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Abstract

Background: Accurate identification of real somatic variants is a primary part of cancer genome studies and
precision oncology. However, artifacts introduced in various steps of sequencing obfuscate confidence in variant
calling. Current computational approaches to variant filtering involve intensive interrogation of Binary Alignment
Map (BAM) files and require massive computing power, data storage, and manual labor. Recently, mutational
signatures associated with sequencing artifacts have been extracted by the Pan-cancer Analysis of Whole Genomes
(PCAWG) study. These spectrums can be used to evaluate refinement quality of a given set of somatic mutations.

Results: Here we introduce a novel variant refinement software, FIREVAT (FInding REliable Variants without
ArTifacts), which uses known spectrums of sequencing artifacts extracted from one of the largest publicly available
catalogs of human tumor samples. FIREVAT performs a quick and efficient variant refinement that accurately
removes artifacts and greatly improves the precision and specificity of somatic calls. We validated FIREVAT
refinement performance using orthogonal sequencing datasets totaling 384 tumor samples with respect to ground
truth. Our novel method achieved the highest level of performance compared to existing filtering approaches.
Application of FIREVAT on additional 308 The Cancer Genome Atlas (TCGA) samples demonstrated that FIREVAT
refinement leads to identification of more biologically and clinically relevant mutational signatures as well as
enrichment of sequence contexts associated with experimental errors. FIREVAT only requires a Variant Call Format
file (VCF) and generates a comprehensive report of the variant refinement processes and outcomes for the user.

Conclusions: In summary, FIREVAT facilitates a novel refinement strategy using mutational signatures to distinguish
artifactual point mutations called in human cancer samples. We anticipate that FIREVAT results will further
contribute to precision oncology efforts that rely on accurate identification of variants, especially in the context of
analyzing mutational signatures that bear prognostic and therapeutic significance. FIREVAT is freely available at
https://github.com/cgab-ncc/FIREVAT

Keywords: Cancer genomics, Somatic mutations, Variant filtering, Mutational signatures, Sequencing artifact,
Bioinformatics software, Computational oncology

Background
High-throughput sequencing technology has led to an ex-
plosion in the sheer volume of genomic data in the past
decade. Because this technology produces genome-wide
somatic mutation profiles within a reasonable timeframe
and at a reasonable cost [1], many research groups,

particularly International Cancer Genome Consortium
(ICGC) and The Cancer Genome Atlas (TCGA), have
produced population-scale whole-exome sequencing
(WES) and whole-genome sequencing (WGS) datasets
from most common cancer types. As a consequence, at
least 100,000 tumor samples have been sequenced and
computationally analyzed to date [2–8]. The vast majority
of the sample-specific mutation calls, usually in Variant
Call Format (VCF), are publicly available through online
databases [9–11], which are invaluable sources of future
genome studies and precision oncology. Simultaneously,
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tumor samples continue to be sequenced in hospitals to
inform clinical decisions.
However, as sequencing data are produced and analyzed

by heterogeneous groups, marked differences in the preci-
sion and sensitivity of the mutation calls become apparent.
Due to variations in cost, capacity, and approach to bioinfor-
matic analysis, provisional mutation calls include numerous
false positives and negatives [12]. Sometimes, mutation calls
are contaminated by experimental artifacts that accumulate
during tissue handling and sequencing procedures, such as
preparation of tissues into formalin-fixed paraffin-embedded
(FFPE) samples, 8-oxoG-mediated errors, chimeric reads,
and others [13–15]. Artifactual variants have been shown to
be a major culprit of clinical misinterpretations. In a routine
genotyping of KRAS mutations in metastatic colorectal can-
cer patients, 53 (4.7%) out of 1130 FFPE samples had KRAS
mutations that were validated as artifacts due to DNA frag-
mentation [16]. In another study validating the detection of
the T790M mutation in the epidermal growth factor recep-
tor (EGFR) gene in non-small cell lung cancer (NSCLC) pa-
tients, up to 48.5% of T790M mutations were FFPE-related
artifacts [17]. Moreover, in a clinical trial that investigated
the efficacy of the tyrosine kinase inhibitor (TKI) erlotinib in
NSCLC patients [18], previously unidentified EGFR muta-
tions were reported. The study concluded a lack of survival
benefits in using erlotinib for patients with EGFR mutations
and no clinical evidence to distinguish EGFR-mutant and
wild-type patients for administration of the TKI. However,
these novel mutations were later shown to be artifacts arising
from the paraffin fixation process [19]. Therefore, false posi-
tive calls should be systematically eliminated for accurate
downstream genome analysis at a population scale.
To eliminate false positives, somatic variant refinement

is usually performed and often involves manual inspec-
tion of binary alignment map (BAM) files or experimen-
tal validation. However, the manual nature of this task
may hamper reproducibility and scalability. To address
this issue, a standard operating procedure for manual re-
view has been developed [20], but the process remains
labor-intensive and time-consuming. While machine
learning- and deep learning-based approaches to variant
calling and refinement have been published [21, 22], re-
sults generated from these black-box models lack human
interpretability, which hinders their widespread usability.
In addition, these intensive bioinformatic analyses often
require re-exploration of raw datasets (i.e., BAM files),
necessitating massive computing power and data storage.
Sometimes, the acquisition of original BAM files for
publicly available mutation calls is technically intricate
due to the large file size. Collectively, flexible and com-
prehensive algorithms that allow quick mutation screen-
ing and efficient variant refinement are imperative for
conducting downstream analyses at a population scale
using VCF files.

Recently, the Pan-cancer Analysis of Whole Genomes
(PCAWG) consortium generated 65 single-base substitu-
tion (SBS) mutational signatures from over 4600 whole
cancer genomes and 19,000 cancer exomes [23]; these
signatures have been incorporated as version 3 into the
v89 release of Catalog of Somatic Mutations in Cancer
(COSMIC) [24]. Each of the signatures exhibits an ex-
pected spectrum of mutations by certain mutational pro-
cesses. For example, one of the signatures, termed SBS7,
features preferential C>T mutations [25], whereas SBS4,
a mutational spectrum of tobacco smoke exposure, is
characterized by C>A mutations with a strong transcrip-
tional strand bias [26]. Interestingly, a subset of these
signatures is thought to be artifact-mediated calls. In
fact, the single nucleotide substitutions observed in these
artifactual signatures were shown to be enriched in false
positive variant calls by a previous investigation on the
reliability of WES in breast cancer samples [27]. Signa-
tures that correspond to the enriched contexts are also
reportedly correlated with germline variant contamin-
ation and DNA damage during experimental processes
[23]. These findings suggest the feasibility of using muta-
tional signatures to perform variant refinement.
Here we present FInding REliable Variants without Ar-

Tifacts (FIREVAT), an open source software toolkit that
eliminates sequencing artifacts from biologically and clin-
ically relevant point mutations in human cancer samples.
Our toolkit automatically decomposes the spectrum of
mutation calls in user-supplied VCF files into 65 known
mutational signatures, and filters variant calls that better
fit error signatures. FIREVAT outputs a Hypertext
Markup Language (HTML) report for each sample that
undergoes variant refinement along with VCF files of re-
fined and artifactual mutations, which can be used for
downstream analysis. FIREVAT is implemented as an R
package and can run on computers with limited resources
such as a laptop. We validate the performance of FIRE-
VAT by carrying out various benchmark experiments on
three publicly available mutation callsets comprising 678
tumor-normal pairs obtained from multi-center validated
sequencing, multiple cancer types, and multi-region WES.
Along with variant refinement optimized for each sample,
our novel evaluation method implemented in FIREVAT
can be used as a proxy for quality control of other post
variant calling efforts.

Implementation
Overview of FIREVAT
Unrefined mutations can lead to inaccurate mutational sig-
nature analysis inundated with artifactual signatures that
obscure the identification of etiologically relevant muta-
tional patterns (Additional file 1: Note S1, Additional file 2:
Figures S1–S4). FIREVAT addresses this problem by per-
forming variant refinement guided by mutational signatures
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known to be representative of sequencing artifacts. By itera-
tively evaluating weights attributed to sequencing artifact
signatures, FIREVAT determines optimal filtering cutoff
values that effectively separate artifactual variants from real
variants, thereby isolating biologically and clinically relevant
mutagenesis signatures (Fig. 1).
To sequester somatic point mutations that exhibit latent

artifactual characteristics, FIREVAT employs mutational sig-
natures extracted by the PCAWG consortium [23]. In par-
ticular, 18 signatures associated with sequencing artifacts are
exploited: SBS27, SBS43, SBS45, SBS46, SBS47, SBS48,
SBS49, SBS50, SBS51, SBS52, SBS53, SBS54, SBS55, SBS56,
SBS57, SBS58, SBS59, and SBS60 (Additional file 2: Figures
S5 and S6). FIREVAT utilizes a VCF file as the primary in-
put, preferably called from a tumor and matched normal
pair, and a JavaScript Object Notation (JSON) configuration
file that specifies how each filter parameter should be derived
and treated (Additional file 1: Note S2). Here we define a fil-
ter as a set of numerical values that corresponds to the vari-
ous quality metrics (e.g., average reference allele base quality
in the tumor sample) either reported by the caller or com-
puted by the user for each variant.
Next, somatic point mutations are selected and each

desired filter parameter is obtained for each mutation. A
preliminary mutational signature analysis is conducted
to determine if variant refinement is necessary based on
the weights of the artifact signatures. Each filter param-
eter is independently traversed while dividing the set of
given mutations into putative refined and artifactual mu-
tations. This process results in a set of candidate solu-
tions that is later used to expedite convergence in the
FIREVAT variant refinement optimization stage.
The FIREVAT objective function aims to maximize co-

sine similarity score of the resulting signature analysis,
minimize the summed weights of the artifact signatures in
the set of refined mutations, and thereby enrich the contri-
bution of artifact signatures in the low-quality artifactual
mutations. Hence, maximization of the FIREVAT objective
function is an abstraction of the multiobjective optimization
problem that yields Pareto optimal values of the four afore-
mentioned criteria [28]. Various information supporting
each variant, such as quality scores and read depths com-
puted by variant calling software, constitutes the FIREVAT
algorithm search space, which is explored using a genetic
algorithm (GA), a gradient-free approach.
After the most optimized parameters are determined,

FIREVAT performs strand bias analysis, analyzes the statis-
tical significance of each parameter, and annotates each vari-
ant using clinical variant databases such as ClinVar [29] and
COSMIC [24]. Filtered mutations in clinically actionable
genes can be rescued at the final stage. FIREVAT outputs
VCF files of high-quality refined variants and low-quality
artifactual variants and provides a thorough report of the re-
finement processes and results. These results are presented

to the user in the form of an HTML file, which includes in-
tuitive publication-ready figures and tables. FIREVAT also
supports multiprocessing on each VCF file and enables a
scalable computation of multiple samples on demand.

Inputs
FIREVAT utilizes a VCF file as the primary input as well
as a JSON configuration file detailing instructions on
how to extract desired filter parameters. FIREVAT uses
the bedr R software package [30] to read the input VCF
file. The genomic assembly of the VCF file is processed
using the BSgenome R software package. The FIREVAT
R software package already includes default configur-
ation files for some of the widely used variant callers.
Users are also able to generate custom configuration
files on demand. Another important input is the refer-
ence mutational signature matrix. The COSMIC muta-
tional signature version 3 matrix is included in the
package as FIREVAT requires this a priori information
to operate its variant refinement function. Alternatively,
users can supply their own matrix provided that signa-
tures with artifactual characteristics are included.

Preprocessing
FIREVAT first selects point mutations in the user-supplied
VCF file. To execute mutational signature analysis, FIREVAT
prematurely terminates if the number of point mutations
does not satisfy the minimum requirement of 50 point muta-
tions. A preliminary signature analysis is performed to assess
whether refinement is necessary. FIREVAT deems a given
set of mutations refined if the initial sum of artifact signature
weights, obtained from unrefined mutations, is lower than
the minimum threshold (default = 0.05). Next, each of the
desired filter parameters in the input configuration JSON file
is computed for each point mutation.

Candidate solution generation
To create benchmark objective values that help the GA
optimization converge faster, FIREVAT generates a set
of candidate solutions. Each candidate solution is a vec-
tor of cutoff values for quality-related attributes for the
variants called (e.g., variant allele fraction ≥ 5% and
tumor reference allele read depth ≥ 10). Each filter par-
ameter is then traversed from the minimum to the max-
imum value observed in the input VCF file. At each
increment, FIREVAT divides the set of point mutations
into refined and artifactual groups depending on each
filtering criterion. Subsequently, signature analysis is
conducted for both groups to derive the objective value
(see the “Variant refinement optimization” section
below). Parameter values that yield nonzero objective
values are passed to the GA optimization stage as poten-
tial solutions.
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Variant refinement optimization
Variant filtering
Given the original unrefined set of point mutations
M, we define the subset of mutations Mh as the set

of variants that satisfy all filter parameters f1, f2, f3,...,
fk, collectively referred to as F henceforth. The
remaining mutations are defined as Ml. Therefore,
M=Mh +Ml, where:

Fig. 1 Overview of the FIREVAT workflow. The top panel represents the conventional workflow for processing sequencing data of the tumor and
matched normal genomes. Sequencing artifacts are introduced in various steps of the experimental process. After calling variants with software
such as MuTect2 and Muse, manual filtering is performed to mitigate false positives. FIREVAT automates this variant refinement task by leveraging
the COSMIC mutational signatures (version 3). The primary input parameters for FIREVAT include a VCF file and a configuration JSON file, which
specifies instructions on how to compute the desired filter parameters. In the preprocessing step, FIREVAT derives these parameters for each
point mutation. A set of candidate solutions is generated to help the optimization process converge faster. Next, FIREVAT searches for a set of
parameters that maximizes the objective function (“Evaluate”) using GA, a gradient-free approach. At each iteration, the original set of mutations
is divided into refined and artifactual groups, followed by a mutational signature analysis of each group. FIREVAT further analyzes the refinement
outcomes by assessing strand bias and significant differences between the refined and artifactual variant groups. Each variant is also annotated
using clinical databases. FIREVAT generates output files for the following items: HTML report, optimization logs, and VCFs for refined, and
artifactual variants
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Mh ¼ f 1∧ f 2∧ f 3⋯∧ f k
Ml ¼ ¬ð f 1∧ f 2∧ f 3⋯∧ f kÞ

Reference mutational signatures
We define the reference mutational signatures as
follows:

R ¼
r11 ⋯ r165
⋮ ⋱ ⋮
r961 ⋯ R96

65

2
4

3
5

Note that r ji represents the probability of the mechan-
ism i (e.g., ultraviolet radiation) to cause a mutation type
of j (e.g., cytosine to thymine transition at dipyrimidines)
in the COSMIC mutational signatures (65 signatures in
version 3). Let RA be the matrix of signatures related to
sequencing artifacts (18 signatures, Additional file 2: Fig-
ure S5).

Mutational signature identification
Given Mx and R, the identification of underlying muta-
tional signatures can be written as:

S Mx;Rð Þ→ cosθRx ; sigs
R
x ;w

R
x

The results of signature identification S include the co-
sine similarity score cosθRx , vector of identified muta-
tional signatures sigsRx , and vector of weights for each
identified mutational signature wR

x . Therefore, the identi-
fication of mutational signatures in the set of refined
mutations and artifact mutations can be expressed as
follows:

S ðMh;R Þ→cosθRh ; sigs
R
h ;w

R
h

S ðMl;R Þ→cosθRl ; sigs
R
l ;w

R
l

In particular, FIREVAT computes the summed weights
of sequencing artifact-related signatures, denoted as:

X
i∈A

wRi
x

Our algorithm uses deconstructSigs [31] to construct
the trinucleotide spectrum matrix, MutationalPatterns
[32] to derive the objective value, and Mutalisk [33] to
narrow down biologically feasible signatures.

Objective function
FIREVAT explores various filter parameters F to find
the most optimized filtering parameter cutoffs to
maximize the following objective value:

maximize cosθRh : 1−
X
i∈A

wRi
h

 !
:cosθRA

l :
X
i∈A

wRi
l

subject to

cosθRh∈SðMh;R Þ;
wR
h∈SðMh;R Þ;

cosθRA
l ∈S ðMl;RA Þ;

wR
l ∈SðMl;R Þ

To compute the most optimized objective value, FIRE-
VAT uses the GA R package [34], which is an imple-
mentation of the genetic algorithm. Each “gene” in the
initial GA population constitutes a vector of arbitrary fil-
ter parameters. In subsequent generations, the GA se-
lects members of the population that have higher
objective values. Shown below is the pseudocode for the
FIREVAT variant refinement optimization algorithm.

The objective function is both an abstraction and a
mathematical estimation of refinement outcomes using
mutational signatures. We created and tested 10 differ-
ent objective functions that vary in their combination
and weights of the four variables from signature analysis
results (Additional file 1: Method S1). We used 28 MC3
samples to benchmark the performance of the objective
functions as well as FIREVAT input parameters (Add-
itional file 2: Figure S7).

Additional analysis
Strand bias analysis
Strand bias found in a putative variant is known to be indi-
cative of sequencing artifacts [35]. To account for this error,
FIREVAT uses forward and reverse read counts of refer-
ence and alternate alleles to perform strand bias analysis
using Fisher’s exact test and corrects for multiple testing.

Filter parameter statistical significance test
FIREVAT applies the conjunction of various filter pa-
rameters, specified by the user, to derive refined muta-
tions. For this reason, the resulting distribution of the
artifact mutations does not always start or end at the
hard-filtering value. After the variant refinement is
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complete, FIREVAT tests whether the distributions of
values for each parameter are significantly different
(Mann Whitney) among the original, refined, and
artifactual sets of mutations. This information can be
used to assess which specific filter significantly affected
the refinement outcome in the HTML report.

Variant annotation
Each variant is annotated using the user-supplied clinical
variant database. Variants classified as artifacts but bear-
ing clinical significance of any study-specific reasons can
be salvaged. For all of our analyses, we annotated patho-
genic variants in ClinVar (20190211 version) [29].

Outputs
The standard FIREVAT output includes a report of the re-
finement processes and outcomes as an HTML file, vector
graphic files of all figures generated in the HTML report,
a refinement optimization log file, a RData file of all FIRE-
VAT generated data for downstream analyses, a VCF file
comprised of refined mutations, and a VCF file comprised
of artifactual mutations. All resulting figures are generated
using the ggplot2 [36] and ggpubr R software packages.

Validation data and processing
For the evaluation of FIREVAT variant refinement per-
formance, we used three datasets: the MC3 dataset [37],
TCGA Genomic Data Commons (GDC) dataset, and
multi-region WES of breast cancer dataset [27] (Add-
itional file 1: Note S3). For the evaluation of post FIRE-
VAT signature analysis, we used the following TCGA
datasets (Additional file 3: Table S1): head and neck
squamous cell carcinoma (HNSC) [38], breast invasive
carcinoma (BRCA) [39], pancreatic adenocarcinoma
(PAAD) [40], and stomach adenocarcinoma (STAD)
[41]. For the characterization of artifactual signatures,
we used the TCGA-HNSC, TCGA-BRCA, TCGA-
PAAD, and TCGA-STAD datasets as well as five add-
itional TCGA datasets: glioblastoma multiforme (GBM)
[42], kidney renal clear cell carcinoma (KIRC) [43], acute
myeloid leukemia (LAML) [44], lung adenocarcinoma
(LUAD) [45], and liver hepatocellular carcinoma (LIHC)
[46]. We used R version 3.5.1 to run FIREVAT v0.4.2 on
these datasets (Additional file 1: Method S2 and Method
S3). We also downloaded DToxoG (v1.14.4.1) from
https://seqwaremaven.oicr.on.ca/artifactory/seqware-de-
pendencies/org/broadinstitute/DToxoG/1.14.4.1/ and
used it for benchmarking purposes [13].

Performance validation (multi-center mutation calling in
multiple cancers (MC3)) dataset
We downloaded the Multi-Center Mutation Calling in
Multiple Cancers (MC3) dataset [37] from the National
Cancer Institute (NCI) GDC data portal [3]. To define

ground truth data, we used the “mc3.v0.2.9.CON-
TROLLED_lt3_b.maf” file. At the outset, we retained
point mutations in this Mutation Annotation Format
file. Next, we selected samples that had WES, WGS, and
RNA-seq mutation validation status information. We
further selected samples that had only one matching
normal sample. To establish ground truth, we herein de-
scribe how we determined real somatic and artifactual
mutations in the MC3 dataset. To identify real somatic
mutations, we first selected variants that were captured
in the targeted exonic region. We further selected vari-
ants that were validated and statistically powered in ei-
ther WGS or targeted sequencing in terms of read
evidence according to the MC3 definition (“mutval_tar-
geted_status” = “validated_powered” or “mutval_wgs_sta-
tus” = “validated_powered”). Among these variants, we
finally selected variants that were also validated and sta-
tistically powered in WES (“mutval_wex_status” = “vali-
dated_powered”). To identify artifactual variants, we first
selected variants that did not satisfy the requirements
for classification of real somatic mutations. Then, we
screened for variants that were unvalidated and statisti-
cally unpowered in WGS (“mutval_wgs_status” = “unval-
idated_unpowered”), labeling these as artifactual
mutations. We used 774 VCF files from 360 samples
that had more than 500 real somatic or artifactual muta-
tions as part of our variant refinement performance val-
idation study (Additional file 1: Note S3). We also
selected 28 samples that had less than 500 real somatic
or artifactual mutations and used these to benchmark
the performance of various objective functions and
FIREVAT input parameters.
The MC3 dataset includes a number of different call-

sets for each sample. We used the MuTect, Muse, Soma-
ticSniper, and Varscan hg19 callsets in our FIREVAT
refinement validation study. Of these, we excluded the
SomaticSniper callset because our preliminary analysis
on several SomaticSniper VCF files yielded initial sum of
artifact signature weights lower than the minimum
threshold, indicating that mutational signature-based
FIREVAT refinement may not be necessary. For the
remaining MuTect, Muse, and Varscan callsets, we ran
FIREVAT v0.4.2 using their respective configuration files
(Additional file 3: Table S2). We evaluated FIREVAT
variant refinement performance using the ground truth
data. To compare FIREVAT refinement performance, we
applied three other manual hard-filtering approaches on
the same MC3 validation samples. These approaches
were suggested by variant caller developing groups: Lan-
cet filter (LAN-F) [47], MuTect filter (MUT-F) [48], and
Varscan filter (VAR-F) [49] (Additional file 1: Method
S2). Subsequently, for each filtering method, we analyzed
the performance evaluation metrics (precision, sensitiv-
ity, specificity, F1 score, and accuracy) against the sum
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of signature artifact weights. We also used the PCAWG
Platinum mutational signatures for benchmarking pur-
poses [50].

Consistency validation (multi-region whole-exome
sequencing data of breast cancer) dataset
We downloaded the FASTQ files of the 24 breast cancer
WES pairs (technical and biological replicates) [27] from
the Sequence Read Archive (SRA) with accession num-
ber SRP070662. The raw sequences were aligned to
hg19 using bwa-mem [51]. The bam files were sorted
and assigned into read groups using SAMtools [52]. The
PCR duplicates were marked with Picard (http://broad-
institute.github.io/picard/). Realignment and base recali-
bration were performed using GATK [53] with 1000G_
phase1.indels.hg19.vcf and Mills_and_1000G_gold_stan-
dard.indels.hg19.vcf as known targets. We also used
dbsnp_b141.vcf for the base recalibration. Variant calling
was performed using MuTect2 [48] for tumor/normal
paired calling with default parameters. Only the PASS
(high confidence somatic mutations) calls were used for
the subsequent downstream validation analyses.
To evaluate the FIREVAT variant refinement perform-

ance on the multi-region WES breast cancer samples,
we downloaded the supplementary tables from the ori-
ginal manuscript for technical and biological replicates.
For the benchmark study between DToxoG, a variant
was considered real if “Ampliseq Call” was somatic and
artifactual otherwise. Our MuTect2 point mutations
present in the tables were used for evaluation. To gener-
ate the UpSet and Venn diagrams pertaining to this
dataset, we used the UpSetR [54] R package and the py-
thon matplotlib [55] library.

Signature analysis (TCGA-GDC) dataset
The MuTect2 hg38 VCF files were downloaded from the
GDC. The TCGA drug response data were downloaded
using the R package TCGAbiolinks [56]. The clinical
data (version 2016-04-27) for TCGA-HNSC and TCGA-
LUAD were downloaded from Xena Browser [11].
For the mutational signature analysis of TCGA-HNSC

and TCGA-LUAD samples, we ensured that Mutalisk
considered the tobacco smoking signatures SBS4 and
SBS29 in the unrefined, refined, and artifactual mutation
sets. For the mutational signature identification of sam-
ples with platinum therapy response data (TCGA-BRCA,
TCGA-PAAD, and TCGA-STAD) [57–59], we ensured
that Mutalisk considered the HR-deficiency signature
SBS3 in the unrefined, refined, and artifactual mutation
sets while keeping all other FIREVAT parameters de-
fault. For other TCGA cohorts, we used the default op-
tions of FIREVAT to determine the most likely
signatures. To analyze the enrichment of sequence con-
texts, we used the ggseqlogo [60] R package.

HCC1954
We obtained the variants list (VCF file) called from the
whole-genome sequencing of HCC1954 from the ICGC
data portal.

FFPE dataset
We obtained the formalin-fixed paraffin-embedded
(FFPE) dataset to characterize FFPE-specific variants
from the Sequence Read Archive with the accession
numbers PRJNA301548 and SRP065941 [61]. Reads
were aligned with bwa-mem to hg19 and variants were
called with MuTect2 with the default settings.

ICGC-TCGA-DREAM somatic mutation calling challenge
dataset
We downloaded the synthetic variant data from the
DREAM Challenge [62]. Using the set 1 from the Chal-
lenge, we called somatic mutations using MuTect, Muse,
and Varscan with the default settings and additionally
using MuTect with a panel of normal and the TLOD op-
tion to compare against submitted refinement methods.
Among the methods submitted to the challenge, pipe-
lines that used custom alignment and BAM file gener-
ation or callers other than MuTect, Muse, or Varscan
were excluded from our comparative analysis in order to
objectively evaluate the post hoc filtering performance of
FIREVAT. We also compared DToxoG [13] results for
all of the callsets that had read count information for
each strand.

Mutational signature matrices
We used the COSMIC mutational signatures version 3
[23] for primary analyses and used the PCAWG Plat-
inum mutational signatures [50] to validate presence of
artifactual signatures.

Results
Evaluation of FIREVAT variant refinement performance on
real-world datasets
We evaluated the validity and reliability of FIREVAT
variant refinement using two publicly available real-
world datasets comprising 384 total samples (Add-
itional file 1: Note S3).
The first dataset was the MC3 dataset [37], which con-

sists of mutation calls in VCF file format from multiple
callers for over 11,000 tumor samples (Additional file 3:
Table S3). Because confidence in the detection of som-
atic mutations can be ascertained by additional sequen-
cing methods (e.g., WES, WGS, and/or RNA-seq), we
can determine whether a variant is a clonal true positive.
We used the MuTect, Muse, and Varscan MC3 callsets
comprising 774 VCF files from 360 samples. The
MuTect callset included 191,118 (93.86%) clonal true
positives (real somatic mutations) and 12,511 (6.14%)
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false positives (artifactual mutations). In the Muse call-
set, 207,784 (82.17%) real somatic mutations and 45,091
(17.83%) artifactual mutations were present. The Vars-
can callset had the highest number and proportion of
artifactual mutations, including 117,803 (60.73%) real
somatic mutations and 76,179 (39.27%) artifactual muta-
tions. In total, 516,705 (79.43%) real somatic mutations
and 133,781 (20.57%) artifactual mutations were utilized.
We used five metrics to evaluate FIREVAT performance:
precision, sensitivity, F1 score (harmonic mean of the
precision and sensitivity), specificity, and accuracy (Add-
itional file 1: Method S2). We compared the variant re-
finement performance of FIREVAT on the MC3 samples
against three other filtering methods (LAN-F, MUT-F,
and VAR-F; Additional file 1: Method S2). Each filtering
approach was independently applied on each of the three
MC3 callsets.
FIREVAT performed at the highest level for four of

the five metrics compared with the three widely adopted
manual filtering approaches when evaluated on all muta-
tions called by MuTect, Muse, and Varscan (Fig. 2a):
precision (median = 0.958), F1 score (median = 0.933),
specificity (median = 0.678), and accuracy (median =
0.908) (Additional file 3: Tables S4 and S5).
We additionally compared the FIREVAT performance

in each callset. Using the mutations called by MuTect,
FIREVAT yielded the highest level of precision and spe-
cificity with median values of 0.978 and 0.250, respect-
ively, while achieving a sensitivity comparable to those
of the other filtering approaches. While the MUT-F and
VAR-F methods yielded higher median F1 scores (MUT-
F = 0.972, VAR-F = 0.966) than FIREVAT (median =
0.964), these methods performed poorly in terms of spe-
cificity (MUT-F = 0.067, VAR-F = 0.000).
In the Muse callset, FIREVAT yielded the highest

F1 score with a median of 0.932. Similar to the per-
formance observed in the MuTect callset, the median
sensitivities of the MUT-F (0.996) and VAR-F (0.982)
methods were higher than that of FIREVAT (0.973),
but the median specificities were lower (MUT-F =
0.010, VAR-F = 0.031, FIREVAT = 0.601). The LAN-F
method resulted in the highest specificity (0.667) in
the Muse callset but had a lower sensitivity (0.927)
than FIREVAT (0.973).
The FIREVAT refinement results of the MC3 Varscan

callset yielded the highest specificity with a median of
0.941, filtering out 88.9% of the original variants on aver-
age. In contrast, 23.4% and 10.8% mutations were fil-
tered out in the Muse and MuTect callsets. The MUT-F
and VAR-F methods achieved higher median sensitivities
(MUT-F = 0.996, VAR-F = 0.972) than FIREVAT (0.842).
However, the FIREVAT median specificity was dramatic-
ally higher than those of the other methods (MUT-F =
0.034, VAR-F = 0.043, FIREVAT = 0.941).

The proportion of filtered variants was positively cor-
related to the filtering stringency identified by FIREVAT
on each callset. For example, the median cutoff for the
minimum number of altered reads in the tumor sample
was 3 for the MuTect callset and 8 for the Varscan call-
set (Additional file 2: Figures S8–S10). The need for
stricter filtering parameters determined by FIREVAT
was consistent with a previously published benchmark
study that reported that Varscan variant caller has the
highest false positive rate among the widely used variant
callers [63]. Next, we assessed the characteristics of sam-
ples that resulted in low refinement performance. We
observed that the specificity was positively correlated
(Pearson correlation r = 0.62) with the initial sum of se-
quencing artifact weights (Fig. 2b) when considering all
mutations from all three callers (Additional file 2: Fig-
ures S11–S17).
The second dataset utilized for evaluation of FIREVAT

variant refinement performance was the multi-region
WES dataset, where breast cancer samples were se-
quenced multiple times by biological and technical repli-
cates. To evaluate whether variant refinement can
successfully shortlist the true positive mutations vali-
dated by targeted sequencing [27], we benchmarked
FIREVAT with DToxoG [13]. We compared our object-
ive functions to DToxoG for benchmarking purposes
(Fig. 2c). We found that FIREVAT consistently yielded
the highest median precision level (0.736 for Defaul-
t.Obj.Fn) compared to DToxoG (precision = 0.533) for
the different objective functions used (Additional file 3:
Table S6). FIREVAT refinement of the 6 pairs of tech-
nical replicates resulted in increased proportion of vali-
dated variants among the total number of variants
(Additional file 2: Figure S18). We also applied FIRE-
VAT to the 18 biological replicate data from the 6 breast
cancer cases, for which the presence of intratumoral het-
erogeneity was also validated with targeted sequencing
(Additional file 2: Figure S19, Additional file 3: Table S7)
[27]. The increase in precision resulting from FIREVAT
refinement was also observed in the ICGC-TCGA-
DREAM Somatic Mutation Calling Challenge dataset
[62] and in additional benchmarking studies. We also
found that refinement outcomes are more accurate when
FIREVAT is applied with built-in filters in variant calling
software (Additional file 1: Note S4).

FIREVAT leads to enrichment of biologically relevant
signatures
To further investigate the FIREVAT refinement per-
formance, we applied FIREVAT to public calls from 130
TCGA-HNSC (head and neck cancer) VCF files from
the NCI GDC data portal [3] (Fig. 3, Additional file 2:
Figure S20, Additional file 3: Table S8). We decomposed
the mutational spectrums using the 65 COSMIC
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mutational signatures (version 3). All samples had a co-
sine similarity score of 0.9 or higher in the decompos-
ition of mutational signatures. However, a substantial
fraction of mutations was attributed to sequencing error
signatures such as SBS45 (median weight = 28.4%),
SBS43 (median weight = 14.9%), and SBS50 (median

weight = 14.7%) (Fig. 3a). We refined the raw callsets
using FIREVAT. FIREVAT completed the mutation re-
finement process in approximately 475 min (with 208
central processing units (CPUs), a GA maximum iter-
ation = 100, and a GA population size = 200), filtering
out 81.5% of the mutation calls on average (min = 49.3%,

Fig. 2 Evaluation of FIREVAT variant refinement performance on real-world datasets against ground truth. a FIREVAT variant refinement performance
on 360 MC3 samples with known ground truth data against three other manual hard-filtering approaches: Lancet (light blue: LAN-F), MuTect (green:
MUT-F), and Varscan (navy: VAR-F). FIREVAT refinement results yielded the highest F1 score when evaluated on combined callsets. b Scatterplot of the
specificities and the initial sum of artifact signature weights for FIREVAT and the other filtering approaches. FIREVAT refinement specificity showed a
positive correlation with the initial sum of artifact signature weights. c Variant refinement was performed using FIREVAT and DToxoG on the WES data
of 6 breast cancer samples with technical replicates (n = 12). We used five different objective functions that assign different weights to each of the four
terms constituting the objective value. When evaluated against the ground truth data, FIREVAT achieved the highest precision level and F1 score
against DToxoG
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max = 98.8%, Additional file 3: Table S8). Overall, the re-
fined callsets led to a substantially higher fraction of bio-
logically relevant mutational signatures. The linear
correlation between the amount of lifetime tobacco
smoking (in pack-years at the time of diagnosis) and the
mutational burden of tobacco smoking-related signa-
tures (SBS4 and SBS29) increased (from 0.094 to 0.230)
after the FIREVAT refinement process (Fig. 3b, Add-
itional file 2: Figure S20D). In the case of TCGA-CR-
7399, 5084 (88.59%) out of 5739 somatic mutation calls
were labeled as artifacts by FIREVAT (Fig. 3c, Fig. 3d,
Additional file 4). The C>A peaks that were apparent in
the unrefined mutations of this sample exhibited a high
weight of SBS45 (60.6%), the spectrum of which is
known to be associated with 8-oxoG artifacts [13]. The
8-oxoG contamination was mostly attenuated (from 60.6
to 0.0%; Fig. 3c) after FIREVAT refinement and other
biologically relevant mutational signatures reciprocally
emerged, for example the tobacco smoking signature
SBS4 (from 0.0 to 47.6%) and the APOBEC-mediated
signatures SBS2 (from 1.1 to 6.1%) and SBS13 (from 0.0
to 4.6%). Of note, this head and neck cancer patient had
smoked 135 pack-years at the time of diagnosis.
Moreover, we applied the FIREVAT refinement

process to mutation calls from 79 TCGA samples with
platinum therapy response data: 10 BRCA samples, 10
PAAD samples, and 59 STAD samples (Additional file 2:
Figure S21, Additional file 3: Table S9). In one STAD
WGS sample (TCGA-FP-8211), the homologous recom-
bination (HR) deficiency signature (SBS3) emerged only
in the FIREVAT-refined callset and was masked by an
artifact signature (SBS60) in the original unrefined call-
set (Additional file 2: Figure S22). As previously sug-
gested, the HR-deficiency signature mutational signature
is a predictive marker of platinum therapy response [57].
Intriguingly, the patient showed a complete response to
platinum therapy (oxaliplatin).

Using 9 TCGA cohorts and the multi-region WES
dataset (signature analysis dataset and consistency valid-
ation dataset, Additional file 1: Note S3), we further
found that error-mediated signatures are widespread in
publicly available VCF files (Fig. 4, Additional file 2:
Figure S23). The sum of artifact signature weights varied
by cancer study. For example, the median sums of
artifact signature weights were 68.6% and 6.6% for acute
myeloid leukemia (TCGA-LAML) and TCGA-BRCA, re-
spectively (Additional file 3: Table S10). The signature
SBS43 was the most recurrently observed among
artifactual variants across the studies that had 20 or
more samples, with lung adenocarcinoma (TCGA-
LUAD) having the highest median weight of 22%. Cer-
tain artifact signatures were enriched in specific studies.
For example, TCGA-HNSC samples had a median
weight of 28.4% in SBS45, and TCGA-LAML samples
had median weights of 37.4% and 37.8% in SBS27 and
SBS47, respectively. Furthermore, the study-specific en-
richment of artifact signatures was also observed in se-
quence contexts. For example, in the TCGA-LAML
cohort, the artifactual mutations favored regions of re-
peated adenine sequences (3 bases upstream and 7 bases
downstream). In the TCGA-LUAD and TCGA-STAD
cohorts, guanine was redundantly found at the first and
fifth bases upstream of the variant position. These co-
horts shared relatively high median weights of SBS43,
suggesting that the sequence context is reflective of this
artifact signature. In the multi-region WES dataset
(SRP070662), SBS51 was detected in 20 (83.3%) out of
24 samples with a median weight of 21.1%, while the
first base immediately upstream or downstream of the
variant position was commonly guanine.
Furthermore, we investigated and summarized the cur-

rently known artifact signatures that FIREVAT effect-
ively removes via its refinement. In short, there are four
types of artifacts that FIREVAT accurately identifies and

(See figure on previous page.)
Fig. 3 Marked improvement in mutational signature analysis explicability in the TCGA-HNSC samples using FIREVAT. a, b Each panel is comprised
of the following plots from top to bottom: distribution of signature weights for the TCGA-HNSC samples (n = 130), bar plot of the number of
mutations in each sample, histogram of cosine similarity scores from signature analysis, and correlation between the sum of tobacco signature
weights and the number of pack-years among current smokers. In the two plots of signature weights, the green bars indicate the contribution
weights of smoking-related signatures in each sample while the dark red bars represent that of artifactual signatures. a Mutational signature
analysis without variant refinement. Of the 130 TCGA-HNSC samples, substantially high levels of artifactual signature weights were identified
(median weight sum = 45.3%, min = 3.2%, max = 100%). The Pearson correlation between the sum of tobacco signatures and the number of
pack-years was negligent using an unrefined variant list (r = 0.094). In particular, one sample had somatic hypermutations (15.6 mutations/Mb;
denoted with an asterisk). b Mutational signature analysis with variant refinement by FIREVAT. Compared to the unrefined callset, the correlation
between the sum of tobacco signature weights and the number of pack-years was higher (r = 0.23) and the weights of artifactual signatures were
decreased (median weight sum = 0%, min = 0.0%, max = 30.6%). c, d Unveiling biologically relevant mutational signatures by removing mutations
of artifactual signatures. c Mutation frequency spectrum of unrefined, refined, and artifactual mutations from the case TCGA-CR-7399 (HNSC) and
SBS45 (8-oxoG signature). In the spectrum plot of refined and artifactual mutations, the asterisks represent frequency peaks found in different
signatures (green = SBS4, orange = SBS2 and SBS13, red = SBS43, SBS45, SBS49, and SBS53). d Mutational signature weights of unrefined, refined,
and artifactual mutations from TCGA-CR-7399. The tobacco smoking and APOBEC-related signatures were identified only from the signature
analysis results of FIREVAT-refined mutations
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filters out: (1) 8-oxoG artifacts (Additional file 4), (2)
FFPE-specific artifacts (Additional file 5), (3) germline
contamination (Additional file 6), and (4) Thymine to
Guanine transversion artifacts in Guanine-rich context
(i.e., G [T>G] G substitution) (Fig. 5, Additional file 7).
Detailed analysis on each type of artifact found that
these artifact signatures are associated with variants sup-
ported by low base quality scores and by a lack of alter-
nate allele read evidence (Additional file 1: Note S5).

Discussion
FIREVAT is the first publicly available software toolkit
that performs variant refinement guided by mutational
signatures. This software is easy to install and is imple-
mented as an R package. We have herein shown the high
performance of our novel variant refinement approach.
Our software only requires VCF files and simplifies
existing variant refinement processes, which often re-
quire the computationally expensive interrogation of

(See figure on previous page.)
Fig. 4 Characteristics of artifactual variants identified by FIREVAT in publicly available VCF callsets. Analysis of artifactual variants identified by
FIREVAT using MuTect2 callset of multiple TCGA cohorts and multi-region WES breast cancer samples (SRP070662). From the left, the first plot for
each sample group shows the profiling of the sequencing artifactual signature occurrences and weights using unrefined mutations. The bar color
intensity (white to red) represents the median weight of the observed artifactual signature and the bar length represents the number of samples
that had the corresponding signature as the most heavily weighted artifactual signature. The artifactual signatures with a median weight higher
than 0.2 are highlighted in bold font. The second plot shows the distribution of artifactual signatures among the original (green: Ori), refined
(blue: Ref), and artifactual (orange: Art) sets of mutations, respectively. The last plot shows the enrichment of sequence motifs in the artifactual
variants 10 bases upstream and downstream of each variant position

Fig. 5 Currently known artifact signatures identified by FIREVAT in publicly available VCF callsets. There are four distinct types of artifacts that are
currently identified by FIREVAT: (1) 8-oxo-guanine artifact, (2) FFPE-specific artifacts, (3) germline contamination, and (4) Thymine to Guanine (T>G)
transversion artifact. The left column shows the 96 single nucleotide substitution peaks corresponding to each type of artifact. The middle
column shows the quality metrics associated with each type of artifact and the last column lists the COSMIC mutational signatures (version 3)
similar to the peaks observed in each artifact
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BAM files [64] and manual inspection of candidate vari-
ants [20]. Such inspection also necessitates well-trained
bioinformaticians. In contrast, FIREVAT automates vari-
ant refinement using single nucleotide substitution pro-
files of sequencing artifacts. In addition, we have shown
that sequencing artifacts incorporated in mutational pat-
terns have distinct contexts and can be correctly distin-
guished. FIREVAT effectively reduces the number of
false positives in user-supplied VCF files and renders
comprehensive reports that detail the refinement pro-
cesses and outcomes.
Post-processing of variant calling is an indispensable

step in the conventional cancer genomics analysis pipe-
line that ensures retention of high-quality real somatic
variants and removal of artifactual variants. Inclusion of
artifactual variants in downstream analysis leads to clin-
ical errors and misinformed discovery of novel biological
findings in research [16–19]. Variant calling by multiple
callers and a series of filtering tasks have shown high
levels of sensitivity and specificity [37, 63]. However, the
massive computational resources required to operate
such tasks are burdensome [64]. Here we have demon-
strated the high performance of FIREVAT on three in-
dependent real-world datasets with 678 tumor samples.
We have shown that mutational signatures can be used
to strategically remove artifactual variants. FIREVAT
successfully achieves this task while taking advantage of
sequencing artifact patterns observed in over 23,000
samples, namely the COSMIC mutational signatures
(version 3) [23].
Mutational signature analysis lends biologically and

clinically relevant etiologies and concisely captures mu-
tations observed in cancer genomes [65]. For this reason,
this technique is widely used in cancer research. Based
on this comprehensibility, the FIREVAT evaluation
method can also be used as a proxy for data quality con-
trol in various steps of conventional cancer genomics
pipelines, ranging from initial variant calling to variant
refinement. FIREVAT will have broad applicability in fu-
ture research studies that rely on accurate mutational
signature analysis. FIREVAT is also able to handle cus-
tom matrices of mutational signatures. This allows ver-
satile identification of diverse mutational patterns,
including platform-specific artifact signatures previously
unreported before. FIREVAT can be used to evaluate
whether a particular sample should be included in
downstream analysis based on the sum of sequencing
artifact signature weights. The samples that were found
to have certain sequencing artifact signatures were in-
deed blacklisted for having poor sequencing data quality
[23]. FIREVAT will be of great utility for cancer biolo-
gists, bioinformaticians, and clinicians because it can run
conveniently on a personal laptop with limited resources
and streamline the multitude of computational tasks

popularly performed today. With FIREVAT, a quick
quality assessment of variants identified from sequencing
data is possible.
Furthermore, accurate signature analysis is implicated

in potential predictions of therapeutic responses in can-
cer. For instance, the signature related to HR deficiency
is known to predict the responses of breast and pancre-
atic cancer patients to platinum therapy [57, 58]. The
APOBEC-mediated signature is also known to predict
the responses of NSCLC patients to immunotherapy
[66]. FIREVAT accurately separates biological signals
and technical noise by identifying enriched peaks reflect-
ive of sequencing artifacts, effectively discriminating var-
iants while optimizing filtering cutoff parameters. Our
validation study on the MC3 dataset showed that FIRE-
VAT dynamically adjusts the filtering stringency based
on the prevalence of artifactual mutations. In addition,
the HNSC samples as well as the STAD sample whose
mutational patterns were dramatically altered before and
after FIREVAT refinement exemplify the clinical utility
of our software toolkit.
In addition, we have shown that the sequencing arti-

facts incorporated in mutational patterns have distinct
contexts and can be correctly isolated. FIREVAT uses
this novel analytical method to effectively reduce the
number of false positives in user-supplied VCF files and
renders comprehensible reports that detail the refine-
ment processes and outcomes. Of note, the mutational
signature-based variant refinement strategy implemented
in FIREVAT can be more broadly applied as a signature
extraction tool. For example, our FIREVAT approach
can be used to identify ranges of VAF that are enriched
in biologically and clinically important signatures such
as SBS2, SBS3, SBS4, and SBS13 (Additional file 1: Note
S6).
Existing variant filtering approaches often require a

computationally expensive interrogation of BAM files
and manual inspection of candidate variants [20]. In
contrast, FIREVAT automates the post hoc variant re-
finement process using the 96 single nucleotide substitu-
tion profiles of sequencing artifacts while optimizing
cutoff parameters for each tumor sample.
To use FIREVAT, some prerequisite conditions should

be met. For example, accurate deconvolution of the ag-
gregated characteristics of mutation calls requires a suf-
ficient number of mutations from a VCF file [32].
Second, sufficient supporting evidence on each mutation
should be provided for accurate variant refinement. For
instance, as previously reported, the variant allele frac-
tion is one of the most important features for accurate
variant refinement [21]. In the MC3 validation study
using the Varscan callset, FIREVAT imposed more strin-
gent filtering parameters and resulted in a higher per-
centage of filtered mutations than the originally
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identified sum of artifact signature weights. Third, a sub-
set of the latest COSMIC mutational signatures, such as
SBS12 and SBS46, have similar punctuated trinucleotide
substitution peaks and exemplify challenges in signature
analysis. This problem may be aggravated by a smaller
number of mutations, such as those obtained from tar-
geted sequencing. Recently, the development of a muta-
tional signature analysis toolkit that leverages machine
learning has managed to resolve this issue for the HR-
deficiency signature [67]. Similar approaches can be ap-
plied to the task of mutational signature guided variant
refinement to further improve differentiation between
signatures.
Going forward, as mutational signatures become more

exhaustive and sensitive to biological, clinical, and ex-
perimental patterns in cancer mutations, we anticipate
that the FIREVAT performance will concurrently im-
prove its performance. In this light, FIREVAT lays the
foundation for variant refinement based on mutational
signatures and the approaches described herein suggest
the feasibility of a persistent evaluation method for vari-
ant refinement. Going forward, the FIREVAT approach
can be similarly applied to small insertions and deletions
(indels) [23], copy number alterations [68], and struc-
tural variations if sufficient evidence of the effects of se-
quencing artifacts can be profiled at these genomic
levels.

Conclusions
In conclusion, we have developed a publicly available
software toolkit that efficiently removes artifactual vari-
ants in cancer samples using mutational signatures. We
have shown that mutational signatures can be used as a
variant refinement strategy. Our novel FIREVAT ap-
proach, which we have validated to perform highly on
384 tumor samples, should hereafter be widely used.
FIREVAT secures reliability in refining mutations called
from widely used variant callers and outperforms exist-
ing manual filtering methods while addressing the issue
of arbitrarily determined hard-filtering parameters. The
FIREVAT refinement process is streamlined for users
with the call of a single function using VCF files, and
presents a conveniently accessible quality control report
to the user.
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