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Abstract

Background: Links between colorectal cancer (CRC) and the gut microbiome have been established, but the specific
microbial species and their role in carcinogenesis remain an active area of inquiry. Our understanding would be
enhanced by better accounting for tumor subtype, microbial community interactions, metabolism, and ecology.

Methods: We collected paired colon tumor and normal-adjacent tissue and mucosa samples from 83 individuals who
underwent partial or total colectomies for CRC. Mismatch repair (MMR) status was determined in each tumor sample
and classified as either deficient MMR (dMMR) or proficient MMR (pMMR) tumor subtypes. Samples underwent 165
rRNA gene sequencing and a subset of samples from 50 individuals were submitted for targeted metabolomic analysis
to quantify amino acids and short-chain fatty acids. A PERMANOVA was used to identify the biological variables that
explained variance within the microbial communities. dAMMR and pMMR microbial communities were then analyzed
separately using a generalized linear mixed effects model that accounted for MMR status, sample location, intra-subject
variability, and read depth. Genome-scale metabolic models were then used to generate microbial interaction networks
for dAMMR and pMMR microbial communities. We assessed global network properties as well as the metabolic influence
of each microbe within the dMMR and pMMR networks.

Results: We demonstrate distinct roles for microbes in dMMR and pMMR CRC. Bacteroides fragilis and sulfidogenic
Fusobacterium nucleatum were significantly enriched in dMMR CRC, but not pMMR CRC. These findings were further
supported by metabolic modeling and metabolomics indicating suppression of B. fragilis in pMMR CRC and increased
production of amino acid proxies for hydrogen sulfide in dMMR CRC.

Conclusions: Integrating tumor biology and microbial ecology highlighted distinct microbial, metabolic, and ecological
properties unique to dMMR and pMMR CRC. This approach could critically improve our ability to define, predict, prevent,
and treat colorectal cancers.
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Background

The gut microbiota has been linked to colorectal cancer
(CRC) in many studies [1-9] and serves as a very promising
target for diagnostic, prophylactic, and therapeutic applica-
tions. Yet, despite intense study, only a few microbial
species—like Fusobacterium species—are consistently ob-
served across studies [10—14], while many microbial associ-
ations appear to be cohort-specific. Meta-analyses have
attempted to overcome the limited statistical power of
smaller studies [15] but are limited by the strong biases in-
troduced through varying collection, sequencing, and data
processing methodologies [16]. Mechanistic studies in
mouse models have identified strong causative links be-
tween specific microbes (e.g., Fusobacterium nucleatum,
Bacteroides fragilis) and CRC development and progression
[11, 17-24], but these models have limited applicability in
genetically diverse human populations. Capturing some of
this genetic diversity, on the other hand, may improve our
ability to discriminate tumor and normal microbial com-
munities and more clearly define pathways to CRC.

One genetic subtype of CRC is based on the presence or
absence of mutations in the DNA mismatch repair system.
This system involves multiple protein complexes that
recognize, remove, and correct mismatched DNA base
pairs. Mutations in these protein complexes can render the
mismatch repair system defunct—allowing mutations to
accumulate. This hypermutable subtype is known as
deficient mismatch repair (AIMMR) and occurs in approxi-
mately 15% of sporadic CRCs [25]. CRCs that do not ex-
hibit mutations in the mismatch repair system are known
as proficient mismatch repair (pMMR) CRCs [26]. In gen-
era, dIMMR CRCs are microsatellite instable (MSI-H),
hypermethylated, and associated with BRAF V60OE muta-
tions and low nuclear beta-catenin expression, whereas
pPMMR CRCs are more commonly microsatellite stable
(MSS) and associated with KRAS mutations [27, 28]. Clin-
ically, MMR status is associated with patient prognosis and
age, as well as tumor location and stage: Specifically,
dMMR CRCs have a better prognosis and occur more
often on the right side of the colon in older patients with
early-stage CRC [26]. Finally, d(MMR and pMMR CRC not
only have different endpoints, but may also have different
paths to tumorigenesis [29] as supported by emerging
evidence that dAMMR CRC arises from sessile serrated
adenomas [30] as opposed to the more classic tubular
adenoma associated with pMMR CRC [30].

The distinct phenotype of dMMR CRC suggests that
host—and possibly also microbial—dynamics are greatly
altered in association with deficient mismatch repair.
Previous work has examined the role of other differenti-
ating factors in the CRC microbiome including location
[31], MSS/MSI status [12], and consensus molecular
subtypes [32]. However few CRC microbiome studies ac-
count for MMR status [32-34] or microbial dynamics
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[35], and no studies, to our knowledge, have assessed
both MMR status and microbial community dynamics.
In addition, our study examines demographic, genetic,
and tumor features together in a relatively large pro-
spectively collected cohort.

Here, we undertook a new approach in a study involving
83 patients who underwent partial or total colectomy for
CRC. From each patient, we collected colon tissue and mu-
cosal samples at tumor and normal-adjacent sites. MMR
status was extracted from patient records or determined by
testing formalin-fixed paraffin-embedded tumor tissue for
the expression of four MMR proteins (MLH1, MSH2,
MSHS6, PMS2). From this, patient tumors were character-
ized as either deficient (AMMR) or proficient (pMMR)
mismatch repair. Microbial composition was assessed via
16S rRNA gene sequencing. A subset of colon tissue sam-
ples additionally underwent targeted metabolomic analysis
to quantify amino acids. A portion of these data was pub-
lished previously [35] in a study that highlighted the value
of integrating in silico genome-scale metabolic model
predictions and in vivo experimental metabolomic data.

From these data, we assessed the relative importance of
MMR status compared to other biological factors reported
to alter the microbiome [36]. MMR status was the stron-
gest predictor of microbial community variance in com-
parison to sample location (proximal/distal and on/off
tumor), body mass index (BMI), age, and sex. Separate
analyses of the IMMR and pMMR microbial communities
revealed that many common CRC-associated microbial
signatures [15]—including Fusobacterium nucleatum,
Fusobacterium periodonticum, and Bacteroides fragilis—
were all enriched in dMMR but not pMMR tumors. Func-
tional differences were examined using a combination of
metabolomics and community metabolic modeling. Our
results indicate greater hydrogen sulfide production (in-
ferred through amino acid proxies) in dMMR CRC and
greater metabolic suppression of B. fiagilis in pMMR
CRC. Our work demonstrates distinct microbial, meta-
bolic, and ecological attributes of dAMMR and pMMR mi-
crobial communities, serving to further emphasize the
importance of considering tumor biology and microbial
interactions in studies of the CRC microbiome.

Methods

Human subject enrollment

Adults (older than 18 years old) who were determined to
be candidates for colorectal cancer surgery were voluntarily
enrolled at Mayo Clinic in Rochester, Minnesota. Exclusion
criteria included chemotherapy or radiation in the 2 weeks
leading up to enrollment. Total or partial colectomies were
performed on every patient, and colon tissue and mucosal
samples were collected from tumor and normal-adjacent
sites. Sample location was defined as follows: “proximal”
samples were derived from the cecum and ascending colon.
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“Distal” samples were derived from the transverse,
descending, or sigmoid colon, or rectum. MMR status was
determined in 83 patients: 25 had dMMR CRC and 58 had
pPMMR CRC (Table 1). We used univariable logistic regres-
sion (R v3.1.2) to compare demographic (age, sex, BMI,
smoking history) and tumor features (location and stage)
between dAMMR and pMMR groups.

MMR status determination

Mismatch repair (MMR) pathway and microsatellite
instability (MSI) test results were extracted from patient
records if available. For patients without MMR test
results, banked formalin-fixed paraffin-embedded colon
tumor tissue blocks were submitted to the Mayo Clinic
Pathology Resource Core for sectioning into 10-pm-thick
slices. Slices were then submitted to the Mayo Clinic Mo-
lecular Genetics Laboratory for immunohistochemistry
staining of MMR proteins (MLH1, PMS2, MSH2, MSH6).

16S DNA extraction, sequencing, and sequence
processing

DNA extraction [37] and library preparation on colon
tissue (tumor and normal-adjacent) and mucosa were per-
formed as described previously in the Mayo Clinic Micro-
biome Laboratory [35]. Samples were submitted for 16S
rRNA gene sequencing (V3—-V5 region) at the Mayo Clinic
Medical Genomics Facility (Ilumina MiSeq, 2 x 300, 600 cy-
cles, Illumina Inc.). Sequencing yielded a total of 41,400,384
reads with a median of 70,208 reads per sample. Reads

Table 1 Demographic and tumor features of individuals
identified as having dMMR or pMMR CRC

dMMR pPMMR p value
Sex, n (%)
Male 10 (40) 34 (59) 0.122
Female 15 (60) 24 (41)
Age, years
Mean (SD) 74 (18) 63 (13) 0.002
Range 23-95 33-90
BMI (SD) 27 (5) 29 (8) 0.273
Smoke ever? n (%)
Yes 13 (52) 28 (48) 0.982
No 12 (48) 30 (52)
Tumor location, n (%)
Proximal colon 18 (72) 14 (24) p <0.0001 between
Distal colon 7.29) 43 (74) proximal and distal
Both 0 1(3)
Stage, n (%)
Early (1-2) 18 (72) 22 (38) 0.0007 between
Late (3-4) 4(16) 337  vendlate
Stage unknown 3(12) 3 (5
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were processed using DADA2 v1.6 to obtain error-cor-
rected amplicon sequence variant representatives—analo-
gous to operational taxonomic units with single-nucleotide
resolution (sOTUs) [38]. sOTUs were annotated with
genus-level taxonomy using the RDP Naive Bayesian Clas-
sifier [39] as implemented in DADA?2 and, if possible, to
species level using DADA?2, both against the SILVA 16S
database, v132 [40]. sOTUs annotated as chloroplast and
mitochondria were removed. Resulting sOTUs were filtered
for possible non-specific amplification using SortMeRNA
v2.0 [41] and Infernal v1.1.2 [42]. sOTUs with fewer than
10 reads across all samples were excluded. Multiple
sequence alignment of the sOTUs was performed using In-
fernal v1.1.2 [42], and an approximate Maximum Likeli-
hood phylogeny was calculated using FastTree v2.1.9 [43].

Statistical analyses of 16S rRNA microbial community data
UniFrac distance matrices [44] based on the microbial
communities in all samples were generated using the
phyloseq [45] package v1.22.3. A permutational multi-
variate analysis of variance (PERMANOVA) was then
performed on the distance matrix to assess the effects of
MMR status and sample location (proximal/distal and
on/off tumor) on variance between microbial communi-
ties. The PERMANOVA additionally accounted for
subject age, sex, BMI, and sample type (mucosa versus
colon tissue) and was performed based on the adonis
function in the vegan [46] package v2.5-1, with 999
permutations. Different permutation schemes were used
to maintain the original correlation structure when
testing the significance of relevant variables.

A generalized linear mixed model (GLMM) [47] was
calculated for each sOTU to estimate its abundance (read
counts) in relation to predictors that included MMR status
and sample location (proximal/distal and on/off tumor).
Models were corrected for subject intervariability, speci-
men type (mucosal vs tissue biopsy), and sequencing read
depth, allowing for interactions. We used the package
glmmTMB [48] v0.1.4 to estimate the abundance of each
microbe under a zero-inflated Poisson distribution. For
each predictor, sOTUs were excluded where the method
did not converge or the Akaike Information Criterion
(AIC) for model quality was not defined. Multiple hypoth-
esis correction was calculated using the Benjamini—Hoch-
berg procedure.

Validation of differentially abundant microbes using an
independent cohort

To validate the differentially abundant microbes associ-
ated with AMMR status, we investigated data from a re-
cent study that included microbiome profiling in tumor
and matched normal tissue samples in 44 CRC patients
[49]. Individuals with microsatellite instable (MSI-H) tu-
mors or downregulation of any of the 4 MMR genes
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(MLH1, MSH2, MSH6 and PMS2)—as assessed using
RNA-Seq—were categorized as dAMMR. A cutoff of log2(-
normal/tumor) > 1 was used to call a gene as downregu-
lated in tumor. Individuals with microsatellite stable
(MSS) tumors were categorized as pMMR. Altogether, we
identified 9/44 patients as dMMR and the remaining 35/
44 as pMMR. Using the 16S rRNA gene to characterize
these samples (as described in detail in [49]), we identified
sOTUs associated with dAMMR tumor/normal and pMMR
tumor/normal conditions. We first filtered rare sOTUs,
only preserving sOTUs found in at least 50% of our sam-
ples, and then performed differential abundance analysis
using phyloseq [45] (which uses DESeq2 to build negative
binomial generalized linear models). We used the Benja-
mini—Hochberg method to control for the false discovery
rate (FDR).

Real-time PCR for the Bacteroides fragilis toxin gene
Real-time PCR was performed as described previously [35]
to test colon tissue and mucosal samples for the presence
of the Bacteroides fragilis toxin (BFT) genes in the 22
dMMR individuals and 53 pMMR individuals. Primers in-
cluded: BFT-F (5'-GGATAAGCGTACTAAAATACAGCT
GGAT-3"), BFT-R (5'-CTGCGAACTCATCTCCCAGTAT
AAA-3’), and the probe (5'-FAM-CAGACGGACATTCT
C-NFQ-MGB-3") [19].

Modeling microbial hydrogen sulfide production

We predicted hydrogen sulfide production within dAMMR
and pMMR tumor and normal-associated microbial com-
munities as described previously [35]. Briefly, we aligned
16S rRNA gene sequences for AMMR tumor and normal
samples (colon tissue and mucosa) and pMMR tumor and
normal samples against complete genomes in PATRIC
and then generated genome-scale metabolic models of
each microbe (Additional file 1: Table S1). Genome-scale
metabolic models use gene annotations from a microbial
genome to predict the metabolic inputs and outputs of
that microbe. To predict how a microbe might interact
within a community, we used MICOM, an open-source
platform to assess microbial community metabolism
(https://github.com/resendislab/micom). Specifically, we
used flux balance analysis with MICOM’s community
growth objective and constraint formulation in order to
evaluate hydrogen sulfide flux as a measure of hydrogen
sulfide production within each microbial community.

Microbial influence network

To select sOTUs for the Microbial Influence Networks
(MINs), we used GLMM results to choose tumor and
normal-associated microbes in dAMMR and pMMR sam-
ples with a linear effect size greater than 0.25, regardless
of statistical significance. Effect size captures biological
impact potential while significance measures certainty.
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In this case, we wanted to assess the metabolic influence
(i.e., biological impact) of microbes in relation to their
respective microbial communities; as such, it was more
appropriate to filter by effect size. For each sOTU, the 16S
rRNA gene consensus sequence was aligned against
complete genome in the PATRIC system using VSEARCH
v2.7.1, with a minimum nucleotide identity of 90%. When
this procedure generated multiple top hits, we selected a
genome, in order, to the most complete genome (fewer
contigs), a type strain, a strain with a binomial name, and
the closest match to the 16S taxonomy (when possible).
For each genome, we then reconstructed and downloaded
its corresponding genome-scale metabolic model using
the PATRIC service. When sOTUs mapped to the same
model, we used that model only once, effectively merging
those sOTUs in further analysis, with an exception for
when two sOTUs were associated with opposite condi-
tions (i.e., tumor and normal-adjacent samples), in which
case, we discarded that model from further consideration.
The decision to discard was also based on the observation
that low identity hits or sOTUs with taxonomy not suffi-
ciently resolved were typically involved in these few cases.

After obtaining the genome-scale metabolic models
(GEMs), we calculated “growth” on complete media with
no oxygen. This was done by calculating optimal metabolic
reaction fluxes using a Flux Balance Analysis [50], in which
“growth” is the calculated flux of the reaction defining bio-
mass for a microbe. We did this using a tool for assessing
microbial metabolic interactions (MMinte) which evaluates
the growth of microbes alone and when paired with
another microbe [51]. Once single and paired growth
values were calculated using the objective function given
by MMinte [51], these values were then used to calculate
the influence score. The influence score, a,.,, for a species,
m, with a different species x was calculated as

T = g(x|m)-g (%) (1)

where g(x) was the growth rate of x alone and g(x| m)
was the growth rate of x in a community composed of
both x and m. Based on these scores, we then calculated
the influence of each individual microbial model on the
other microbes in the community as the sum of the
absolute values of the differences in growth rates when
paired with species m,

G = Z\a;m| = Z\g(iIM)—g(D\ (2)

This scoring closely follows the spirit of the scoring
from the global metabolic interaction modeling in Sung
et al. [52]; to derive interactions, we used growth rates
that were computationally inferred from comprehensive
metabolic models in contrast to using experimentally
verified transport reactions from a limited number of
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microbes and metabolites. Metabolic modeling based on
flux balance analysis, as described here, provides a means
to calculate a rate of steady-state growth, as normalized
per unit mass, allowing us to take a simple sum in order
to calculate influence under anaerobic conditions.

The percentage of negative interactions was calculated
by counting the number of negative interactions over the
number of total interactions in each microbial influence
network (MIN). Statistical significance was based on the
probability of getting equivalent results in dMMR and
PMMR networks using the measured distributions of
negative and positive interactions in each network and a
scheme of random selection with replacement.

Finally, the resulting MIN [52] was visualized using
Cytoscape v3.6.1 [53] with node size and edge weights set
according to influence score and influence, respectively.
The entire list of microbial influences in dMMR and
PMMR subjects (Additional file 1: Tables S8 and S9) are
too dense for direct visualization, and therefore, only a
part of them are presented. More specifically, interactions
below an influence of 10 in the case of both dAMMR and
pMMR were excluded. Unconnected nodes that had no
influence were not included in the visualization.

Estimating the effect of whole-community metabolic
interactions on growth suppression

In order to assess the degree to which a microbial
species is suppressed by other members of the micro-
bial community, we evaluate the interactions of the
rest of the microbial community on a target member.
It is worth emphasizing that this infers the effect of
all members of a microbial community, in contrast to
the MIN, which focuses on the tumor and normal-ad-
jacent enriched microbes in dAMMR and pMMR CRC.
Briefly, the target organism’s net interactions S,, with
each microbe in a given community will be calculated
according to:

Sw=D_ Ajaw; =Y Aj(g(ml))~g(m)) (3)
] ]

i.e., the abundance-weighted sum of the metabolic
influences on microbe m. When this sum is negative
(as would be generally true in eubiosis), this yields a
suppression score that reflects the magnitude of the
negative interactions affecting microbe m. For the
purpose of this calculation, we calculate this in every
sample, we wuse anaerobic conditions and only
consider microbial species that make up greater than
5% of the relative abundance of the community in at
least one sample, ensuring we do not miss any
microbes that may have a significant effect on the
suppression score.
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Results

dMMR tumors associated with older-age and early-stage,
proximal tumors

A total of 25 individuals with dAMMR CRC and 58 indi-
viduals with pMMR CRC were involved in this study. In-
dividuals with dMMR CRC were significantly older than
individuals with pMMR CRC and significantly more
likely to have an early-stage, proximal tumor (Table 1)—
in alignment with other studies on dMMR CRC [25].
Thus, to address potential confounding effects due to
age and sample location (proximal/distal), we adjusted
these variables in subsequent analyses.

Tumor MMR status explains the largest variance between

microbial communities

To assess factors that contributed to variance in the micro-
bial community data, we performed a PERMANOVA ana-
lysis on unweighted UniFrac distances between microbial
communities in each sample. We included MMR status,
sample location (proximal/distal, on/off tumor), age, sex,
BMI, and sample type (colon tissue vs. mucosa) as poten-
tial predictors of the variance. We used both marginal and
adjusted analyses where we included only a single factor in
our assessment of percent variance explained or after cor-
recting for all other factors, respectively. The adjusted ana-
lysis controlled the effects of other variables, and the
resulting percent variance explained was independent of
other variables and thus not subject to the confounding by
the correlated variables. Remarkably, we found that MMR
status explained more of the variance than any of the other
6 variables in both cases (Table 2), and it remained signifi-
cant after adjusting for other variables (p = 0.004), indicat-
ing MMR status was independently associated with the
microbiome composition. The difference between tumor
and normal-adjacent samples was also highly significant (p
<0.001 from adjusted analysis; Table 2), indicating that the
tumor samples harbor a unique microbiome. Moreover,
when comparing the tumor-to-normal UniFrac distance
between MMR subtypes (Additional file 1: Figure S1), the
distance in the dMMR subtype was significantly larger than
that in the pMMR subtype (p = 0.004), which suggests a
potential stronger perturbation of the normal microbiome
in the dIMMR subtype.

Distinct microbial communities associated with pMMR
and dMMR tumors

Given both the importance of MMR status to microbial
community variance (Table 2) and the difference in
tumor to normal UniFrac distances by MMR subtype
(Additional file 1: Figure S1), we opted to assess micro-
bial abundances in tumor and normal samples for each
MMR subtype independently. We identified multiple dif-
ferentially abundant sOTUs in dMMR and pMMR
tumor samples as compared to normal-adjacent samples
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Table 2 Factors contributing to variance between microbial communities
Marginal Adjusted

Factors % Variation p value % Variation p value
MMR status 2.58 0.001 1.85 0.004
Sample location—proximal/distal 1.87 0.011 144 0.019
Sample type 1.70 0.001 1.36 0.001
Sample location—on/off tumor 1.50 0.001 1.01 0.001
Sex 148 0.051 1.14 0.184
BMI 1.34 0.108 1.60 0.025
Age 0.96 0.542 1.02 0.319

Percent variation and p values in the first two columns were from marginal analyses (i.e., not adjusted for other factors). Percent variation and p values in the last
two columns were from analyses adjusting for all factors. Permutation tests (999 permutations) were used to calculate the p values. For “Sample type” and “on/off
tumor” factors, the permutation was confined within the subject. For the rest of the factors, the subjects were the permutation units (i.e., randomly assign a value

to each subject) to account for the within-subject correlations

using a generalized linear mixed model (GLMM) that
accounted for sample location (proximal/distal), sample
type, and intrasubject sample correlation (Fig. 1; Add-
itional file 1: Figure S2 (Venn diagram showing counts
of microbes in each group); Additional file 1: Table S2
(list of microbes enriched in dAMMR and pMMR tumor
and normal-adjacent samples); Additional file 1: Table
S3  (microbes enriched in dMMR tumors); Add-
itional file 1: Table S4 (microbes enriched in pMMR tu-
mors); Additional file 1: Table S5 (microbes enriched in
the proximal or distal colon of individuals with dMMR
CRC); Additional file 1: Table S6 (microbes enriched in
the proximal or distal colon of individuals with pMMR
CRC)). Only one microbe—Dorea longicatena—was sig-
nificantly enriched in both dMMR and pMMR tumor
samples. Four microbes had opposite associations with
tumor or normal samples depending on MMR status:
Faecalibacterium prausnitzii A2-165 and Blautia sp.
Marseille-P2398 were significantly enriched in pMMR
tumor and dMMR normal samples; Coprococcus comes
ATCC 27758 and Bacteroides massiliensis B84634 were
significantly enriched in dAMMR tumor and pMMR nor-
mal samples. Notably, Fusobacterium and Bacteroides
fragilis—microbes commonly associated with CRC [11,
17-24]—were among the top most differentially abun-
dant microbes in dMMR tumor samples but were not
found to be differentially abundant in pMMR tumor
samples. As the GLMM had adjusted sample type, sam-
ple location (distal/proximal), and age in the model,
these significant associations were less likely to be driven
by these potential confounders. Indeed, we observed an
enrichment of the dMMR-associated microbes regard-
less of sample locations (Additional file 1: Figure S3).

To validate these results, we used publicly available
data from tumor and matched normal samples from 44
CRC patients [49]. Our validation analysis showed sev-
eral overlapping associations of microbial genomes with
respect to dMMR and pMMR in tumor and matched

normal samples (Additional file 1: Tables S7, S8). dMMR
tumors were found enriched for B. fragilis (p = 0.02, FDR
p=0.37) and Fusobacterium (p=0.03, FDR p=0.37)
while dMMR normal samples were enriched for Dorea
(p=0.03, FDR p=0.37) and an Erysipelotrichaceae bac-
terium (p = 0.007, FDR p = 0.31) (Additional file 1: Figure
S4). Even though these associations were not statistically
significant after correcting for FDR, their trend of asso-
ciation overlaps with the results from the present study.
Differentially abundant sOTUs between pMMR tumors
versus normal included Ruminococcaceae, Faecalibacter-
ium prausnitzii, and Bacteroides caccae, which were also
differentially abundant in the present study.

Proxies for hydrogen sulfide production enriched in the
dMMR CRC tumors

As sulfidogenic F. nucleatum and F. periodonticum were
also significantly enriched in dMMR tumor samples, we
decided to assess potential hydrogen sulfide production
across groups (AMMR/pMMR, tumor/normal) by model-
ing hydrogen sulfide flux. We used microbial community
metabolic models to predict hydrogen sulfide flux within
each microbial community using MICOM. We then took
the values for the hydrogen sulfide flux and calculated the
average value within each group (dMMR tumor and nor-
mal, pMMR tumor and normal). The models produced a
non-significant trend towards increased hydrogen sulfide
flux in tumor samples (Fig. 2a). To get a more concrete
measure of hydrogen sulfide production, we ran targeted
metabolomics to quantify amino acid proxies (serine,
homoserine, lanthionine, L-cystathionine, D-cystathionine)
for hydrogen sulfide in dAMMR and pMMR tumor and nor-
mal tissue samples (Fig. 2b). We observed a significant in-
crease in lanthionine in dMMR tumor tissue over dAMMR
or pMMR normal tissue and pMMR tumor tissue. Homo-
serine and L-cystathionine were also significantly increased
in both dAMMR and pMMR tumor tissue as compared to
normal-adjacent tissue. The metabolomics results suggest
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Fig. 1 Top 3 microbes significantly enriched in tumor as compared to normal samples (colon tissue and mucosa) in individuals with (a, b, )
dMMR or (d, e, f) pPMMR CRC. For full results, please see Additional file 1: Tables S2-S4. Notably, the top 3 microbes enriched in dMMR CRC tumor
samples were not enriched at all in pMMR CRC and vice versa. Y-axis is square root transformed. See Additional file 1: Figure S3 for stratification
of these results by tumor location

increased hydrogen sulfide production in tumor tissue—
particularly in dMMR tumor tissue.

dMMR and pMMR tumor and normal-adjacent microbial
community predicted to be highly influenced by differing
Bacteroides species

To further assess the potential metabolic interactions
between tumor and normal-adjacent microbes in rela-
tion to MMR status, we constructed two metabolic in-
fluence networks (MIN; Fig. 3) [52]. The MIN highlights
each microbe’s predicted influence and interactions
(growth enhancing or suppressing) in relation to other
microbes in the community. The major influencers (lar-
gest nodes) are generally composed of primary fermen-
ters, such as Bacteroides or Prevotella. However, in
dMMR, the normal-adjacent community is anchored by
the highly influential B. caccae and B. ovatus while in
the pMMR MIN, the tumor community is anchored by
D. longicatena and a Bacteroides sp. These different
dMMR and pMMR communities appear to have differ-
ent key species that influence the rest of the microbial
community. Also of note in relation to the dAMMR MIN,
F. nucleatum and F. periodonticum exhibit no metabolic

interactions with the other microbes in the network and
therefore were not included in the network visualization.

PMMR microbial community predicted to enhance
suppression of Bacteroides fragilis

The differences between the MINs for dIMMR and pMMR
microbial communities only relate to the tumor or
normal-adjacent associated microbiota. While remarkable
and noteworthy for understanding how the key species
metabolically suppress or promote one another, it is none-
theless an incomplete picture of the effect of the microbial
community on bacterial species growth. In order to better
assess the impact of dAMMR and pMMR communities as a
whole on B. fragilis, we computed an interaction score and
took an abundance-weighted sum of the effect of those in-
teractions of B. fragilis for each microbial community.
When comparing dMMR and pMMR communities, we see
a statistically significant difference (Fig. 4; Wilcoxon rank
sum p < 0.001) in the growth suppression of B. fragilis, with
markedly more suppression in pMMR communities where
B. fragilis is not associated with CRC. This is consistent
with the idea that B. fragilis may play a central role in
dMMR but not pMMR CRC as suggested by our GLMM.
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Given this finding and the well-established links between
toxigenic B. fragilis and colorectal cancer [19, 21, 24], we
next looked for the presence of the B. fragilis toxin (BFT)
gene in dMMR and pMMR tissue and mucosa samples. Of
the 22 individuals with dMMR CRC, only one was BFT
positive (5%); of 53 individuals with pMMR CRC, only five
were BFT positive (9.4%). There was no significant differ-
ence in BFT presence between individuals with dMMR or
PMMR CRC (Chi-squared, p = 0.477).

Discussion
This study integrates tumor biology and microbial ecology
in a novel and powerful approach to understanding colo-
rectal cancer. Our results indicate that MMR status is one
of the strongest predictors of microbial community vari-
ance; however, few studies [32—-34], to date, include MMR
status in microbial community analysis of colorectal can-
cer. Interestingly, we also identified several differentially
abundant microbes associated with dMMR but not
pPMMR tumor samples including F. nucleatum, F. period-
onticum, and B. fragilis. We further validated these find-
ings in an independent cohort [49], which underscores the
importance of including MMR status in future CRC
microbiome studies. We additionally characterized the
predicted and actual metabolic profiles of dMMR and
pPMMR individuals in relation to hydrogen sulfide produc-
tion, and we generated a network of predicted interactions
within the dAMMR and pMMR microbial communities.
Hydrogen sulfide has been reported to both promote
and inhibit colorectal cancer [54—57]. To assess the role
of hydrogen sulfide within our study, we looked for sulfi-
dogenic bacteria, predicted hydrogen sulfide production
using community metabolic models, and indirectly mea-
sured hydrogen sulfide concentrations through targeted
metabolomics for amino acid proxies. We found two

significantly enriched hydrogen sulfide-producing Fuso-
bacterium species and significantly increased proxies for
hydrogen sulfide in dMMR tumor samples. In the
microbial influence network, both Fusobacterium species
exhibited zero predicted interactions—positive or nega-
tive—with other microbes in the network. Together, this
suggests that these Fusobacterium species may grow
unchecked by other microbes and have the potential to
produce large quantities of hydrogen sulfide.

These intriguing results lead us to speculate on the rela-
tionship between Fusobacterium species, hydrogen sulfide
production, and dMMR CRC. Notably, Fusobacterium spe-
cies have previously been associated with hypermethylation
of MLH1, MSI, BRAF mutations, and poorly differentiated
tumors [12, 22]—all of which are characteristics of dAMMR
CRC [25]. Hydrogen sulfide—a cytotoxic, genotoxic gas—
has also been associated with CRC [54, 55], although there
have been conflicting reports on its role [56, 57]. A recent
report indicates that colon cancer cells may respond to
hydrogen sulfide in a bell-shaped dose-dependent manner:
at high concentrations, hydrogen sulfide inhibits the prolif-
eration of cancer cells, while at lower concentrations,
hydrogen sulfide can stimulate the proliferation of cancer
cells [57, 58]. In dMMR, if high levels of hydrogen sulfide
(and hydrogen sulfide producers) inhibit cancer prolifera-
tion, then we would expect individuals with dMMR to
present with earlier-stage cancer—which is indeed the case
in our cohort and other reported cohorts [25].

Epidemiologically, it is worth noting that dAMMR CRC
has also been associated with lower recurrence rates and
a better prognosis [25]. In seeming opposition to these
findings are studies showing that F. nucleatum can po-
tentiate tumorigenesis and that F. nucleatum-associated
CRCs have a worse prognosis [11, 12]. However, these
findings are not contradictory with our data. A more
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detailed examination of the effects of location
(Additional file 1, Tables S5 and S6) shows that Fusobac-
terium is associated with the proximal colon in both
dMMR and pMMR patients. This raises a subtle, but im-
portant, point. Fusobacterium-associated pMMR tumors
are very likely to be found in the proximal colon along-
side normal-adjacent tissue that is also enriched for
Fusobacterium. Stated another way, while pMMR tu-
mors are not especially associated with Fusobacterium,
the proximal colon is. (In contrast, IMMR tumors show
enrichment for Fusobacterium that goes beyond the ef-
fect of location in the colon.) When put into context
with other epidemiological findings that identify
right-sided (proximal) colon cancer to have lower overall
survival [59], certain inferences come to light. Where

right-sided dMMR CRCs have a relatively better progno-
sis, right-sidled pMMR CRCs have a worse one. This
would then allow us to make sense of both the overall
lower survival in right-sided CRC [59] and the results in-
dicating F. nucleatum-associated CRCs have a worse
prognosis [11, 12]. In sum, the prognosis of F. nucleatu-
m-associated CRCs is likely be dependent upon both lo-
cation and tumor MMR status, and our study highlights
the importance of evaluating these covariates simultan-
eously when determining tumor prognosis.

Besides Fusobacterium, B. fragilis was also found to be
significantly enriched in dMMR tumor samples. Toxigenic
B. fragilis has well-established and causative links to in-
flammation and CRC [19, 21, 24], and inflammation has
been linked to hypermethylation [60]. Our own metabolic
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Fig. 4 Predicted influence of other microbes (weighted influence
score) on B. fragilis growth, stratified by MMR status. A negative
influence score indicates microbial community suppression of B.
fragilis growth. B. fragilis is significantly more suppressed in pMMR
microbial communities (tumor and normal) as compared to dMMR
microbial communities (Wilcoxon rank sum test p <0.001)

modeling reflects a metabolic basis for higher ratios of B.
fragilis in dMMR communities, and greater metabolic
suppression in pMMR. We tested dAMMR and pMMR tis-
sue and mucosa samples for the presence of the B. fragilis
toxin (BFT) gene but did not find a significant difference
in the presence of the BFT gene between dMMR and
pMMR individuals. Given these results, it is unclear what
the significance of toxigenic B. fragilis is in the dMMR
tumor samples.

Overall, our study demonstrates the importance and value
in considering tumor biology (MMR status) and ecological
interactions when evaluating microbial community data.
Our work is primarily descriptive and incorporates host clin-
ical features, microbiome, metabolome, and modeling data.
While we make speculations based on these data, future
prospective and mechanistic studies are needed to test these
ideas. We also recognize that selecting sequenced genomes
available in the database to represent 16S rRNA sOTUs can-
not fully replace metagenomic sequencing given well-known
strain-to-strain variation in gene content. However, these
variations between strains are often largely in secondary me-
tabolite pathways, rather than core metabolic function,
which is the main target of our modeling analysis. Differ-
ences in secondary metabolite pathways (i.e., non-core gen-
ome within a species) are commonly associated with
functional adaptations to various environmental niches [61].

Another limitation of this study is our inability to at-
tribute a source to metabolomic data. Hydrogen sulfide
and its amino acid proxies can be produced by both
humans and bacteria. Thus, the enriched hydrogen sul-
fide we detect in dMMR tumor samples could poten-
tially be attributed to increased hydrogen sulfide
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production within tumor tissue, and indeed, this has
been reported [57]. If this was the solely case here how-
ever, we might expect to see similar increases in hydro-
gen sulfide in pMMR tumors—most of which are later
in stage than dMMR tumors. We did not see this, sug-
gesting that it is feasible that the increased hydrogen sul-
fide production in dMMR tumors is coming from an
exogenous (microbial) source. Notably, microbially pro-
duced hydrogen sulfide can be generated from multiple
pathways including the respiration of dietary taurine and
sulfate as well as the degradation of sulfomucins. The
amino acid proxies we use to assess hydrogen sulfide
production only capture some, but not all of these po-
tential pathways, so we may have underestimated hydro-
gen sulfide production.

Finally, the field of genome-scale metabolic modeling has
only recently encompassed tools for community metabolic
analyses [62], and many of the tools [51, 52, 63] are sensi-
tive to the underlying quality of the metabolic models [64,
65]. Models vary greatly depending on the presence and
accuracy of genome annotations which will generally im-
prove over time. Future work aimed at understanding and
verifying microbial dynamics in relation to MMR status or
other CRC subtypes could dramatically improve our ability
to define, predict, prevent, and treat colorectal cancers.

Conclusions
This study provides a novel framework in which to
examine colorectal cancer:

1. Host—microbe interactions: Tumor MMR status
strongly predicted microbial community variance
and was associated with distinct microbial,
metabolic, and interaction profiles. Our approach
incorporating tumor MMR status, microbiome,
metabolome, and modeling data allowed us unique
insights into the role of hydrogen sulfide and
hydrogen sulfide producers within the dMMR
microbial community. Tumor biology (e.g., MMR
status) and microbial ecology are inextricably
linked, and it is critical that future studies account
for both in order to understand and more precisely
classify the many pathways to CRC.

2. Microbe—microbe interactions: Microbial influence
networks provided in silico predictions of microbial
interactions that aligned with in vivo metabolomics
data: Enrichment of sulfidogenic F nucleatum and
significantly higher hydrogen sulfide production in
dMMR CRC, and depletion of B. fragilis and
significantly higher suppression in pMMR CRC.
The validation of in vivo findings and in silico
modeling provides support for a future of precision
medicine tools that can accurately predict disease
and the potential effects of prophylactic or
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therapeutic interventions on the microbiome.
Microbes act within communities, and
understanding and predicting these interactions will
be key to developing targeted mechanisms to help
prevent or treat colorectal cancer.
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