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Abstract

Only a small fraction of patients respond to the drug
prescribed to treat their disease, which means that
most are at risk of unnecessary exposure to side
effects through ineffective drugs. This inter-individual
variation in drug response is driven by differences in
gene interactions caused by each patient’s genetic
background, environmental exposures, and the
proportions of specific cell types involved in disease.
These gene interactions can now be captured by
building gene regulatory networks, by taking
advantage of RNA velocity (the time derivative of the
gene expression state), the ability to study hundreds
of thousands of cells simultaneously, and the falling
price of single-cell sequencing. Here, we propose an
integrative approach that leverages these recent
advances in single-cell data with the sensitivity of
bulk data to enable the reconstruction of personalized,
cell-type- and context-specific gene regulatory
networks. We expect this approach will allow the
prioritization of key driver genes for specific diseases
and will provide knowledge that opens new avenues
towards improved personalized healthcare.

Background

In the past decade, genome-wide association studies
(GWAS; Box 1) have identified over 10,000 genetic risk
factors, mainly single nucleotide polymorphisms (SNPs),
for more than 100 common diseases [1]. Together these
GWAS loci can explain up to 25% of the heritability of
complex diseases [2] and up to 56% of disease-related
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traits [3]. The majority of these genetic risk factors are
located in non-coding regions [4] and, as the function of
these regions is challenging to decipher, it remains largely
unclear how the SNPs are linked to disease. Several studies
have shown that the gene nearest to the genetic association
may not always be the causal gene [5-7]. Consequently,
more sophisticated approaches have been developed to un-
ravel the link between genetic risk factors and disease (for
example, by identifying the disease-causing cell types,
genes, and pathways; Fig. 1). Expression quantitative trait
loci (eQTL) studies, for example, have been performed to
identify the local (cis-eQTL) and distal (trans-eQTL)
downstream effects of genetic variation on gene expression
[8, 9]. These eQTL studies have provided the first clues
about how genetic variation is linked to disease (Fig. 2a).
Other methods to further prioritize putatively causal genes
include co-localization analysis, fine-mapping, and
summary-data-based Mendelian randomization (for de-
tailed discussions of these techniques see [10, 11]). To
provide a greater understanding of gene regulatory mecha-
nisms, several large consortia—including the ENCODE
project [12], FANTOM [13], Epigenome Roadmap [14],
and Blueprint [15]—have systematically classified more
than 80% of the genome as non-coding regulatory ele-
ments. Genetic variation has now been linked to many of
these elements, including epigenetic marks [16, 17], tran-
scription factor binding and chromatin accessibility [18,
19], and post-transcriptional regulation [20, 21].

Studies to date have emphasized the importance of
studying both gene expression [22] and its regulation.
However, despite these advances in our understanding of
GWAS variants, a recent study of 7051 samples from
449 donors across 44 tissues from the Genotype-Tissue
Expression (GTEx) project linked only 61.5% of the
SNPs within a GWAS locus to an eQTL effect [23]. The
reason that not all GWAS SNPs can be linked to an
eQTL effect could be that eQTL studies have been per-
formed in the wrong context for a specific disease. We
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Box 1. Glossary

Bayesian model: statistical modeling to calculate probabilities for an observation while taking into account the empirical or theoretical
expected distribution of these observations or factors expected to influence the observations. Used in co-expression networks to assign
probabilities for directionality between genes.

Benchmarking: comparing the performance of a computational model against a gold standard or known solution.

Co-expression network: an undirected network that describes which genes often behave in a coordinated manner. The network consists
of nodes, representing genes, that are connected through edges that represent relationships between nodes. These relationships can be
unweighted or weighted, indicating either a binary relationship (on/off) or a more continuous relationship.

Co-expression QTLs: SNPs that modulate the correlation between the co-expression of two genes. To identify these, many observations
(for example, on multiple cells or tissues) per individual are required.

Co-localization: a method that determines whether the association signals in a locus correspond between two association studies (for
example, between a GWAS and an eQTL study).

Context-dependent eQTLs: eQTLs for which the strength of association depends on a secondary factor. This may be either intrinsic (for
example, expression of another gene or cell type frequency) or extrinsic (for example, environmental exposure). Gene expression data
can be used as proxy measurements for both intrinsic and extrinsic factors.

Dropouts: genes that fail to be detected even though they are expressed (resulting in a zero-inflated gene expression distribution) due
to incomplete mRNA capture by current scRNA-seq technologies.

Expression quantitative trait loci (€QTL): a SNP that explains a variation in gene expression levels. When the SNP explains the expression
of a gene within a 1-megabase distance, it is called a cis-eQTL. When the SNP explains the expression of a gene beyond a 1-megabase
distance, it is called a trans-eQTL.

Fine-mapping: a statistical approach that is used to prioritize the most likely causal genetic variant in a previously identified locus that is
linked to a specific phenotype.

Gene regulatory network (GRN): a directional co-expression network that also contains information about the regulators that control
gene expression.

Genome-wide association studies (GWAS): genome-wide approach in which genetic variants such as single nucleotide polymorphisms
(SNPs) are linked to a molecular trait or disease.

Genotype by environment (GxE) interactions: interactions between an individual's genotype and the environment. Context-dependent
eQTLs are a subset of GxE interactions.

Machine learning approaches: methods used to analyze massive amounts of data in order to build predictive models from multi-
dimensional datasets.

Nyquist-Shannon sampling theorem: describes the sample frequency that is sufficient to capture all the information from a continuous-
time signal of a finite bandwidth.

Precision medicine: healthcare that is individually tailored on the basis of a person’s genetic, environmental, and lifestyle characteristics.
Pseudotime: temporal sequences of gene expression states in cells inferred from measurements made at a single moment in time.

RNA velocity: the rate of change of mRNA molecule abundances in the cell determined by modeling the relationship between unspliced
mRNA (an indicator of current transcription) and spliced mRNA (an indicator of transcription in the recent past).

Simpson’s paradox: a situation in which an observed relationship within different samples (or groups of data) disappears or reverses
when the samples (or groups) are combined.

Summary-data-based Mendelian randomization (SMR): a summary statistics based variant of Mendelian randomization that leverages the
principle that genetic variation is randomly assigned to a sample with a specific phenotype to infer causality between genetic variation

and the phenotype in an observational study.

Unigue molecular identifiers (UMIs): barcode sequences tagging individual molecules.

now know that many genetic risk factors have Independent genetic risk factors can converge into key
cell-type-specific effects [22, 24, 25] or are modulated by  regulatory pathways [24, 28] and may act beyond the
environmental factors [26, 27] and these are contexts disruption of individual genes [29, 30]. Therefore, we ex-
that eQTL studies usually do not completely capture. pect that a comprehensive overview of the many
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Fig. 1 The link between genetic and environmental risk factors in disease. Understanding the interplay between genetic and environmental risk
factors enables identification of the disease-associated context, causal genes, and pathways. This leads to a better understanding of why certain
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processes at work will be required to better understand
disease pathogenesis. This kind of overview can be ac-
quired by reconstructing gene regulatory networks
(GRNs) that are based on cell type [22, 24, 25], environ-
ment [26, 27], and an individual’s genetic makeup [29,
30]. A GRN is a directional network of genes in which
relationships between genes and their regulators are
mapped. Understanding the effect of genetic variation
on GRNSs is particularly important because this may con-
tribute to the large inter-individual variation in drug re-
sponsiveness (Fig. 3). At present, some of the most
commonly prescribed drugs are effective in only 4 to
25% of the people for whom they are prescribed [31].

Here, we outline our vision for an integrative approach
to reconstruct context-specific GRNs. We focus on gene
expression-based regulatory networks because a wealth
of gene expression data is already available and the gen-
eration of this type of data at the bulk and single-cell
levels has advanced the most compared to other
single-cell technologies. However, there are other mo-
lecular levels, such as metabolites or proteins, which
should be included in GRNs in the future to capture the
full complexity of a disease [32].

We begin with a brief introduction to the concept of a
co-expression network and describe the methods used
to create directional GRNs from co-expression networks
using bulk data. We then discuss the limitations of bulk
data and how these can be resolved by the unique prop-
erties of novel single-cell gene expression approaches to
enable the reconstruction of causal GRNs. Methods used
to reconstruct single-cell GRNs have been reviewed re-
cently by Fiers et al. [33] and are therefore not covered
in detail here. We conclude by describing how the

combination of bulk and single-cell data can be used to
reconstruct context-specific, personalized GRNs, and de-
scribe their use in advancing personalized healthcare.

Gene networks in bulk data

Understanding the pathways affected in disease requires
a clear definition of which genes act together in specific
cellular processes. To this end, model organisms have
been instrumental in defining the most basic pathways
present in each cell. By performing knockout experi-
ments, for instance, the relationships between genes can
be identified by studying the downstream effects on gene
expression or enzymatic function, and these effects are
now catalogued in databases such as KEGG [34] and
REACTOME [35]. The pathways defined in these data-
bases, however, can be incomplete or biased towards
well-studied cellular phenotypes or genes. Co-expression
networks and GRNs can therefore be used to extend the
knowledge provided by such databases, and methods for
constructing such networks have been reviewed in detail
elsewhere [36, 37].

Gene networks can be used to infer the functions of
unannotated genes by assuming that genes with similar
functions are located close together in these networks
(i.e. guilt-by-association) [38—42]. The clusters in the
network can be overlapped with the genes that are af-
fected by GWAS SNPs to identify the disease-associated
pathways, using methods such as GRAIL [42], MA-
GENTA [43], and DEPICT ([39] (Fig. 2b). However,
knowing the functions of genes and the associations be-
tween genes is often insufficient to identify the key
driver gene.
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Fig. 2 Current and future approaches to understand the role of genetics in disease. a To identify putatively causal genes, GWAS SNPs are linked
to gene expression using eQTL analysis. b To obtain greater understanding of disease pathogenesis, it is essential to look beyond the disruption
of individual genes and identify potential disease-associated pathways. This can be done by identifying the co-expression relationships between
genes in all loci linked to a specific disease, for example, using methods such as GRAIL [42], MAGENTA [43], and DEPICT [39]. ¢ In the future, to
pinpoint disease-relevant key driver genes, directional co-expression networks can be generated using a combination of current and novel approaches,
including pseudotemporal ordering of scRNA-seq data and context-dependent eQTL and co-expression QTL analysis. eQTL expression quantitative trait
locus, GWAS genome wide association studies, sScCRNA single-cell RNA, SNP single nucleotide polymorphism

Implementing directionality in the gene network
Disease-relevant gene clusters can be identified using
the methods discussed above, but they do not provide
insight into how genetic risk factors affect the network.
To identify the downstream consequences of genetic risk
factors, directionality must be added to co-expression net-
works. A GRN is a directional co-expression network that
also has information about the regulators that control
gene expression. Information obtained from databases
such as KEGG [34] can be used to add directionality to
specific pathways, but this information is limited in its
ability to determine whether these pathways are active in
specific cell types or if they function similarly in all cells or
individuals. Additional approaches are therefore required
to generate context-specific GRNs.

Directionality can be added to a co-expression network
using a combination of perturbations, time-series data,
and dynamic Bayesian models [44—46] (Fig. 2¢; Box 1).
However, dynamic Bayesian models cannot be made

without time-series data, and generating such data is very
costly because it requires a high sampling rate to correctly
define directional relationships between genes (which fol-
lows from the Nyquist—Shannon sampling theorem that is
used to find the sample frequency required to describe a
continuous time signal [47, 48]). Undersampling could re-
sult in incorrect correlations between genes or in missing
key events in the network [49]. Moreover, correct direc-
tional inference requires cells to be synchronized to the
same cell cycle state before time-series experiments are
started, and even when successful, cells may lose their
synchronization over time [50]. Finally, the construction
of Bayesian networks is computationally intensive [51].
This burden can be reduced by including prior knowledge
from other sources (e.g. pathway databases), but the qual-
ity of the resulting network will be determined by the reli-
ability of that prior knowledge [52, 53].

Information about the regulators that control gene ex-
pression can also be gained by linking GWAS variants to
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Fig. 3 Implications of personalized gene regulatory networks for precision medicine. Depending on an individual's regulatory wiring, specific
drugs may or may not be effective. Personalized GRNs will provide guidance for precision medicine in the future. In this example, GRNs of two
hypothetical patients are shown in which the regulatory wiring between the drug target gene and the key driver gene is different. a In individual
1, the drug target gene activates the key driver gene. b In individual 2, the interaction between both genes is absent. Thus, in individual 1, the
drug is effective, whereas in individual 2, the drug is ineffective. GRN gene regulatory network

additional molecular layers such as transcription factor
binding motifs and enhancer and promoter elements [54].
This information can be helpful in determining directional-
ity and understanding how genes are regulated, which pro-
vides additional support for putatively causal interactions.
Similarly, eQTL information can be linked to additional
molecular layers to reveal the functional mechanism of
how the genotype affects interactions between genes,
so-called context-dependent eQTLs (Fig. 4) [29].

Additional molecular data layers can be very informative
for inferring directionality; however, these data are not al-
ways available in the disease-relevant context. Recent
bulk-based RNA-seq studies have generated tissue-specific
co-expression networks for up to 144 different tissues [55,
56]. However, the associated time and cost of implement-
ing directionality and context-specificity have hampered
the generation of tissue-specific GRNs in bulk data. In the
following sections, we describe how a combination of bulk
and single-cell data can be used to resolve these issues
and to create GRNs that help us understand the link be-
tween genetic risk factors and disease.

Improving networks with single-cell data

The first single-cell RNA-sequencing (scRNA-seq) experi-
ment was performed with a single cell in 2009 [57]. Since
then, the technique has further developed and now more
than a hundred thousand cells can be processed in parallel
[58, 59]. Recently, efforts have been made to build gene
co-expression networks using scRNA-seq data [60—62].
The reliability of these networks improves with increasing

numbers of cells, reads-per-gene, and genes-per-cell, but
exact numbers are difficult to provide as they are influ-
enced by many factors [61, 62]. We expect that such
single-cell-based co-expression networks will be further
improved when the consequences of low RNA capture ef-
ficiency are overcome [63—65]. One of these consequences
is that many PCR cycles are required to generate sufficient
material for sequencing, which can result in PCR amplifi-
cation bias. To overcome this bias, unique molecular iden-
tifiers (UMIs; barcodes that tag unique RNA molecules)
are added before PCR amplification [66]. However, the
most important consequence of low RNA capture effi-
ciency is the high number of dropouts. Dropouts are
genes for which no transcript is captured, even though the
cell expressed the mRNA. Gene expression imputation
has been proposed as a solution for this problem (for a de-
tailed comparison of recent imputation algorithms see
[67]). Although several promising solutions have been de-
veloped, none have completely solved the problems sur-
rounding the sparseness of single-cell data, and this will
likely remain an area of intense study in the coming years.

Most aspects of reconstructing a co-expression net-
work will not differ between single-cell and bulk
expression data (reviewed in [33]). However, the as-
sumptions underlying bulk-based network methods
on the gene expression distribution (normal distribu-
tion) may not apply to single-cell expression data
(zero-inflated negative binomial distribution) [68].
The unique features of single-cell data may provide
opportunities to enhance the network and will
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require the development of new algorithms to take
these features into account. Ways to enhance the
network using single-cell expression data are dis-
cussed in the following sections.

Specifying the context

Gene expression networks change depending on a num-
ber of factors, including cell type [22, 24, 25], environ-
ment [26, 27], and genetic signature [29, 30], and the
influence of each of these contexts can be determined
using scRNA-seq.

The ability of scRNA-seq data to dissect complex tis-
sues and detect cell types/states in an unbiased manner
[69-71] is valuable for reconstructing cell-type-specific
co-expression networks. This kind of dissection using
scRNA-seq was recently applied to detect single-cell
eQTLs with high resolution [30, 72], which revealed that
gene regulation can differ even between cell subtypes [30].

Unbiased classification has also led to the identification of
specific cell states and combinations of transcription fac-
tors that drive cell-type-specific gene regulatory programs
[73]. This study [73] showed that networks are different
between brain cell types and that cell-type classification
using networks gives better separation than classification
based on gene expression levels alone.

Cellular heterogeneity induced by environmental pertur-
bations can also be dissected using single-cell analysis [74].
In the context of co-expression networks, Martins et al.
[75] used single-cell qRT-PCR to identify the heterogeneous
effects of cytokine stimulations on the rewiring of the net-
work in macrophages. Importantly, some of the effects on
the co-expression network they identified would have been
overlooked if they had pooled the expression of ten cells; a
demonstration of how population-level co-expression
networks cannot fully capture gene regulation at the
single-cell level.
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scRNA-seq can also be used to identify differences in-
duced by genetic variation between individuals, which
enables the reconstruction of a person-specific or per-
sonalized co-expression network. In contrast to ap-
proaches using bulk RNA-seq, it is feasible to generate
many measurements per individual with scRNA-seq,
which enables the calculation of correlations between
genes per individual [30]. These correlations can be used
to identify the relationships between genes within a per-
sonal co-expression network. This approach was applied
recently to identify relationships between genetic variants
and the modulation of co-expression in CD4" T cells.
Within a cohort of 45 individuals, genetically modulated
co-expression relationships, so-called co-expression QTLs,
were identified that could be replicated in a bulk RNA-seq
dataset of 2116 individuals. However, these relationships
would not have been detected using a genome-wide ap-
proach in bulk data only [30]. Another advantage of
scRNA-seq data is that true correlations between genes
can be identified that would otherwise be masked by the
effects of averaging in bulk RNA-seq data due to Simp-
son’s paradox [76] (Box 1).

However, a disease-specific network is not defined by
any of the above-mentioned factors (cell type, environ-
ment, or genetic signature) alone, but rather by a combin-
ation of them. Celiac disease, as an example, occurs only
in individuals who carry specific HLA genotypes (genetics)
and consume foods containing gluten (environment) [77].
Celiac disease is a well-known example of what is called a
‘genotype by environment (GxE) interaction, where an en-
vironmental perturbation is modulated by an individual’s
genetic background. Future scRNA-seq studies should ex-
pand our understanding of how genotype by environment
interactions modulate co-expression networks, for ex-
ample, by exposing cells from different individuals to vari-
ous environmental conditions.

Exploiting scRNA-seq data variability to infer directionality

Measured gene expression levels can vary considerably
between different cells even after accounting for cell
type, environment, and genotype. The intercellular bio-
logical variability in gene expression levels provides
unique insights that cannot easily be extracted from bulk
expression data. During dynamic processes, such as cell
differentiation or a response to an environmental stimu-
lus, cells will move towards another state over time.
However, the pace at which cells move into this new
state differs between cells. By exploiting the asynchron-
ous nature of these processes between cells, cells can be
computationally ordered in pseudotime based on expres-
sion similarity [78, 79]. This pseudotemporal ordering of
cells can provide temporal resolution in an experiment
that does not explicitly capture cells along a time-series.
Insights can therefore be gained using scRNA-seq data
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that would remain hidden in bulk data, while requiring
only one snapshot from a single sample (Fig. 5). At
present, there are more than 50 different methods for
pseudotemporal ordering of cells (see [80] for a recent
comparison of these methods).

Pseudotime analyses have been used to reconstruct
co-expression networks [81, 82] or small directional
GRNs [83] from single-cell data (see [33] for an overview
of current computational methods). However, the as-
sumptions required for pseudotemporal ordering of cells
are often violated in practice, which can result in incor-
rect assignment of directionality [84, 85]. The sampling
frequency inferred by these methods, for instance, de-
pends on sample size, which could be insufficient to re-
create the complete underlying process of interest.
Furthermore, several different networks may give plaus-
ible explanations for the same observed distribution of
cell states. Therefore, it is difficult to determine the cor-
rect underlying mechanism of gene regulation without
prior knowledge.

Both these issues can be resolved using a method
called RNA velocity [86], which exploits the unidirec-
tional character of splicing. RNA velocity examines the
rate of change of mRNA molecule abundances in the
cell by modeling the relationship between unspliced
mRNA (an indicator of current transcription) and
spliced mRNA (an indicator of transcription in the re-
cent past). Although 3'-end scRNA-seq data do not
cover the entire mRNA transcript, these data as well as
full-length data can be used to study RNA velocity. By
taking the RNA velocity information of all genes to-
gether, a cell’s future state can be successfully predicted
[86, 87]. Moreover, RNA velocity artificially enriches the
inferred sampling frequency and prioritizes the pseudo-
temporal order that explains the observed distribution of
cell states.

Interestingly, in the context of GRNs, combining the
information extracted from RNA abundance and RNA
velocity improves the ability to predict true targets of
transcription factors across a range of species and for ex-
perimental settings that mimic the sparseness and noisi-
ness of scRNA-seq data [88]. Moreover, a time-delay
between gene—gene interactions can be implemented to
reflect the delay in gene expression changes upon a
gene—gene interaction. This was shown to result in
greater accuracy to identify time-delayed interactions
and infer network topology [89, 90]. As such, similar to
application of time-series bulk data, we reason that caus-
ality can be inferred in GRNs using a combination of
RNA velocity and pseudotemporal ordering (Fig. 5).

Integrative approach for GRN assembly
Considering the unique features and applicability of both
bulk and scRNA-seq data for generating GRNs, we
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propose using an integrative approach to assemble
context-specific, personalized GRNs that can help move
towards improved precision medicine in the future. This
integrative approach combines the richness of bulk data
with the finer detail and unique insights obtained from
single cells (Fig. 6). Our proposed approach consists of
an interplay alternating between bulk and single-cell
data, iteratively updating GRNs with knowledge acquired
from both sources of data. This allows us to take full ad-
vantage of both technologies and recent collaborative ef-
forts, such as the Human Cell Atlas [91], the GTEx
consortium [22], and the single-cell eQTLGen consor-
tium [92]. In the following sections, we describe the
three steps of this integrative approach using the ex-
ample of hypothetical CD4" T-cell data illustrated in
Fig. 6.

Bulk-based reference co-expression network
The first step in assembling a context-specific GRN is
establishing a cell-type-specific reference network that

can be used as a baseline onto which the specific con-
texts can be projected. To create this reference network,
numerous publicly available datasets for specific cell
types made with bulk RNA-seq can be used. Public
RNA-seq repositories, such as the European Nucleotide
Archive [93] and the Sequence Read Archive [94],
already contain hundreds of bulk RNA-seq datasets from
purified cell types. Combining these datasets from differ-
ent resources requires uniform alignment, quantification,
and removal of batch effects [95], and several recent ef-
forts have combined such uniformly processed bulk
RNA-seq datasets in large repositories [96—99]. Based on
previous benchmarking studies (comparing the perform-
ance of network reconstruction approaches against a
known reference network) using both bulk and in silico
data, community-based approaches seem most suitable
for reconstructing such reference networks [100].
Although single-cell data provide a more detailed con-
text of the network, at present they do not have the sensi-
tivity of bulk data and will create an incomplete network
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From reference co-expression to causal gene regulatory
networks

Bulk gene expression data

Reference co-expression
network of thousands
of gene expression
profiles

Fine-tuning co-expression networks
based on different contexts

|

scRNA-seq data

Perturbations

* Environmental exposure
* Disease

* Genetics

Network in pathogen-
stimulated CD4* T cells

Inferring causality

Single-cell data

+ Pseudotemporal ordering and
RNA velocity

* Co-expression QTLs

@@ i@

Cell types
* Cell type specificity
* Cell subtype specificity

Network in CD4* T cells

Bulk data
* Trans-eQTLs
» Context-specific eQTLs

e

Causal gene regulatory Causal gene regulatory
network in CD4* T cellls network in pathogen-stimulated

CD4+ T cells

Specifying context

Fig. 6 Reconstruction of personalized, context-specific gene
regulatory networks through the integration of bulk and single-cell
data. We expect the richness of bulk expression data (for example,
the number of genes or transcript variants detected and the
number of datasets available for any given tissue) combined with
the context-specificity of scRNA-seq data (for example, cell type and
environmental exposure) will facilitate the generation of context-
specific co-expression networks. Finally, integrating additional data
layers, such as context-specific eQTLs and co-expression QTLs
combined with ChIP-seq data, will allow the direction of effects to
be determined. This information will enable the reconstruction of
personalized, context-specific gene regulatory networks for use in
precision medicine
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due to dropouts. The bulk reference co-expression net-
work thus serves two purposes. The first is to fill gaps in
the network where expression, and therefore any possibil-
ity of an interaction, is missing for genes. The second is to
provide additional supporting information when evidence
from single-cell expression data is insufficient to confi-
dently report the interaction between two genes. In this
scenario, comparison between the single-cell and bulk
RNA-seq reference can be used to gain additional support
for the interaction.

To successfully use a bulk-based reference network,
stable parts of the network, so-called anchor points, have
to be identified. Anchor points are parts of the network
that are shared between the reference network and the
personalized single-cell network. With the bulk-based ref-
erence network as a basis on which the single-cell data
can be projected, further context-specific connections can
be investigated.

Fine-tuning the reference co-expression network to
reflect the context

The second step in assembling the context-specific GRN
is to use scRNA-seq data to add context-specific infor-
mation to the bulk-based reference co-expression net-
work. Single-cell data enable sampling to be performed
on a whole tissue, after which individual cell types can
be dissected using the single-cell expression profiles.
This allows for the creation of cell-type-specific net-
works without the need to predefine the studied cell
types. Furthermore, for each of the identified cell types,
the effect of environmental perturbations can be studied.
To illustrate this second step, we provide a hypothetical
example in Fig. 6 of a CD4" T-cell-specific and pathogen
stimulation-perturbed network. By generating such a
network for each individual separately, the higher com-
plexity of the network can be captured.

Several single-cell-specific computational models have
been developed to generate GRNs that could be used for
this purpose [33]. Such models are required to correct for
dropouts and to take the single-cell-specific gene expres-
sion distribution into account [68, 101]. Nevertheless,
benchmarking revealed that both general bulk-based and
specific single-cell-based approaches showed poor per-
formance using experimental and in silico single-cell data
[68]. Benchmarking of these algorithms remains a chal-
lenge due to the lack of a gold standard network for com-
parison. The comparison network used at present is based
on bulk data, and consists of interactions found in a com-
bination of many cell types and contexts together resulting
in a notable difference between bulk gold standard net-
works and networks derived from single-cell data [68].
This may be because interactions found in bulk-based ref-
erence networks are not truly representative of interac-
tions found at the single-cell level.
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An experimentally validated single-cell gold standard
network will advance the development of single-cell-
specific network reconstruction algorithms. We believe
that pooled CRISPR-screens coupled with a scRNA-seq
readout, such as CROP-seq [102], CRISP-seq [103], and
PERTURB-seq [104, 105], offer the possibility to create
such a single-cell-based gold standard network. These
methods enable mapping of the downstream conse-
quences of gene perturbations on the whole transcrip-
tome level. Not only can these experimental methods be
used to create a gold standard, they can also provide in-
sights into causal gene—gene relationships.

Transitioning from associations to causal relationships

The final step in assembling the GRN is to add direction-
ality to the context-specific network to gain insight into
the putatively causal relationships between genes and to
validate them using experimental approaches. Our pro-
posed method utilizes easily accessible data to solve the
issue of directionality by integrating information from
eQTLs or pseudotemporal ordering into the network.

There are several ways in which eQTLs can be used to
gain insight into the GRN. First, they can reveal down-
stream effects of gene regulation. SNPs that have both
cis and trans effects on gene expression can be used to
uncover regulatory relationships between genes. For ex-
ample, Westra et al. [24] have shown that such SNPs
may affect the expression of a transcription factor in cis
and consequently affect the expression of many down-
stream genes in frans. For a number of these down-
stream genes supporting ChIP-seq data were found,
which suggest directionality of regulation. Second,
context-dependent eQTLs [29] and co-expression QTLs
[30] can uncover the upstream interactors of some genes
and identify parts of the network where the relationships
between genes change with genotype (Fig. 4). Altogether,
by combining cis-, trans-, and context-dependent eQTLs
or co-expression QTLs, branches of a GRN can be re-
constructed and extended with genetic information.

To put the regulatory information obtained from eQTLs
into the correct context, the cell types in which the eQTL
effects manifest have to be identified [22, 24, 25]. Identifi-
cation of trans-eQTLs and context-dependent eQTLs re-
quires enormous sample sizes in bulk expression data
(thousands of samples) to overcome a severe multiple-
testing burden [24, 29]. Such massive datasets are cur-
rently only available for whole tissues in bulk (such as
whole blood), but these do not allow identification of the
relevant cell type. Although the sample size of single-cell
datasets does not permit these analyses at the
genome-wide level, single-cell datasets can be used to de-
termine the cell type in which an eQTL effect identified
from bulk data manifests. After pinpointing the relevant
cell type, bulk multi-omics data of this specific cell type
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can be used to identify or verify the regulating mechanism
behind the context-dependent interaction. For example, a
genetic variant was shown to change enhancer—promoter
looping by affecting the affinity of a cell-type-specific tran-
scription factor [106]. By providing this kind of evidence
for the regulating mechanism, causality can be integrated
into the parts of the cell-type-specific GRN for which
eQTLs can be found.

Combining pseudotemporal ordering with RNA velocity
allows the identification of directionality between all genes,
not just eQTL genes. Identifying which genes share similar
expression patterns and the pseudotime at which they are
expressed can establish the directional relationship be-
tween these genes (Fig. 5). van Dijk et al. [107] recently
showed promising results with a comparable approach in
which imputed gene expression scRNA-seq data were or-
dered along pseudotime. Subsequently, transcription fac-
tors and potential targets that change considerably along
pseudotime were selected. In this way, they reconstructed
a large GRN consisting of 719 transcriptional regulators
and 11,126 downstream target genes. Of the predicted tar-
get genes that were tested, 92% significantly overlapped
with target genes as assessed by ATAC-seq (assay for
transposase-accessible chromatin using sequencing). This
study showed promising results to identify target genes
without experimental perturbation. However, experimental
validation is required to transition from associations to
causal relationships. Our proposed integrative approach
will help to provide focus on those regions of the network
that are of particular interest and alleviates the need to per-
form experimental validation on every possible gene,
thereby circumventing the high cost associated with testing
all combinations. Altogether, we expect that such an
integrative approach will enable the reconstruction of
well-validated context-specific, personalized GRNS.

The future of precision medicine
A major challenge in healthcare today is that the major-
ity of prescribed drugs are only effective in a small sub-
set of patients [31]. This not only leads to money lost on
ineffective drugs, but it also unnecessarily exposes pa-
tients to adverse drug side effects. Well-validated,
context-specific, personalized GRNs will be essential to
move from more traditional medicine towards precision
medicine, which will provide treatment or preventive
measures that will be effective for patients based on
their specific genetic, environmental, and lifestyle char-
acteristics (Fig. 3). In order to successfully implement
the proposed ideas, several technical and practical chal-
lenges have to be overcome (Table 1). Overcoming these
challenges will open the road for implementing GRNs
for precision medicine.

Disease-specific GRNs may provide novel insights into
disease pathogenesis and have enhanced power to
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Table 1 Challenges associated with implementation of the proposed integrative approach for precision medicine

Challenge Solution References
Technical challenges  Implementation of directionality and eQTL, context-dependent eQTL and co-expression QTL  [24, 29, 30, 86, 102-105]

causality information

Time-series data and pseudotime combined with RNA

velocity

Experimental validation using CRISPR perturbations

coupled to scRNA-seq read-out (for example, CRISP-seq,

CROP-seq, and PERTURB-seq)
Dropouts Gene expression and cross-omics imputation [67,118,119]
Amplification bias Unique molecular identifiers (UMIs) [66]
Combining single-cell data with a bulk Anchor points [120]

reference network

Practical challenges  Time and cost involved in collecting

scRNA-seq data

Droplet-based approaches in combination with
approaches that enable super-loading and pooling of

Computational methods need to be developed

[58, 59, 72, 121-124]

samples (for example, cell hashing or demuxlet)
Split-pool barcoding approaches (for example, SPLIT-
seq and combinatorial indexing)

Large throughput sequencers that enable reduction in
sequencing cost

Large-scale availability of datasets with
both genotype and scRNA-seq data

Cost involved in genotyping each
individual

Collaborative efforts (for example, single-cell eQTLGen [91, 921
consortium and Human Cell Atlas)
Genotype arrays in combination with imputation-based  [117, 125, 126]

approaches enable mapping of clinically relevant

genetic variants with high coverage for less than €100
per individual

Public perception, health regulations

General Data Protection Regulation implemented in the

[113]

EU in 2018
Genetic counselors to help with interpreting genetic

results

prioritize disease-causing genes [108]. These GRNs pro-
vide a bird’s-eye view to look beyond the disruption of
individual disease genes: each gene may have a small in-
dividual effect, but several disease genes together may
have a large additive effect when converging into a few
disrupted key regulatory pathways [109-111]. Despite
the involvement of different individual disease genes,
similar key regulatory pathways are likely to be disturbed
in several different diseases. Likewise, exposure to specific
environmental factors may disturb regulatory pathways in
a fashion comparable to specific disease-associated gen-
etic variants. These insights may provide novel links be-
tween different diseases or clues to how environmental
factors can contribute to one or more diseases, and
these new associations should provide novel directions
for treatment.

Generation of context-specific GRNs may never fully
capture the complexity of multifactorial interactions (for
example, genetic background, environmental exposures,
and disease) and the intercellular communication that in-
fluences the whole organism. Nevertheless, GRNs will be
valuable for predicting the outcome of perturbations, and
this particular function of GRNs will be useful for predict-
ing potential drug targets for disease. Tumor-specific net-
works inferred using a combination of gene expression
data and cancer-related signaling pathways have already

been successfully applied to identify oncogenes and previ-
ously identified targets of cancer treatment [112].

An integral component for disease treatment based on
a personalized GRN is to have a patient’s genotype infor-
mation available. Genotyping patients may allow doctors
to select effective drugs while preventing unnecessary
adverse effects for the patient. However, before this can
be implemented in clinical practice, a shift in both pub-
lic perception and healthcare regulations is required. For
example, updated privacy and data protection regula-
tions, such as the General Data Protection Regulation
implemented in the EU in 2018 [113], will be important
to reduce privacy concerns in the general public, as this
puts individuals in control of their own data. With these
recent developments in policy and public perception it is
becoming more likely that more people will be geno-
typed, which will help to build personalized GRNs that
can be used in precision medicine.

Conclusions and future perspectives

We have highlighted the importance of using a gene
network-based approach rather than a single-gene fo-
cused approach to gain the bird’s eye view required to
understand disease pathogenesis. As diseases arise in
highly specific contexts, context-dependent GRNs are
needed to fully understand these diseases. To build these
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context-dependent GRNs, we have proposed an integra-
tive approach of generating GRNs using both bulk and
single-cell data. We have not described the computa-
tional implementation of our approach, as this would go
beyond the scope of this article. Nevertheless, we expect
that our iterative approach is well-suited to implementa-
tion using machine learning or deep learning models
that learn from large datasets and make predictions on
likely outcomes of complex cellular systems such as
GRNs [114, 115]. This requires generating massive data-
sets for which the first steps are being taken in consortia
such as single-cell eQTLGen [92] and the Human Cell
Atlas [91]. These datasets will be instrumental for exe-
cuting our integrated approach using machine learning
algorithms. Moreover, platforms such as the Human Cell
Atlas are expected to provide more uniform guidelines
and solutions for generating, processing, and handling
large-scale scRNA-seq data. This will facilitate the com-
bining of scRNA-seq datasets as part of our integrative
approach.

As initiatives such as 23andMe [116] and the UK Biobank
[117] produce ever larger genetic datasets that could be
used to reconstruct personalized GRNs, and new initiatives
are started, the ability to accurately predict disease risk
through a combination of genotype associations and per-
sonalized GRNs will improve. However, before these per-
sonalized GRNs can be adopted in clinical practice, a
number of ethical and legal issues will have to be resolved.
Clinical guidelines, for instance, will have to be developed
so that the interpretation of the results can be guided by
trained professionals and the actionability of individual
findings has to become clear [32]. Once these issues have
been addressed, we expect that personalized, context-
dependent GRNs will accelerate the progress required to
make the next big leap in precision medicine.

Abbreviations

eQTL: Expression quantitative trait locus; GRN: Gene regulatory network;
GTEx: Genotype-Tissue Expression project; GWAS: Genome-wide association
study; GXE: Genotype by environment; scRNA-seq: Single-cell RNA-sequencing;
SNP: Single nucleotide polymorphism; UMI: Unique molecular identifier

Acknowledgements
We thank J. Senior and K. McIntyre for careful editing of the manuscript.

Funding

LF is supported by grants from the Dutch Research Council (ZonMW-VIDI
917.14.374) and a European Research Council Starting Grant, grant
agreement 637640 (ImmRisk). The funding bodies did not have any role in
the content or writing of this manuscript.

Authors’ contributions

MW and DV defined the content and wrote the manuscript. All authors
commented on and edited the text and approved the final version of the
manuscript.

Competing interests
The authors declare that they have no competing interests.

Page 12 of 15

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Published online: 19 December 2018

References

1. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10
years of GWAS discovery: biology, function, and translation. Am J Hum
Genet. 2017;101(1):5-22.

2. ShiH, Kichaev G, Pasaniuc B. Contrasting the genetic architecture of 30
complex traits from summary association data. Am J Hum Genet. 2016,99(1):
139-53.

3. Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AA, Lee SH, et al. Genetic
variance estimation with imputed variants finds negligible missing
heritability for human height and body mass index. Nat Genet. 2015;47(10):
1114-20.

4. Brodie A, Azaria JR, Ofran Y. How far from the SNP may the causative genes
be? Nucleic Acids Res. 2016;44(13):6046-54.

5. McGovern A, Schoenfelder S, Martin P, Massey J, Duffus K, Plant D, et al.
Capture hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune
genetic susceptibility region 6g23. Genome Biol. 2016;17(1):212.

6. Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, et al.
FTO obesity variant circuitry and adipocyte browning in humans. N Engl J
Med. 2015;373(10):895-907.

7. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gémez-Marin C, et al.
Obesity-associated variants within FTO form long-range functional
connections with IRX3. Nature. 2014;507(7492):371-5.

8. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, et al. Genetics
of gene expression surveyed in maize, mouse and man. Nature. 2003;
422(6929):297-302.

9. Cheung VG, Conlin LK, Weber TM, Arcaro M, Jen KY, Morley M, et al. Natural
variation in human gene expression assessed in lymphoblastoid cells. Nat
Genet. 2003;33(3):422-5.

10.  Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of
summary data from GWAS and eQTL studies predicts complex trait gene
targets. Nat Genet. 2016;48(5):481-7.

11. Schaid DJ, Chen W, Larson NB. From genome-wide associations to
candidate causal variants by statistical fine-mapping. Nat Rev Genet. 2018;
19(8):491-504.

12. ENCODE Project Consortium. An integrated encyclopedia of DNA elements
in the human genome. Nature. 2012;489(7414):57-74.

13. FANTOM Consortium and the RIKEN PMI and CLST (DGT), Forrest AR, Kawaji
H, Rehli M, Baillie JK, de Hoon MJ, et al. A promoter-level mammalian
expression atlas. Nature. 2014;507(7493):462-70.

14.  Consortium RE, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al.
Integrative analysis of 111 reference human epigenomes. Nature. 2015;
518(7539):317-30.

15.  Adams D, Altucci L, Antonarakis SE, Ballesteros J, Beck S, Bird A, et al.
BLUEPRINT to decode the epigenetic signature written in blood. Nat
Biotechnol. 2012;30(3):224-6.

16.  Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, et al. DNA
methylation patterns associate with genetic and gene expression variation
in HapMap cell lines. Genome Biol. 2011;12(1):R10.

17. McVicker G, van de Geijn B, Degner JF, Cain CE, Banovich NE, Raj A, et al.
Identification of genetic variants that affect histone modifications in human
cells. Science. 2013;342(6159):747-9.

18.  Kasowski M, Grubert F, Heffelfinger C, Hariharan M, Asabere A, Waszak SM,
et al. Variation in transcription factor binding among humans. Science. 2010;
328(5975):232-5.

19.  Degner JF, Pai AA, Pique-Regi R, Veyrieras JB, Gaffney DJ, Pickrell JK, et al.
DNase | sensitivity QTLs are a major determinant of human expression
variation. Nature. 2012;482(7385):390-4.

20. Pai AA, Cain CE, Mizrahi-Man O, De Leon S, Lewellen N, Veyrieras JB, et al.
The contribution of RNA decay quantitative trait loci to inter-individual
variation in steady-state gene expression levels. PLoS Genet. 2012;8(10):
e1003000.

21, Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, et al.
Understanding mechanisms underlying human gene expression variation
with RNA sequencing. Nature. 2010;464(7289):768-72.



Wijst et al. Genome Medicine

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44,

45,

46.

(2018) 10:96

GTEx Consortium, Laboratory, Data Analysis & Coordinating Center (LDACC)-
Analysis Working Group, Statistical Methods groups-Analysis Working Group,
Enhancing GTEx (eGTEx) groups, NIH Common Fund, NIH/NC|, et al. Genetic
effects on gene expression across human tissues. Nature. 2017,550(7675):
204-13.

Gamazon ER, Segre AV, van de Bunt M, Wen X, Xi HS, Hormozdiari F, et al.
Using an atlas of gene regulation across 44 human tissues to inform
complex disease- and trait-associated variation. Nat Genet. 2018,50(7):956-67.
Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al.
Systematic identification of trans eQTLs as putative drivers of known disease
associations. Nat Genet. 2013;45(10):1238-43.

Battle A, Mostafavi S, Zhu X, Potash JB, Weissman MM, McCormick C, et al.
Characterizing the genetic basis of transcriptome diversity through RNA-
sequencing of 922 individuals. Genome Res. 2014;24(1):14-24.

Knowles DA, Davis JR, Edgington H, Raj A, Fave MJ, Zhu X, et al. Allele-
specific expression reveals interactions between genetic variation and
environment. Nat Methods. 2017;14(7):699-702.

Favé MJ, Lamaze FC, Soave D, Hodgkinson A, Gauvin H, Bruat V, et al. Gene-
by-environment interactions in urban populations modulate risk
phenotypes. Nat Commun. 2018,9(1):827.

Fagny M, Paulson JN, Kuijjer ML, Sonawane AR, Chen CY, Lopes-Ramos CM,
et al. Exploring regulation in tissues with eQTL networks. Proc Natl Acad Sci
U S A 2017;114(37):E7841-50.

Zhernakova DV, Deelen P, Vermaat M, van Iterson M, van Galen M,
Arindrarto W, et al. Identification of context-dependent expression
quantitative trait loci in whole blood. Nat Genet. 2017;49(1):139-45.

van der Wijst MGP, Brugge H, de Vries DH, Deelen P, Swertz MA, Franke L.
Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-
expression QTLs. Nat Genet. 2018;50(4):493-7.

Schork NJ. Personalized medicine: time for one-person trials. Nature. 2015;
520(7549):609-11.

Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev
Genet. 2018;19(5):299-310.

Fiers MWEJ, Minnoye L, Aibar S, Bravo Gonzélez-Blas C, Kalender Atak Z,
Aerts S. Mapping gene regulatory networks from single-cell omics data.
Brief Funct Genomics. 2018;17(4):246-54.

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 1999,27(1):29-34.
Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al.
The reactome pathway knowledgebase. Nucleic Acids Res. 2018:46(D1):
D649-55.

van Dam S, Vésa U, van der Graaf A, Franke L, de Magalhées JP. Gene co-
expression analysis for functional classification and gene-disease predictions.
Brief Bioinform. 2018;19(4):575-92.

Wang YX, Huang H. Review on statistical methods for gene network
reconstruction using expression data. J Theor Biol. 2014;362:53-61.

Zhang B, Horvath S. A general framework for weighted gene co-expression
network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17.

Pers TH, Karjalainen JM, Chan Y, Westra HJ, Wood AR, Yang J, et al.
Biological interpretation of genome-wide association studies using
predicted gene functions. Nat Commun. 2015;6:5890.

Saelens W, Cannoodt R, Saeys Y. A comprehensive evaluation of module
detection methods for gene expression data. Nat Commun. 2018;9(1):1090.
Shim U, Kim HN, Lee H, Oh JY, Sung YA, Kim HL. Pathway analysis based on
a genome-wide association study of polycystic ovary syndrome. PLoS One.
2015;10(8):0136609.

Raychaudhuri S, Plenge RM, Rossin EJ, Ng AC, International Schizophrenia
Consortium, Purcell SM, et al. Identifying relationships among genomic
disease regions: predicting genes at pathogenic SNP associations and rare
deletions. PLoS Genet. 2009;5(6):¢1000534.

Segre AV, DIAGRAM Consortium, MAGIC investigators, Groop L, Mootha VK,
Daly MJ, et al. Common inherited variation in mitochondrial genes is not
enriched for associations with type 2 diabetes or related glycemic traits.
PLoS Genet. 2010;6(8). https://doi.org/10.1371/journal.pgen.1001058.
Sanchez-Castillo M, Blanco D, Tienda-Luna IM, Carrion MC, Huang Y. A
Bayesian framework for the inference of gene regulatory networks from
time and pseudo-time series data. Bioinformatics. 2018;34(6):964-70.

Sima C, Hua J, Jung S. Inference of gene regulatory networks using time-
series data: a survey. Curr Genomics. 2009;10(6):416-29.

Pe'er D, Regev A, Elidan G, Friedman N. Inferring subnetworks from
perturbed expression profiles. Bioinformatics. 2001;17(Suppl 1):5215-24.

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Page 13 of 15

Whittaker ET. XVII.—On the functions which are represented by the
expansions of the interpolation-theory. Proc R Soc Edinburgh. 1915;35:
181-94.

Shannon CE. A mathematical theory of communication. Bell System
Technical J. 1948;27(3):379-423.

Bar-Joseph Z. Analyzing time series gene expression data. Bioinformatics.
2004;20(16):2493-503.

Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, et al.
Identification of genes periodically expressed in the human cell cycle and
their expression in tumors. Mol Biol Cell. 2002;13(6):1977-2000.

Tasaki S, Sauerwine B, Hoff B, Toyoshiba H, Gaiteri C, Chaibub NE. Bayesian
network reconstruction using systems genetics data: comparison of MCMC
methods. Genetics. 2015;199(4):973-89.

Liao W, Ji Q. Learning Bayesian network parameters under incomplete data
with domain knowledge. Pattern Recogn. 2009;42(11):3046-56.

Feelders A, van der Gaag LC. Learning Bayesian network parameters with
prior knowledge about context-specific qualitative influences. In: Bacchus F,
Jaakkola T, editors. Proceedings of the twenty-first conference on
uncertainty in artificial intelligence (UAI). Arlington, Virginia: AUAI Press;
2005. p. 193-200.

Marbach D, Lamparter D, Quon G, Kellis M, Kutalik Z, Bergmann S. Tissue-
specific regulatory circuits reveal variable modular perturbations across
complex diseases. Nat Methods. 2016;13(4):366-70.

Saha A, Kim Y, Gewirtz ADH, Jo B, Gao C, McDowell IC, et al. Co-expression
networks reveal the tissue-specific regulation of transcription and splicing.
Genome Res. 2017;27(11):1843-58.

Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS,

et al. Understanding muilticellular function and disease with human tissue-
specific networks. Nat Genet. 2015;47(6):569-76.

Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq
whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377-82.
Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, et al.
Single-cell profiling of the developing mouse brain and spinal cord with
split-pool barcoding. Science. 2018;360(6385):176-82.

Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al.
Massively parallel digital transcriptional profiling of single cells. Nat
Commun. 2017;8:14049.

Herbach U, Bonnaffoux A, Espinasse T, Gandrillon O. Inferring gene
regulatory networks from single-cell data: a mechanistic approach. BMC Syst
Biol. 2017;11(1):105.

Chan TE, Stumpf MPH, Babtie AC. Gene regulatory network inference from
single-cell data using multivariate information measures. Cell Syst. 2017;5(3):
251-67.3.

Bartlett TE, Mller S, Diaz A. Single-cell co-expression subnetwork analysis.
Sci Rep. 2017;7(1):15066.

Svensson V, Natarajan KN, Ly LH, Miragaia RJ, Labalette C, Macaulay IC, et al.
Power analysis of single-cell RNA-sequencing experiments. Nat Methods.
2017;14(4):381-7.

Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G,
Juréus A, et al. Brain structure. Cell types in the mouse cortex and
hippocampus revealed by single-cell RNA-seq. Science. 2015;347(6226):
1138-42.

Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, et al.
From single-cell to cell-pool transcriptomes: stochasticity in gene expression
and RNA splicing. Genome Res. 2014;24(3):496-510.

Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative
single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014;
11(2):163-6.

Zhang L, Zhang S. Comparison of computational methods for imputing
single-cell RNA-sequencing data. IEEE/ACM Trans Comput Biol Bioinform.
2018. https://doi.org/10.1109/TCBB.2018.2848633.

Chen S, Mar JC. Evaluating methods of inferring gene regulatory networks
highlights their lack of performance for single cell gene expression data.
BMC Bioinformatics. 2018;19(1):232.

Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al.
Single-cell RNA-seq reveals new types of human blood dendritic cells,
monocytes, and progenitors. Science. 2017;356(6335). https://doi.org/10.
1126/science.aah4573.

Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky |, et al.
Massively parallel single-cell RNA-seq for marker-free decomposition of
tissues into cell types. Science. 2014;343(6172):776-9.


https://doi.org/10.1371/journal.pgen.1001058
https://doi.org/10.1109/TCBB.2018.2848633
https://doi.org/10.1126/science.aah4573
https://doi.org/10.1126/science.aah4573

Wijst et al. Genome Medicine

71.

72.

73.

74.

75.

76.
77.
78.

79.

80.

81.

82.

83.

84.

85.
86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

(2018) 10:96

Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al.
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-
sequencing data reveals hidden subpopulations of cells. Nat Biotechnol.
2015;33(2):155-60.

Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E,

et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic
variation. Nat Biotechnol. 2017;36(1):89-94.

Aibar S, Gonzélez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H,
Hulselmans G, et al. SCENIC: single-cell regulatory network inference and
clustering. Nat Methods. 2017;14(11):1083-6.

Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species.
Nat Biotechnol. 2018;36(5):411-20.

Martins AJ, Narayanan M, Pristel T, Fixsen B, Park K, Gottschalk RA, et al.
Environment tunes propagation of cell-to-cell variation in the human
macrophage gene network. Cell Syst. 2017,4(4):379-92.e12.

Simpson EH. The interpretation of interaction in contingency tables. J R Stat
Soc Series B Methodol. 1951;13(2):238-41.

Sollid LM, Jabri B. Triggers and drivers of autoimmunity: lessons from
coeliac disease. Nat Rev Immunol. 2013;13(4):294-302.

Ji Z, Ji H. TSCAN: pseudo-time reconstruction and evaluation in single-cell
RNA-seq analysis. Nucleic Acids Res. 2016;44(13):e117.

Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The
dynamics and regulators of cell fate decisions are revealed by
pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381-6.
Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell
trajectory inference methods: towards more accurate and robust tools.
bioRxiv. 2018; https://doi.org/10.1101/276907.

Specht AT, Li J. LEAP: constructing gene co-expression networks for single-
cell RNA-sequencing data using pseudotime ordering. Bioinformatics. 2017;
33(5):764-6.

Hamey FK, Nestorowa S, Kinston SJ, Kent DG, Wilson NK, Gottgens B.
Reconstructing blood stem cell regulatory network models from single-cell
molecular profiles. Proc Natl Acad Sci U S A. 2017;114(23):5822-9.

Ocone A, Haghverdi L, Mueller NS, Theis FJ. Reconstructing gene regulatory
dynamics from high-dimensional single-cell snapshot data. Bioinformatics.
2015;31(12):i89-96.

Weinreb C, Wolock S, Tusi BK, Socolovsky M, Klein AM. Fundamental limits
on dynamic inference from single-cell snapshots. Proc Natl Acad Sci U S A.
2018;115(10):E2467-76.

Rashid S, Kotton DN, Bar-Joseph Z. TASIC: determining branching models
from time series single cell data. Bioinformatics. 2017;33(16):2504-12.

La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, et al.
RNA velocity of single cells. Nature. 2018;560(7719):494-8.

Plass M, Solana J, Wolf FA, Ayoub S, Misios A, Glazar P, et al. Cell type atlas
and lineage tree of a whole complex animal by single-cell transcriptomics.
Science. 2018. https.//doi.org/10.1126/science.aaq1723.

Desai JS, Sartor RC, Lawas LM, Jagadish SVK, Doherty CJ. Improving gene
regulatory network inference by incorporating rates of transcriptional
changes. Sci Rep. 2017;7(1):17244.

Finkle JD, Wu JJ, Bagheri N. Windowed granger causal inference strategy
improves discovery of gene regulatory networks. Proc Natl Acad Sci U S A.
2018;115(9):2252-7.

Schmitt WA Jr, Raab RM, Stephanopoulos G. Elucidation of gene interaction
networks through time-lagged correlation analysis of transcriptional data.
Genome Res. 2004;14(8):1654-63.

Regev A, Teichmann SA, Lander ES, Amit |, Benoist C, Birney E, et al. The
human cell atlas. elife. 2017;6. https://doi.org/10.7554/eLife.27041.
Single-cell eQTLGen. http://eqtigen.org/single-cell. Accessed 16 Nov 2018.
Silvester N, Alako B, Amid C, Cerdeno-Tarrdga A, Clarke L, Cleland |, et al.
The European nucleotide archive in 2017. Nucleic Acids Res. 2018:46(D1):
D36-40.

Leinonen R, Sugawara H, Shumway M. International Nucleotide Sequence
Database Collaboration The sequence read archive. Nucleic Acids Res. 2011;
39.D19-21.

Wang Q, Armenia J, Zhang C, Penson AV, Reznik E, Zhang L, et al. Unifying
cancer and normal RNA sequencing data from different sources. Sci Data.
2018;5:180061.

Li JR, Sun CH, Li W, Chao RF, Huang CC, Zhou XJ, et al. Cancer RNA-Seq
Nexus: a database of phenotype-specific transcriptome profiling in cancer
cells. Nucleic Acids Res. 2016;44(D1):D0944-51.

97.

98.

99.

100.

102.

103.

105.

106.

108.

110.

111

114.

115.

118.

Page 14 of 15

Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Toil
enables reproducible, open source, big biomedical data analyses. Nat
Biotechnol. 2017;35(4):314-6.

Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, et al.
Reproducible RNA-seq analysis using recount2. Nat Biotechnol. 2017;35(4):
319-21.

Lachmann A, Torre D, Keenan AB, Jagodnik KM, Lee HJ, Wang L, et al.
Massive mining of publicly available RNA-seq data from human and mouse.
Nat Commun. 2018;9(1):1366.

Marbach D, Costello JC, Kiffner R, Vega NM, Prill RJ, Camacho DM, et al.
Wisdom of crowds for robust gene network inference. Nat Methods. 2012;
9(8):796-804.

. Ghazanfar S, Bisogni AJ, Ormerod JT, Lin DM, Yang JY. Integrated single cell

data analysis reveals cell specific networks and novel coactivation markers.
BMC Syst Biol. 2016;10(Suppl 5):127.

Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P, Klughammer J,
et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat
Methods. 2017;14(3):297-301.

Jaitin DA, Weiner A, Yofe |, Lara-Astiaso D, Keren-Shaul H, David E, et al.
Dissecting immune circuits by linking CRISPR-pooled screens with single-
cell RNA-seq. Cell. 2016;167(7):1883-96.e15.

. Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, et al. Perturb-Seq;

dissecting molecular circuits with scalable single-cell RNA profiling of
pooled genetic screens. Cell. 2016;167(7):1853-66.17.

Adamson B, Norman TM, Jost M, Cho MY, Nufiez JK, Chen Y, et al. A
multiplexed single-cell CRISPR Screening platform enables systematic
dissection of the unfolded protein response. Cell. 2016;167(7):1867-82.21.
Weintraub AS, Li CH, Zamudio AV, Sigova AA, Hannett NM, Day DS, et al.
YY1 is a structural regulator of enhancer-promoter loops. Cell. 2017;171(7):
1573-88.e28.

. van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, et al. Recovering

gene interactions from single-cell data using data diffusion. Cell. 2018;
174(3):716-29.€27.

Gao L, Uzun Y, Gao P, He B, Ma X, Wang J, et al. Identifying noncoding risk
variants using disease-relevant gene regulatory networks. Nat Commun.
2018;9(1):702.

. Menche J, Guney E, Sharma A, Branigan PJ, Loza MJ, Baribaud F, et al.

Integrating personalized gene expression profiles into predictive disease-
associated gene pools. NPJ Syst Biol Appl. 2017;3:10.

Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, et al.
Disease networks. Uncovering disease-disease relationships through the
incomplete interactome. Science. 2015;347(6224):1257601.

Chatterjee S, Kapoor A, Akiyama JA, Auer DR, Lee D, Gabriel S, et al.
Enhancer variants synergistically drive dysfunction of a gene regulatory
network in Hirschsprung disease. Cell. 2016;167(2):355-68.e10.

. Peng Q, Schork NJ. Utility of network integrity methods in therapeutic

target identification. Front Genet. 2014;5:12. https://doi.org/10.3389/fgene.
2014.00012.

. European Union. Regulation (EU) 2016/679 of the European Parliament and

of the council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of
such data, and repealing directive 95/46/EC (general data protection
regulation). Official J Eur Union. 2016,L119:1-88.

Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-generation
machine learning for biological networks. Cell. 2018;173(7):1581-92.

Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP,

et al. Opportunities and obstacles for deep learning in biology and medicine. J
R Soc Interface. 2018;15(141). https//doi.org/10.1098/rsif.2017.0387.

. Stoeklé HC, Mamzer-Bruneel MF, Vogt G, Hervé C. 23andMe: a new two-

sided data-banking market model. BMC Med Ethics. 2016;17:19. https//doi.
0rg/10.1186/512910-016-0101-9.

. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. Genome-

wide genetic data on ~500,000 UK Biobank participants. bioRxiv. 2017; doi:
https://doi.org/10.1101/166298.

Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN, Aryee MJ, et al.
Integrated single-cell analysis maps the continuous regulatory landscape of
human hematopoietic differentiation. Cell. 2018;173(6):1535-48.e16.

. Welch JD, Hartemink AJ, Prins JF. MATCHER: manifold alignment reveals

correspondence between single cell transcriptome and epigenome
dynamics. Genome Biol. 2017;18(1):138. https://doi.org/10.1186/513059-017-
1269-0.


https://doi.org/10.1101/276907
https://doi.org/10.1126/science.aaq1723
https://doi.org/10.7554/eLife.27041
http://eqtlgen.org/single-cell
https://doi.org/10.3389/fgene.2014.00012
https://doi.org/10.3389/fgene.2014.00012
https://doi.org/10.1098/rsif.2017.0387
https://doi.org/10.1186/s12910-016-0101-9
https://doi.org/10.1186/s12910-016-0101-9
https://doi.org/10.1101/166298
https://doi.org/10.1186/s13059-017-1269-0
https://doi.org/10.1186/s13059-017-1269-0

Wijst et al. Genome Medicine (2018) 10:96 Page 15 of 15

120. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al.
Comprehensive integration of single cell data. bioRxiv. 2018; https://doi.org/
10.1101/460147.

121. Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, et al.
Comprehensive single-cell transcriptional profiling of a multicellular
organism. Science. 2017;357(6352):661-7.

122. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay
PK, Swerdlow H, et al. Simultaneous epitope and transcriptome
measurement in single cells. Nat Methods. 2017;14(9):865-8.

123. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly
parallel genome-wide expression profiling of individual cells using nanoliter
droplets. Cell. 2015;161(5):1202-14.

124. Stoeckius M, Zheng S, Houck-Loomis B, Hao S, Yeung B, Smibert P, et al.
Cell "hashing” with barcoded antibodies enables multiplexing and doublet
detection for single cell genomics. bioRxiv. 2017; doi: https://doi.org/10.
1101/237693.

125. lllumina. Infinium global screening array-24 kit (1152 samples). https.//www.
illumina.com/products/by-type/microarray-kits/infinium-global-screening.
html. Accessed 3 Dec 2018.

126. Marchini J, Howie B. Genotype imputation for genome-wide association
studies. Nat Rev Genet. 2010;11(7):499-511.


https://doi.org/10.1101/460147
https://doi.org/10.1101/460147
https://doi.org/10.1101/237693
https://doi.org/10.1101/237693
https://www.illumina.com/products/by-type/microarray-kits/infinium-global-screening.html
https://www.illumina.com/products/by-type/microarray-kits/infinium-global-screening.html
https://www.illumina.com/products/by-type/microarray-kits/infinium-global-screening.html

	Abstract
	Background
	Gene networks in bulk data
	Implementing directionality in the gene network

	Improving networks with single-cell data
	Specifying the context
	Exploiting scRNA-seq data variability to infer directionality

	Integrative approach for GRN assembly
	Bulk-based reference co-expression network
	Fine-tuning the reference co-expression network to reflect the context
	Transitioning from associations to causal relationships

	The future of precision medicine
	Conclusions and future perspectives
	Abbreviations
	Acknowledgements
	Funding
	Authors’ contributions
	Competing interests
	Publisher’s Note
	References

