have a
role in both the general population and carriers of rare,
high-risk genetic variants. In disorders as diverse as
breast cancer, developmental disorders, and schizophre-
nia, polygenic risk scores affect penetrance, acting as
moderators for high-risk variants or structural variation.
This highlights a possible role for PRS within the well-
established framework of high-risk genetic testing. For
example, the Deciphering Developmental Disorders
study showed that in 7000 children with severe neurode-
velopmental disorders expected to be monogenic in aeti-
ology, common variation affects the overall risk of severe
neurodevelopmental disorders. It explains over 7% of the
variance and affects the individual presentation of symp-
toms [77]. The role of common variation in moderating
expressivity was confirmed in a large electronic health
record study, where, in addition to the large effect from
the rare pathogenic variants, PRSs for height and BMI
were associated with clinical outcome [78]. In breast
cancer, the absolute risk increase in carriers of BRCA1
and BRCA2 pathogenic variants depends on breast can-
cer polygenic risk scores, which might influence clinical
decision-making [79]. The joint modelling of common
and rare variants for breast cancer risk prediction can
now be performed in the risk calculation tool, BOADI-
CEA [80]. Similarly, in schizophrenia, both structural
variation and PRS contribute to risk: schizophrenia cases
that carry confirmed copy number variants (CNVs) have
higher PRS than cases which do not; within carriers of
CNVs, schizophrenia cases have higher PRS than con-
trols [81, 82]. Hence, even in the presence of CNVs with
high penetrance [83], polygenic scores affect the overall
risk of disease and may be relevant to the clinical expres-
sion in CNVs associated with multiple phenotypes like
the 22q11.2 deletion [84].

Role of direct-to-consumer testing
Direct-to-consumer (DTC) genetic testing companies
give consumers easy access to their genetic data, specif-
ically genotyping on genome-wide chips of up to 1 mil-
lion variants. Estimates suggest that 26 million people
had used online DTC companies such as Ancestry.com
and 23andMe up to the end of 2018 (https://www.
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technologyreview.com/s/612880/more-than-26-million-
people-have-taken-an-at-home-ancestry-test/). Whilst
many purchasers are initially interested in ancestry test-
ing, customers may then move on to analyse their gen-
etic data for health [85], downloading their raw genotype
data to explore in third-party interpretation pro-
grammes. These programmes are unregulated and differ
in the genetic risks provided, the explanatory informa-
tion provided, and the cautions given over interpret-
ation. Some sites allow users to calculate polygenic risk
scores; for example, Impute.me (https://www.impute.
me/) shows users where their polygenic risk score lies
against a population-specific distribution of scores. Alle-
lica provides an online service calculating polygenic risk
scores [86]. In direct-to-consumer genetic testing,
MyHeritage (https://www.myheritage.com/health/gen-
etic-risk-reports) provides polygenic risk scores on four
traits, ‘for people who are of mainly European ancestry’.
The most detailed assessment of PRS in a DTC setting is
from 23andMe, whose white paper presents their epi-
demiological modelling and the challenges of deriving
individual-level absolute disease risks from PRS [67].
23andMe provides polygenic risk scores for type 2 dia-
betes; based on external validation, their models have
AUC values of between 59 and 65%, similar to those ob-
tained from research studies [87]. Their customer re-
ports give an estimate of the remaining lifetime risk of
T2D based on genetics, age, and ancestry, with add-
itional information on how BMI, diet, and exercise
habits affect T2D prevalence.
The accuracy and generalisability of any PRS model

need to be validated with external data, but even when
the scientific basis is robust, the correct, unbiased inter-
pretation of risk profiles by the consumers will need to
be evaluated. The extent to which DTC genetic testing
will move polygenic risk scores into the clinical arena is
unknown. For example, patients bringing their DTC re-
sults may motivate conversations between primary care
physicians and patients on health education.

Conclusions and future directions
Polygenic risk scores have moved from research discovery
studies to clinical research studies (for example, a trial aim-
ing to assess the impact of PRS reporting on breast cancer
risk management recommendations NCT03688204)
(https://clinicaltrials.gov/ct2/show/NCT03688204) and have
started on the slow path to clinical implementation. This re-
view discusses some of the disorders where this is likely to
occur and highlights the obstacles that remain in harnessing
the information contained in PRS. The strongest evidence
for PRS currently comes from cardiovascular diseases and
breast cancer, where risk stratification of those at high poly-
genic risk has clinical utility [2, 3, 47]. Other disorders are
likely to follow; however, there is still a long route to be

covered before PRSs become useful tools for clinicians
(Table 2).
One challenge of exploring the value of PRS within

the clinical setting to predict the outcome, or determine
the treatment, is that the sample sizes from case-only
clinical studies with relevant phenotypic data related to
the course of illness, treatment response, or adverse ef-
fects are substantially lower than those from case-
control disease susceptibility studies. The latter requires
minimal phenotypic information—a clinical diagnosis, or
self-report—whilst determining prognosis or treatment
outcome requires longitudinal follow-up across sus-
tained periods of time. This is expensive and challenging
to collect, and such studies often have much smaller
sample sizes. Electronic health records (EHR) may pro-
vide longitudinal data, but ‘treatment response’ is often
poorly recorded and needs to be captured laterally
through prescription records. We highlight how applying
PRS in treatment response may better facilitate clinical
utility, as the genetic data will complement the clini-
cian’s choice of treatment. We envisage that the role of
PRS in informing treatment choices, for example, priori-
tising pharmaceutical or psychosocial interventions or
providing quantitative information on the benefit to
harm ratio for each treatment, rather than treat/not treat
decisions, may be the low-hanging fruit where the clin-
ical utility of PRS will become apparent.
An ultimate goal might be to have genotype data—and

later whole-genome sequence data—integrated into our
clinical record; this could then be interrogated at each
clinical encounter for relevant information on risk pre-
diction, treatment response, and disorder prognosis. For
polygenic risk scores, this is not yet scientifically justified
and is technically challenging, particularly since an indi-
vidual score must be built and interpreted against the

Table 2 A brief overview of the steps required to make PRS
relevant in a clinical setting

1. Realistic estimation of predictive ability in clinical populations, which
may differ from research samples in disease severity, ancestral diversity,
and exposure to environmental risk

2. Identification of the intended purpose of the PRS, which may affect
its design and validation, and relevant clinical questions that can be
answered, for example, prediction of severity, course of illness, or
response to treatment

3. Recognition that even though not useful for the majority of the
population with PRS in the middle of the distribution, the outcome may
be relevant for those with high or low PRS, in the tails of the
distribution

4. Clarification if PRS has an additive or interaction effect with
established epidemiological or biological risk factors before combining
in joint prediction models [88]

5. Engagement of clinicians and service users, to ensure that any
application of polygenic risk scores avoids deterministic interpretations
and is based on the understanding that PRS is an indicator, not a
precise measure
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appropriate genomic reference population, which may
not be available. Both these restrictions are likely to
change with continuing scientific progress in uncovering
the genetic contribution to common diseases and with
expanding capabilities of electronic health records [7].
Projects such as the eMERGE network (https://emerge-
network.org/) are leading the way in these initiatives, al-
though also highlighting clinicians’ concerns about the
role of unsolicited genetic results in their practice [89].
We focus on two limitations to the implementation of

polygenic risk scores in clinical practice: firstly, the
weaker evidence base in application to non-European
ancestry; this needs substantial research investment in
study collection worldwide and in methodological re-
search to improve genetic prediction in admixed individ-
uals. Secondly, major challenges exist with the
interpretation of polygenic risk scores. At its simplest,
an individual can be placed on the distribution, ‘your
PRS lies at the 22.8th percentile’, which gives limited in-
formation on their lifetime risk. But a more nuanced in-
terpretation is needed, for example, a lifetime risk of
disease that combines genetic information with their
current age, sex, and environmental and clinical risk
factors.
In summary, we have made astounding biological ad-

vances in uncovering the genetic component to common
complex disorders since the advent of genome-wide as-
sociation studies in 2007. This is slowly moving from re-
search discovery to clinical implementation, but much
work remains in acquiring the necessary research base
for polygenic risk scores and in establishing how the in-
formation can be best be used and communicated.
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