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Abstract

Background: Chemogenetic profiling enables the identification of gene mutations that enhance or suppress the
activity of chemical compounds. This knowledge provides insights into drug mechanism of action, genetic
vulnerabilities, and resistance mechanisms, all of which may help stratify patient populations and improve drug
efficacy. CRISPR-based screening enables sensitive detection of drug-gene interactions directly in human cells, but
until recently has primarily been used to screen only for resistance mechanisms.

Results: We present drugZ, an algorithm for identifying both synergistic and suppressor chemogenetic interactions
from CRISPR screens. DrugZ identifies synthetic lethal interactions between PARP inhibitors and both known and
novel members of the DNA damage repair pathway, confirms KEAP1 loss as a resistance factor for ERK inhibitors in
oncogenic KRAS backgrounds, and defines the genetic context for temozolomide activity.

Conclusions: DrugZ is an open-source Python software for the analysis of genome-scale drug modifier screens. The
software accurately identifies genetic perturbations that enhance or suppress drug activity. Interestingly, analysis of
new and previously published data reveals tumor suppressor genes are drug-agnostic resistance genes in drug
modifier screens. The software is available at github.com/hart-lab/drugz.
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Background
The ability to systematically interrogate multiple genetic
backgrounds with chemical perturbagens is known as
chemogenetic profiling. While this approach has many
applications in chemical biology, it is particularly
relevant to cancer therapy, where clinical compounds or
chemical probes are profiled to identify mutations that
inform on genetic vulnerabilities, resistance mechanisms,
or targets [1]. Systematic surveys of the fitness effects of
environmental perturbagens across the yeast deletion
collection [2] offered insight into gene function at a large
scale, while profiling of drug sensitivity in heterozygous
deletion strains identified genetic backgrounds that give
rise to increased drug sensitivity [3]. Now, with the ad-
vent of CRISPR technology and its adaptation to pooled
library screens in mammalian cells, high-resolution
chemogenetic screens can be carried out directly in

human cells [4–7]. Major advantages to this approach
include the ability to probe all human genes, not just
orthologs of model organisms; the analysis of how drug-
gene interactions vary across different tissue types,
genetic backgrounds, and epigenetic states; and the iden-
tification of suppressor as well as synergistic interactions,
which may preemptively indicate mechanisms of ac-
quired resistance or pre-existing sources of resistant cells
in heterogeneous tumor populations.
Design and analysis of CRISPR-mediated chemoge-

netic interaction screens in human cells can be problem-
atic. Positive selection screens identifying genes
conferring resistance to cellular perturbations typically
have a high signal-to-noise ratio, as only mutants in re-
sistance genes survive. This approach has been used to
identify genes conferring resistance to targeted therapeu-
tics, including BRAF and MEK inhibitors, as well as
other drugs [5–13]. Conversely, negative selection
CRISPR screens require growing perturbed cells over 10
or more doublings to allow sensitive detection of genes
whose knockout leads to moderate fitness defects.
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Adding the detection of drug interactions to these
experiments necessitates dosing at sub-lethal levels to
balance between maintaining cell viability over a long
time course and inducing drug-gene interactions beyond
native drug effects [14–17].
In this study, we describe drugZ, an algorithm for the

analysis of CRISPR-mediated chemogenetic interaction
screens. We apply the algorithm to identify genes that
drive normal cellular resistance to the PARP inhibitor
olaparib in three cell lines. We demonstrate the greatly
enhanced sensitivity of drugZ over contemporary algo-
rithms [7, 18–20] by showing how it identifies more hits
with higher enrichment for the expected DNA damage
response pathway, and further how it identifies both syn-
ergistic and suppressor interactions. We further demon-
strate the discovery of both synergistic and suppressor
interactions in a single experiment with KRAS-mutant
pancreatic cancer cell lines treated with an ERK inhibi-
tor, and through reanalysis of published data. Interest-
ingly, we observe a trend across several datasets where
tumor suppressor genes score as drug suppressors, indi-
cating a possible systematic source of false positives. We
provide all software and data [21] necessary to replicate
the analyses presented here; see “Availability of data and
materials” below for links.

Implementation
DrugZ algorithm
We calculate the log2 fold change of each gRNA in the
pool by normalizing the total read count of each sample
(to n = 10 million reads) at the same time point and
taking the log ratio, for each replicate, of treated to
control reads.

fcr ¼ log2
norm Tt;r

� �þ pseudocount

norm Ct;r
� �þ pseudocount

" #

where:

� fc = fold change
� r = replicate indication
� T = treated sample
� C = control sample
� t = time point
� pseudocount = default value is 5

We estimate the variance of each fold change by calcu-
lating the standard deviation of fold changes with similar
abundance in the control sample:

sort fcrð Þ according Cr descending ¼ Trueð Þ

eb stdfcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i

fcr;i−μ
� �2

vuut

where:

� eb stdfcr = estimated variance
� N = number of fold changes with similar abundance

(default = 1000)
� i = guide
� fcr, i = fold change for each guide in a replicate
� μ = 0

and then calculate a Z-score for each fold change
using this estimate:

Zfcr;i ¼
fcr;i

eb stdfcr;i

The guide Z-score of all gRNA across all replicates is
summed to get a gene-level sumZ score, which is then
normalized (by dividing by the square root of the num-
ber of summed terms) to the final normZ (Fig. 1b):

normZgeneA ¼
P

Zfcr;igeneAffiffiffi
n

p

A P value is calculated from the normZ and corrected
for multiple hypothesis testing using the method of
Benjamini and Hochberg [22]. The open-source Python
software can be downloaded from github.com/hart-lab/
drugz.

DrugGS algorithm
After empirical Bayes variance estimation approach is
applied on normalized log-fold changes to calculate a Z-
score for each guide, we applied Gibbs sampling to
generate posterior distribution of fold changes for each
gene.

Posterior � Likelihood�Prior
P μ; τj datað Þ ¼ P dataj μ; τð Þ�P μ; τð Þ

P datað Þ posterior

P datajμ; τð Þ likelihood
P μ; τð Þ prior

Each gene has a distribution composed of Z-scores for
guides targeting that specific gene across replicates.
Distribution is characterized as ℕ(μ, τ), where τ is 1

σ2 .
Both μ and τ have hyperparameters (μ : μ, σ2, τ : a, b)

that we initialize at the very start of sampling.
P( τ| data) ~ Γ(a, b) = Gamma prior with a (shape) and

b (rate) hyperparameters
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Fig. 1 (See legend on next page.)
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P(μ| τ, data) ~ ℕ(μ, σ2) = Normal prior with μ (mean)
and σ2 (variance) hyperparameters
We then update μ and τ with respect to their priors in

every 1000 samples that we generate for each gene.
Equations to update μ:

μupdate ¼
n��y�τð Þ þ μprior�τprior

� �

n�τ þ τprior

σupdate ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�τ þ τprior

p

Equations to update τ:

aupdate ¼ aprior þ n
2

bupdate ¼ bprior þ
X

Zfcr;i−μ
� �2

where:

� n = number of data points (guide Z-scores) for each
gene

� �y = actual mean of data points

From those 1000 newly sampled μ and τ, we then cal-
culate the mean and standard deviation. Each gene’s μ
posterior distribution’s mean is what was converted into
Z-score and used to compare with the drugZ normZ
values.

ZgeneA ¼

XS

k¼1

μk

S

where:

� S = number of samples (in our case 1000)
� k = sample

Drug-gene interaction screens
Olaparib screens were described in [14]. Temozolomide
screens were described in [23].

Cell culture
hTERT RPE-1 (CRL-4000) and 293T (CRL-3216) cells
were purchased from the ATCC and grown in Dulbec-
co’s high glucose modified Eagle’s medium (DMEM;
HyClone) with 10% fetal bovine serum (FBS), 1× Gluta-
MAX (Gibco), 100 mM sodium pyruvate (Gibco), 1×
non-essential amino acids (NEAA), 1X penicillin-
streptomycin (Pen/Strep), and 5μg ml−1 Plasmocure.
Incubator conditions were kept at 37 °C with 5% CO2.

Lentivirus production
For production of the TKOV3 lentivirus, 9.0 × 106 293T
cells were transfected with psPAX2 (lentiviral packaging;
Addgene #12260), pMD2.G (VSV-G envelope; Addgene
#12259), and TKOV3 (Toronto KnockOut CRISPR
Library; Addgene #90294) using X-tremeGENE 9 DNA
transfection reagent (Sigma-Aldrich) in medium with
lowered antibiotic concentration (0.1× Pen/Strep). The
medium was replaced with viral harvest medium
(DMEM + 1.1% BSA + 1× Pen/Strep) 18 h post-
transfection. Virus-containing supernatant was collected
~ 24–48 h post-transfection, and fresh viral harvest
medium was added to transfected plates. Virus-
containing supernatant was collected again ~ 24 later.
The virus-containing supernatant was centrifuged to
remove cell debris and stored at -80 °C.

CRISPR screening
For transduction of the hTERT RPE-1 cells, the TKOv3
virus was added with 8μg/ml Polybrene. For selection of
the transduced cells, puromycin was introduced at a
concentration of 20 μg/ml at 24 h post-infection (the
hTERT cassette used to immortalize RPE1 cells contains
a puromycin resistance marker, necessitating extreme
puromycin concentrations for selection). Puromycin
selection continued for 72 h post-transduction and com-
pleted upon the selection against the hTERT RPE-1 par-
ental line as a control. Completion of selection was
considered the initial time point (T0). The TKOv3-
transduced cells were split into technical replicates. To
ensure proper coverage, 15 × 106 cells across 11 × 15 cm
dishes were used for infection with the TKOv3 virus per
replicate. The chemotherapeutic drugs gemcitabine (2
nM) and vincristine (0.4 nM) were added to separate
replicates, with one set of replicates receiving no drug

(See figure on previous page.)
Fig. 1 Workflow. a Experimental design. In a drug-gene interaction screen, cells are transduced with a pooled CRISPR library. Cells are split into
drug-treated and untreated control samples, grown for several doublings; genomic DNA is collected; and the relative abundance of CRISPR gRNA
sequences in the treated and control population is compared. b DrugZ processing steps include normalizing read counts, calculating fold
change, estimating the standard deviation for each fold change, Z-score transformation, and combining guide scores into a gene score. c–e
Comparing existing methods vs. drugZ for SUM149PT olaparib screen. DrugZ hits show strongest enrichments for DDR genes across a range of
FDR thresholds. c Number of raw hits. d Number of annotated DNA damage response (DDR) genes in hits. e −log P values for DDR gene
enrichment by hypergeometric test

Colic et al. Genome Medicine           (2019) 11:52 Page 4 of 12



treatment. Both drug-treated and untreated replicates
were not allowed to reach confluence in the 15 cm
dishes. Cells were lifted, counted, and re-plated at the
coverage stated above, and the excess cell pellets were
frozen at − 20 °C as a time point. Once 8 doublings were
reached from T0, the screens were terminated and pel-
lets frozen at − 20 °C. Coverage of screens was kept at
200 cells per gRNA.
The QIAamp Blood Maxi Kit (Qiagen) was used to

isolate the genomic DNA (gDNA) from the frozen cell
pellets. Guide sequences were enriched using PCR with
HiFi HotStart ReadyMix (Kapa Biosystems) and primers
targeting the guide region in the genomic DNA. A sec-
ond round of PCR was performed with i5 and i7 primers
to give each condition and replicate a unique multiplex-
ing barcode. The final PCR products were purified using
the E-Gel System (Invitrogen), normalized, and se-
quenced on the NextSeq500 system to determine the
representation of guides under each treated and non-
treated condition.

Results and discussion
We created the drugZ algorithm to fill a need for a
method to identify chemogenetic interactions in CRISPR
knockout screens. In a pooled library CRISPR screen,
the relative starting abundance of each gRNA in the pool
is usually sampled immediately after infection and
selection. To identify genes whose knockout results in a
fitness defect (“essential genes”), the cells are grown for
several doublings and the relative abundance of gRNA is
again sampled by deep sequencing of a PCR product
amplified from genomic DNA template. The relative
frequency of each gRNA is compared to starting gRNA
abundance, and genes whose targeting gRNA show con-
sistent dropout are considered essential genes.
In a chemogenetic interaction screen, the readout is

different: the relative abundance of gRNA in a treated
population is compared to the relative abundance of an
untreated population at a matched time point (Fig. 1a).
In this context, an experimental design with paired
samples should be particularly powerful, as it removes a
major source of variability across replicates.
To benchmark the method, we evaluated screens to

identify modifiers of the response to the PARP inhibitor
olaparib in three cell lines, RPE1-hTERT, HeLa, and
SUM149PT [14]. The screens were performed using the
TKOv1 library of 90k gRNA targeting 17,000 genes and
are described in detail in [24]. After infection and selec-
tion, each cell line was split into 3 replicates, passaged at
least once, and each replicate was further split into
control and olaparib-treated populations (Fig. 1a).
The drugZ algorithm calculates a fold change for each

gRNA in an experimental condition relative to an un-
treated control. A Z-score for each fold change is

calculated using an empirical Bayes estimate of the
standard deviation, by “borrowing” information from
gRNA observed at a similar frequency (read count) in
the control cells. Guide-level gene scores are combined
into a normalized gene-level Z-scores called normZ,
from which P values are estimated from a normal distri-
bution (Fig. 1b). We used drugZ to calculate normZ
scores, P values, and false discovery rates in SUM149PT
breast cancer cells, which carry BRCA1 and TP53 muta-
tions, +/− olaparib treatment [14]. We also analyzed the
same data with four contemporary methods, STARS [7],
MAGeCK [18], edgeR [19], and RIGER [20]. We noted
that drugZ produced a moderate number of overall hits,
relative to other methods, as FDR thresholds were re-
laxed (Fig. 1c). We evaluated the quality of the hits by
measuring their functional coherence. The PARP inhibi-
tor olaparib was developed specifically to exploit the
observed synthetic lethal relationship between PARP1
and the BRCA1/BRCA2 genes [25, 26]. Subsequent
studies have shown it to be effective against a general
deficiency in homologous recombination repair, known
as HRD [27]. We therefore calculated the enrichment of
each hit set for genes in the DNA damage response
(DDR) pathway as annotated in the Reactome database
[28] and found that drugZ hits show strong enrichment
for DDR genes across a range of FDR thresholds (Fig.
1d, e), while the other methods show consistently lower
enrichment. We observed similar trends in an olaparib
screen in HeLa cells (Additional file 1: Figure S1A) but
less overall effect in hTERT-immortalized RPE1 wildtype
epithelial cells (Additional file 1: Figure S1B). The com-
bination of larger sets of hits and greater enrichment for
expected results indicates that drugZ accurately and
sensitively identifies chemogenetic interactions.
The drugZ algorithm can also be used to identify sup-

pressor interactions, that is, genes whose perturbation
reduces drug efficacy. While BRCA1 mutation is syn-
thetic lethal with PARP1, subsequent mutation of
TP53BP1 is associated with acquired resistance to the
PARP inhibitor [29]. Drug-gene interactions resulting in
positive Z-scores reflect such suppressor interactions.
Indeed, TP53BP1 is the 8th-ranked suppressor inter-
action in BRCA1-deficient SUM149PT cells, with a
normZ score of 3.05. Similarly, newly described resist-
ance gene C20orf196, now called SHLD1 [30–33], is the
top-ranked suppressor.

Robustness to parameter choice and experimental design
To evaluate the robustness of the drugZ approach, we
conducted sensitivity analysis using data from the
SUM149PT olaparib screen. The algorithm relies on two
major tunable parameters, window size for empirical
Bayes variance estimation and a monotone filter for the
variance estimator (to ensure non-decreasing variance as
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read count decreases). The window size represents the
number of neighboring gRNA, ranked by read count, to
use to evaluate gRNA fold change variance. To evaluate
the effect of varying window size, we ran the drugZ
pipeline with window sizes in five increments from 100
to 1000; neither the number of hits, number of DDR-
annotated hits, nor enrichment P value was affected by
changing window size (Additional file 1: Figure S2a). We
performed a similar analysis with and without enforcing
the monotone filter and discovered marginally improved
performance in the SUM149PT olaparib screen without
enforcing monotonicity (Additional file 1: Figure S2b), but
no such effect in Hela (T15) olaparib screen (Additional
file 1: Figure S2c). We therefore left the filter in place.
We also tested the drugZ pipeline against a more

statistically thorough, but computationally demanding,
approach. After using the same empirical Bayes ap-
proach to calculate a Z-score for each guide, we applied
Gibbs sampling to estimate the posterior distribution of
fold changes for each gene (Additional file 1: Figure
S3A). This method, which we termed drugGS, yielded
results that are virtually identical to drugZ (Pearson cor-
relation coefficient = 0.99; Additional file 1: Figure S3B)
at ~ 50× the computational cost (Additional file 1: Figure
S3C). DrugGS is also available on github at https://
github.com/hart-lab/druggs.

Experimental design considerations
Highly effective CRISPR knockout screens are done with
a variety of experimental designs, with varying numbers
of replicates, degree of library coverage, determination of
endpoint, and whether intermediate time points are in-
cluded [5–7, 24, 34–40]. The olaparib drug-gene inter-
action screens described here were performed in
triplicate in 15-cm plates and passaged every 3 days,
with drug added at day 6 and samples collected for
sequencing at each passage starting at day 12 [14]. Using
the optimized drugZ pipeline, we evaluated each time
point in the SUM149PT screens. The screen’s ability to
resolve specific DNA damage response genes increased
steadily from day 12 to day 18 (Fig. 2a–c), highlighting
the importance of low-dose drug treatment (e.g., LD20).
The extended timeframe for the experiment allows
greater resolution of negative selection hits as they
disappear from the population over several doublings.
Nevertheless, the screens are still quite noisy, necessi-

tating several replicates for accurate assessment of drug-
gene interactions. The experimental design of these
screens involved control and drug-treated samples for
each replicate, facilitating a paired-sample analysis across
the three replicates (Additional file 1: Figure S4A). In
contrast, an unpaired design (Additional file 1: Figure
S4A) requires comparing the means (or other aggregate
metric) of the treated and untreated arms. In our

experience, a paired-sample experimental design typically
results in within-replicate samples clustering together
(Additional file 1: Figure S4B), suggesting a paired-sample
analysis would be more sensitive. Paired-sample analysis
of three replicates in the olaparib screen clearly outper-
forms one- or two-replicate designs (Fig. 2b). Surprisingly,
however, the paired-sample approach does not appear to
offer significant benefits over an unpaired approach: when
taking the mean fold change across experimental samples
and comparing it to the mean fold change across control
samples (Additional file 1: Figure S4A), the results are
nearly identical to analysis of three paired samples (Fig.
2d–f). Indeed, treating samples as paired or unpaired pro-
duced highly correlated results (rho> = 0.96) in all three
olaparib screens (Additional file 1: Figure S4c-e), and the
functional enrichment analysis in SUM149PT cells
showed virtually no difference when performing paired-
sample or unpaired-sample analysis (Additional file 1:
Figure S4f-h).

A general-use algorithm for drug-gene interactions
To ensure that the drugZ algorithm is not overspecia-
lized for the strong chemogenetic profile of PARP inhib-
itors, we applied it to a separate set of drug interaction
screens in pancreatic cancer cell lines using the ERK1/2
inhibitor SCH772984. Oncogenic mutations in KRAS
drive constitutive signaling in the MAP kinase pathway
and are associated with proliferation and survival signals.
Consistent with current models of RAS pathway activa-
tion, knockout of inhibitor target MAPK1 has strong
synthetic sick/lethal or negative interactions with ERK
inhibitor in two of the cell lines, MiaPaca and YAPC
(FDR < 0.1; Fig. 3a–d). In the third cell line, HPAF-II,
the top synthetic interactors were drug transporter
ABCG2 and MAPK3. Activity of this drug resistance
gene may account for this cell line’s resistance to ERK
inhibition and the lack of other synthetic effectors in this
screen. Drug transporter ABCC4 is synthetic lethal in
MiaPaca cells, indicating multiple routes of drug resist-
ance for this molecule. Ubiquitin ligase adapter KEAP1
is among the top suppressors of ERK inhibitor activity in
three cell lines (Fig. 3a–d). KEAP1 loss of function was
identified as a modulator of MAP kinase pathway inhibi-
tors in a panel of positive selection screens in multiple
cell lines [11], suggesting a context-dependent model for
predicting ERK inhibitor activity (Fig. 3e). Notably, the
ERK inhibitor screens yielded a small number of discrete
synthetic and suppressor hits, in contrast with the PARP
inhibitor screens, which showed broad interaction across
the HR pathway, confirming the general applicability of
drugZ in detecting drug-gene interactions.
We additionally reanalyzed data from a set of temozo-

lomide (TMZ) drug modifier screens in patient-derived
glioblastoma cell lines [23]. The screens clearly indicated
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synthetic lethality with the Fanconi anemia complex
(Fig. 3f) and suppressor activity from the mismatch re-
pair pathway (Fig. 3g, h). Together, these results recap-
itulate the biological drivers of temozolomide: mismatch
repair is required for temozolomide cytotoxicity [42],
while the Fanconi anemia pathway plays a major role in
the repair of TMZ-induced damage [22, 43, 44] (Fig. 3i).
We further conducted an independent screen of
hTERT-immortalized RPE1 epithelial cells to determine
genetic modifiers of the microtubule stabilizing agent
vincristine. Drug transporter ABCC1 (encoding multi-
drug resistance protein-1, or MRP1), a known marker

for clinical resistance to vincristine [45, 46], is the top
synthetic hit in our screen (Fig. 3j).
Finally, we reprocessed data from complementary

CRISPRi/CRISPRa screens for modifiers of rigosertib
activity [41] (Fig. 3k). As transcriptional activation and re-
pression are expected to show opposite effects in a pheno-
typic screen, we plotted the drugZ results for the CRISPRi
screen and the CRISPRa screen together (Fig. 3l). The
microtubule stabilizing activity of TACC3 and destabiliz-
ing activity of KIF2C, characterized extensively in [41], are
both recovered by drugZ, along with tubulins TUBA1B
and TUBB4 (Fig. 3l), consistent with rigosertib’s activity as

A B C

D E F

Fig. 2 Experimental design effects. a–c DrugZ performance across different time points for SUM149PT olaparib screen. a Number of raw hits. b
Number of annotated DNA damage response (DDR) genes in hits. c −log P values for DDR gene enrichment. d–f DrugZ performance based on
varying number of replicates. d Number of raw hits. e Number of annotated DNA damage response (DDR) genes in hits. f −log P values for DDR
gene enrichment. Rep1, 2, 3: all combinations of one, two, or three replicates, ± s.d. Mean: comparing mean of drug-treated samples to the mean
of control samples (unpaired approach)
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Fig. 3 (See legend on next page.)
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a microtubule destabilizing agent. Importantly, these re-
sults confirm the applicability of drugZ beyond CRISPR
knockout screens.
We noted that a small number of genes were unex-

pected repeat hits across several screens using different
drug or small molecule perturbagens with disparate
mechanisms of action. We screened hTERT-RPE1 cells
with gemcitabine, a pyrimidine nucleoside analog, and
analysis with drugZ reveals a synthetic lethal interaction
with deoxythymidylate kinase DTYMK. DTYMK
phosphorylates dTMP to dTDP, a key step in the
synthesis-by-salvage pathway of dTTP [47] (Fig. 4a).
However, suppressors of gemcitabine activity included
NF2, TP53, AXIN1, and other known tumor suppressor
genes (Fig. 4a) with no known role in nucleotide metab-
olism. This immortalized epithelial cell line carries
wildtype alleles of these tumor suppressors, and their
knockout in a CRISPR screen results in cell proliferation
more rapid than wildtype cells. This is reflected in the
essentiality profiles, as calculated by BAGEL [49]:

essential genes have positive Bayes Factors, but tumor
suppressors show extreme negative scores (Fig. 4b).
We hypothesized that such tumor suppressors might

be systematic, nonspecific hits in drug-gene interaction
screens. We re-analyzed other screens to understand this
behavior across different cell backgrounds. The land-
mark CRISPR screen paper from Shalem et al. [5] in-
cludes a screen in BRAF-mutated A375 melanoma cells
for resistance to vemurafenib and describes the discov-
ery of NF2 as a novel suppressor of vemurafenib activity.
DrugZ analysis confirms NF2 as a strong hit in the
screen, along with NF1 and several members of the
mediator complex (Fig. 4c). Complementary analysis of
the gene essentiality profile for A375 derived from
Behan et al. [48]—the latest screens from the DepMap
project are substantially superior to the first-generation
screen performed in Shalem et al., as shown by
precision-recall analysis (Additional file 1: Figure S5)—
shows that NF2 is the top ranked tumor suppressor in
the screen, and furthermore, virtually every other

(See figure on previous page.)
Fig. 3 DrugZ effectiveness across diverse screens. a–d DrugZ-calculated normZ score is plotted vs. gene rank for SCH772984 screen in four KRAS
pancreatic cancer cells cell lines. Synergistic/synthetic lethal (red) and suppressor/resistance (blue) interactions at FDR < 0.1. e Network view of
ERK inhibitor screens. Red, synthetic lethal interactions. Blue, suppressor interactions. f–h Glioblastoma cell lines screened for chemogenetic
interactions with temozolomide (TMZ), as described in [23]. i Pathway-level summary of modifiers of TMZ activity in glioblastoma cells. j hTERT-
RPE1 cells screened for modifiers of vincristine. k Experimental design of CRISPRi/CRISPRa screens for modifiers of rigosertib, as described in [41]. l
DrugZ results of the combined rigosertib screens. Red/blue hits are characterized in [41]
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vemurafenib suppressor hit shows enhanced cell fitness
when knocked out (Fig. 4d). Interestingly, we detect
MCL1 and EGFR, as well as EGFR signal transduction
components SHC1 and GRB2, as synthetic lethal with
vemurafenib in this screen. Neither hit is reported in the
original study, but both MCL1 [50] and EGFR [51, 52]
have been characterized as routes of adaptive resistance
to BRAF inhibition in melanoma. These findings support
the overall quality of the drug-gene interaction screen
and our analysis of the data. We further note that TP53
and CDKN1A (p21) are the top suppressors in the RPE1
vincristine screen (Fig. 3j) and that TP53 is the top sup-
pressor in the G472 temozolomide screen (Fig. 3g). G472
cells carry a wildtype p53 gene [23]. Collectively these re-
sults indicate that genes whose knockout imparts a growth
advantage on cells are recurrent hits in drug-gene inter-
action screens, suggesting a drug-agnostic phenomenon
rather than drug-specific resistance mechanisms.

Conclusions
Identifying the genetic drivers of drug effectiveness and
resistance is critical to realize the promise of personal-
ized medicine. Chemogenetic interaction screens in
mammalian cells using CRISPR knockout libraries have
so far been primarily used in a positive selection format
to identify the genes, pathways, and mechanisms of ac-
quired resistance to chemotherapeutic drugs. However,
negative selection screens to identify the underlying
architecture of drug-gene interactions have been difficult
to carry out and to analyze in part due to the lack of
robust analytical tools.
We describe the drugZ algorithm, which calculates a

gene-level Z-score for pooled library CRISPR drug-gene
interaction screens. By taking into account the moderate
single mutant fitness defects associated with many genes
involved in drug-gene interactions, the drugZ algorithm
offers significantly improved sensitivity over contempor-
ary analysis platforms. The algorithm was developed to
exploit the additional resolving power we expected to
gain from a paired-sample experimental design, but sur-
prisingly this has virtually no effect on our results. We
demonstrate the validity of our hits by showing the
strong enrichment for genes involved in the DNA dam-
age response in a screen for interactions with the PARP
inhibitor olaparib and the precise detection of MAPK
pathway effectors in an ERK inhibitor screen. We further
show that both synergistic and suppressor interactions
can be identified in the same screen, as the previously
identified PARP resistance gene TP53BP1 and newly
characterized SHLD1 (formerly C20orf196) are top-
ranked suppressors of olaparib activity in BRCA1-mu-
tant SUM149PT screens. Moreover, both synthetic
targets MAPK1/3 and suppressor gene KEAP1 are

identified in ERK inhibition screens. KEAP1 deletion or
mutation is frequently found in KRAS-driven lung
adenocarcinomas and may present an obstacle to ERK
inhibitor therapy in these tumors.
Experimental design plays a critical role in the ability

to accurately identify drug-gene interactions. Negative
selection screens for synthetic lethal interactions re-
quire that cells be carried long enough for dropouts—
typically growth defects rather than full synthetic le-
thals—to rise to statistical significance. Our results,
concordant with known highly drug-specific differences
in effect timing, suggest that there is value in collecting
multiple time points to ensure that drug activity and
genetic interaction are detectable and that traditional
dose-response curves must be calculated over a time
course relevant to the screen (e.g., at least two passages
or several doublings).
Copy number amplifications have been widely shown

to cause locus-specific, but not gene-specific, toxicity in
CRISPR knockout experiments. This phenomenon can
lead to false positives in screens for knockout fitness
defects. However, drug-gene interaction screens meas-
ure whether, in the CRISPRko case, a double-strand
break at a specific locus amplifies or suppresses the
activity of a small molecule or other perturbagen.
Amplification-specific artifacts should, in principle,
show no difference between treated and control sam-
ples and should therefore not be a significant source of
false positives. However, gRNA targeting amplified loci
may rapidly drop out of a population of cells under
library-induced selection; the absence of these loci at
experimental end points (as measured by gRNA read
counts) could feasibly mask the detection of drug-gene
interactions, resulting in false negatives.
Despite these technical idiosyncrasies, chemogenetic

interaction screens extend the utility of CRISPR
genome-scale perturbation screens by enabling the
systematic survey of the landscape of drug-gene inter-
actions across cancer-relevant genetic backgrounds.
Understanding this variation may lead to more precise
therapies for patients as well as the development of
synergistic drug combinations for genotype-specific
treatments.

Availability and requirements
Project name: drugz
Project home page: https://github.com/hart-lab/drugz
Operating system: platform independent
Programming language: Python
Other requirements: Python v3.7 or higher; modules

numpy, scipy, pandas.
License: MIT
No restriction for non-academic use
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