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Abstract

Unraveling functional noncoding variants associated with complex diseases is still a great challenge. We present a
novel algorithm, Prioritization And Functional Assessment (PAFA), that prioritizes and assesses the functionality of
genetic variants by introducing population differentiation measures and recalibrating training variants.
Comprehensive evaluations demonstrate that PAFA exhibits much higher sensitivity and specificity in prioritizing
noncoding risk variants than existing methods. PAFA achieves improved performance in distinguishing both
common and rare recurrent variants from non-recurrent variants by integrating multiple annotations and metrics.
An integrated platform was developed, providing comprehensive functional annotations for noncoding variants by
integrating functional genomic data, which can be accessed at http://159.226.67.237:8080/pafa.
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Background
Recent advances in sequencing technologies have
enabled the identification of an increasingly large
spectrum of variants within the human genome [1].
However, unraveling the genetic architecture of complex
diseases is still a great challenge, particularly identifying
functionally relevant variants in noncoding regions [2,
3]. Previous studies have interpreted coding variants
based on our understanding of the genetic code and
splicing [4]. Many existing computational approaches
have been developed for prioritizing these variants, such
as SIFT [5] and PolyPhen [6]. Noncoding variants,
however, are noticeably understudied due to our poor
understanding of noncoding regions in the human
genome. Most recently, tremendous progress has been
achieved in both large-scale functional genome projects
(e.g., ENCODE [7] and FANTOM5 [8]) and human
genome resequencing projects (e.g., 1000 Genomes
Project [9]), which provide a rich resource of genomic

annotations for analyzing and predicting the functional
effects of both coding and noncoding variants.
Recently, several computational approaches, includ-

ing both unsupervised and supervised algorithms,
have been developed to prioritize noncoding variants
by integrating various genomic features, including
functional annotations and evolutionary conservation.
To prioritize risk variants, unsupervised statistical
methods (e.g., GenoCanyon [10] and Eigen [11]) con-
struct discriminative models based on conditional
probability distributions, which rely on strong model
assumptions. Supervised methods (e.g., CADD [12],
FATHMM series [13–15], DANN [16], GWAVA [17],
and DIVAN [18]) do not rely on a priori assumptions;
instead, they label the training data as deleterious or
benign and fit a model that best separates the two
sets. These integrative supervised methods generally
outperform those based on any single individual fea-
ture [11, 12] and frequently provide more than one
score depending on the regions considered (e.g., cod-
ing, noncoding) and the appropriate feature sets for
that region. The scores, however, sometimes may lead
to conflicting evaluation results for variants. Besides,
some of these methods have intrinsic limitations in
prioritizing specific categories of risk variants. For
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example, CADD constructed a model based on the
training variants that have been under long-term
selective pressure, which made it perform less well on
certain disease-associated variants under weak evolu-
tionary constraint, such as those influencing the risk
of complex traits [11, 12]. LINSIGHT [19] was
constructed based on the premise of inferring the
selective pressure on noncoding sites and worked very
well on identifying human noncoding variants associ-
ated with inherited diseases; however, this premise
may not hold in all cases, such as those in which the
variants increase the risk for post-reproductive diseases
[19]. In addition, except for genomic annotations and
conservation measures, all the currently available methods
seldom consider population-level statistical measures (e.g.,
F statistics [20]), which may be helpful to prioritize
common variants. Although supervised learning demands
a representative and correctly labeled training set, a major
problem for these methods is the use of mislabeled vari-
ants in the training stage, which may lead to false predic-
tions by supervised classifiers. For example, DIVAN
labeled variants from the 1000 Genomes Project as benign
with few controlling or filtration steps. A considerable
fraction of the variants in the 1000 Genomes is reported
to be involved in various complex diseases or traits [21,
22]. CADD labeled fixed or nearly fixed derived alleles in
humans as benign and simulated de novo variants as
deleterious. However, such simulated de novo variants
may contain a substantial proportion of benign variants,
which thus may lead to false predictions.
Here, we present a novel supervised algorithm for

Prioritization And Functional Assessment (PAFA) of
genetic variants associated with complex diseases or
traits, especially for population-specific noncoding
variants. PAFA can prioritize functional variants in
noncoding regions by utilizing all kinds of available
annotations and metrics, including genomic annotations,
evolutionary conservation metrics, and population level
measures. In particular, a newly introduced feature, FST,
which is frequently used as a summary of genetic differ-
entiation among groups [20], can significantly help
PAFA prioritize population-relevant functional variants
in noncoding regions over background variants. In
addition, to obtain more reliable training variants, PAFA
utilizes training data from various curated databases,
and it employs multiple filtration strategies for variant
labeling. Through comprehensive evaluations of both
common and rare variants, we demonstrate that PAFA
exhibits a much better performance on prioritizing both
common and rare complex disease-associated variants
over benign variants as well as discriminating between
noncoding recurrent variants and non-recurrent variants
through the incorporation of multiple features and
the optimization of training datasets. Moreover, a

user-friendly web server (http://159.226.67.237:8080/
pafa) was constructed that not only allows users to
evaluate variants by PAFA but also provides compre-
hensive functional annotations by integrating abun-
dant functional genomic elements.

Methods
Data and annotation sources
Genetic and genomic resources used to construct and
validate the PAFA algorithm are mainly divided into
three categories (Fig. 1 and Additional file 1: Figure S1).
Firstly, PAFA selected variants from the 1000 Genomes
Project (Phase 3) [9], ClinVar (released in 2018/3/1)
[23], and GWASdb (v2) [24] as the training set of PAFA.
The functional variant dataset included variants labeled
“pathogenic” in ClinVar and significant SNPs associated
with complex traits or diseases (cSNPs) that overlap with
known genomic elements from GWASdb. Correspond-
ingly, variants labeled “benign” in ClinVar and variants
in 1000 Genomes were treated as a control dataset. The
calculation of PAFA scores is based on the GRCh37/
hg19 human genome assembly, as the new genome build
(GRCh38) still lacks enough genomic annotations com-
pared with GRCh37. Here, we integrated a lift-over tool
[25] for users who choose GRCh38 as the reference.
Secondly, PAFA selected annotations from known

databases as features to annotate training variants and to
evaluate new variants. These features can be divided
into three classes: evolutionary conservation metrics,
genomic annotations, and population differentiation
measures. For evolutionary conservation, two measures,
phastCons [26] and phyloP [27], were obtained. Conserva-
tion scores based on the comparison of both 46 and 100
vertebrate genomes were used. For genomic annotations,
PAFA used both genic context information, such as
distance to nearest transcript start site (TSS) from
GENCODE v19 annotation [28] and information from
thousands of functional genomic elements across different
cell types, including histone modifications, RNA polymer-
ase binding, and transcription factor binding sites (TFBS
PeakSeq). For population differentiation measures, FST
and dispersion score (DS) were calculated based on allele
frequencies and sample sizes of the five super populations.
Based on the coding and noncoding annotations, we also
built a gene-centric database to provide gene-level annota-
tions for variants. To determine which variants may affect
gene expression, we retrieved annotated exons and tran-
scription start site information from GENCODE v19 [28]
and 5′-UTR and 3′-UTR data from UTRdb [29]. The
predicted enhancers that regulate the target genes were
also obtained [30]. In addition, we recorded intron regions
that are overlapped with any annotations, such as open
chromatin and transcription factor binding sites (TFBS),
from ENCODE [31]. With this integrated genomic
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annotation system, PAFA can link a variant to known
genes or genomic elements.
Thirdly, we used test sets from seven public databases

(the 1000 Genomes Project Phase 3, ClinVar, GWAS
Catalog [32], COSMIC v79 [33], TCGA [34], GRASP
v2.0 [35], and ICGC [36]) and variants from three recent
studies including 916 breast cancer variants [37], 221
human blood metabolites variants [38], and 1764 macu-
lar telangiectasia type 2 variants [39], to compare PAFA
with other available methods (Additional file 1: Figure
S1). We used five different types of variant sets from
four databases to perform a comprehensive evaluation,
including benign and pathogenic coding variants of
ClinVar, common variants with frequencies of at least
1% in the population studied in 1000 Genomes, complex
diseases or trait-associated SNPs (cSNPs) of the GWAS
Catalog, and recurrent noncoding variants of COSMIC.
Then, we used Mendelian disease-associated variants of
ClinVar and complex disease-associated variants from
560 breast cancer samples in a recent study and
TCGA database to compare their performance on
prioritizing coding risk variants. We used variants of
GRASP, 221 variants associated with human blood
metabolites, and 647 common variants associated with

macular telangiectasia type 2 to assess PAFA’s
performance in prioritizing noncoding variants associ-
ated with complex diseases or traits. Finally, we used
variants from ICGC Cancer Genome Projects to
assess PAFA’s ability in discriminating both common
and rare recurrent from non-recurrent variants and in
prioritizing noncoding rare risk variants from adjacent
common variants.
For the PAFA online platform, it was integrated with

several additional utilities, including 1000 GENOMES,
ANNOTATION, VSEA, and SEARCH (Additional file 1:
Figure S2–5). Due to the population-scale sequencing
feature of variants in the 1000 Genomes Project, the
1000 GENOMES part of the online platform utilized the
population differentiation index and allele frequency of a
specific variant among human populations to assist the
prioritization and annotation of target variants. Corres-
pondingly, except for known variants and genomic
resources mentioned above, these utilities were also inte-
grated with other resources. First, the ANNOTATION
part of online platform integrated variants from dbSNP
[40], NHLBI-Exome Sequencing Project v2 (ESP) [41],
YanHuang Project [42], CNV of 100 pancreatic ductal
adenocarcinomas (PDACs) [43], schizophrenia somatic
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Fig. 1 Flowchart of the PAFA approach. The flowchart contains the construction of the PAFA classifier and the gene-centric annotation. The PAFA
classifier is based on sparse logistic regression with L1 regularization. We label the variants used in the training stage of PAFA as the functional
and control sets. The features used in PAFA include three categories: population-level metrics, evolutionary conservation, and genomic
annotations. Gene-centric annotation is based on curated genomic databases, including ENCODE and UTRdb
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deletions in brain [44], and 996 ASD rare CNVs [45] to
annotate input variants. With these annotated resources,
we can determine whether the input variants overlap
with known variants through the online platform.
Simultaneously, the ANNOTATION part also integrated
with a variety of curated databases containing
disease-associated genes, including Online Mendelian
Inheritance in Man (OMIM) [46], the Genetic
Association Database (GAD) [47], and COSMIC [33], to
recognize potential disease-related variants. In addition,
the VSEA part incorporated canonical pathways from
the Molecular Signatures Database (MSigDB v6.1) [48],
to perform enrichment analysis on variants based on
these included pathways.
In total, 23 curated genetic and genomic resources

were integrated into the PAFA online platform (Add-
itional file 1: Figure S6), including known variants,
various annotations, disease-associated genes, and path-
ways. All annotations are represented in the GRCh37
assembly of the human genome.

Construction of functional and control variant sets in
PAFA
The training set of PAFA was mainly derived from
curated databases, including ClinVar, GWASdb, and
1000 Genomes. Considering that these public data-
bases may contain redundancies and erroneous or
conflicted records, we employed multiple filtrations to
remove low-confidence variants (Additional file 1:
Figure S7). We firstly eliminated conflicted records in
the training set that are labeled “benign” and “patho-
genic” in ClinVar at the same time. A possible
explanation is that these variants do not cause certain
diseases, but they may contribute to the development
of diseases in other cases [49, 50]. Therefore, they
were removed from the control dataset, but they were
kept in the functional dataset. In total, 30,277 “patho-
genic” and 13,010 “benign” variants from ClinVar
were included in PAFA. Twenty four thousand nine
hundred ninety-three cSNPs from GWASdb were
selected as extremely significant variants using a
threshold of p ≤ 10E−8. After removing cSNPs that
share no overlap with known genomic elements,
11,570 variants from GWASdb were used in PAFA. To
select non-functional variants from 1000 Genomes, we
randomly selected 100,000 variants from 1000 Genomes
with a low FST (< 0.01) along with the filtration of
redundant records in GWASdb and constructed a
regression model for cSNPs in the training set on the basis
of 7131 evaluation features. L1-regularized logistic regres-
sion, which is provided by LIBLINEAR [51], was used to
construct the model. Using the constructed regression
model, we determined the numerical measures of these
100,000 variants with little genetic differentiation. We

ranked these variants according to their numerical output,
as negative values mean variants inversely associated with
cSNPs in the training set. According to their ranking,
28,837 inversely associated variants were selected as a
control dataset by PAFA.
As described above, we introduced variants from

ClinVar, GWASdb, and 1000 Genomes, including
pathogenic/benign coding variants and common func-
tional/benign variants. Ultimately, 41,847 functional and
41,847 control variant datasets were used by PAFA
(Additional file 1: Figure S7).

Selection and analysis of features in PAFA
Based on the existing classifiers, PAFA first pre-selected
7131 features that may be sensitive to noncoding
variants, which can be divided into three classes,
including conservation metrics, genomic annotations,
and population differentiation measures. We introduced
four evolutionary conservation scores, including 46 and
100 ways of phastCons and phyloP measures. For
genomic annotations, we introduced eight types of
feature groups from ENCODE [7], including histone
modifications (ChIP-Seq), RNA contigs (Long RNA-seq),
transcription factor binding sites (TFBS PeakSeq and
SPP), open chromatin (DNase-Seq and FAIRE), and
transcript start site (TSS).
For population differentiation measures, we introduced

allele frequencies of five super populations, including
African, American, East Asian, European, and South
Asian. We calculated FST and dispersion score (DS) based
on allele frequencies and sample sizes of the five super
populations. For a given genomic locus, consider i
subpopulations (where i = 1, …, s) and suppose that the
observed allele frequencies are p1, …, ps and the sample
sizes are n1, …, ns. Let n ¼ Ps

i¼1ni and n ¼ Ps
i¼1ni ∕ s.

Wright’s unbiased FST [52] is estimated as

FST ¼ MSP−MSG
MSP þ nc−1ð Þ �MSG

where MSG denotes the observed mean square errors
for loci within populations

MSG ¼ 1Ps
i¼1ni−1

Xs

i

nipi 1−pið Þ

and MSP denotes the observed mean square errors for
loci between populations,

MSP ¼ 1
s−1

Xs

i

ni pi−pð Þ2

with p as a weighted average of pi across populations
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p ¼ nipi=
X
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ni

and nc is the average sample size across samples that
also incorporates and corrects for the variance in sample
size over populations.

nc ¼ 1
s−1

Xs

i¼1

ni−
P

in
2
iX

i

ni

The dispersion score is calculated as

DS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPs

i¼1ðpi−p¼Þ2
n

s

with

p¼ ¼
Xs

i¼1

pi=s

We constructed feature vectors for variants. These
features had fixed unique sequence numbers. We
performed tenfold cross-validation with the training set
mentioned above to assess the pre-selected features in
PAFA, including four conservation scores, seven types of
feature groups for genomic annotations, and three
population differentiation measures (Additional file 1:
Figure S8). All annotation feature groups employed by
PAFA have the ability to prioritize functional variants
from a control set, with AUC values larger than 0.5.
Thus, PAFA adopted all these features to annotate
variants.

Model training and performance comparison
With a mass of instances and features, PAFA employed
LIBLINEAR [51] to construct an ensemble discrimin-
ation model against variants. LIBLINEAR is an efficient
and open source library for large-scale linear classifica-
tion. PAFA treated features of a variant without an
overlapping relationship as missing values and took L1
regularization to construct a sparse model. PAFA
adopted the logistic regression implemented in LIB-
LINEAR, which was used to calculate the probability
PAFA scores for variants.
To evaluate the performance of PAFA in prioritizing

functional variants, seven widely used classifiers were
compared with PAFA, namely, CADD, FATHMM-MKL,
DANN, GWAVA, DIVAN, LINSIGHT, and Eigen.
CADD has updated three versions since its publication.
Here, the latest version of CADD was used to generate
C scores for variants. By using different genomic annota-
tions, FATHMM-MKL provided two different scores,
namely, a “coding score” and a “noncoding score,” which

were deemed to prioritize coding and noncoding
variants, respectively. We used both scores for compari-
son. Based on different training sets from 1000
Genomes, GWAVA provided three independent scores,
Region, TSS, and Unmatched, which were all used for
performance comparisons. Similar to GWAVA, DIVAN
also provided Region and TSS scores. Considering that
DIVAN provided disease-specific scores for SNPs
associated with 45 diseases or phenotypes, PAFA was
compared to DIVAN on discriminating these disease- or
phenotype-related variants. Moreover, Eigen provided
two scores for evaluating variants by using different
algorithms. To compare with Eigen, we downloaded the
Eigen scores of the testing sets from its website (http://
www.columbia.edu/~ii2135/download.html) and also
compared with their pre-computed Eigen and Eigen-PC
scores. In addition, we also obtained testing sets from
the latest publications and public databases, including
GRASP and TCGA. We removed all the variants that
occurred in the training set of PAFA from these testing
sets. We used AUC values and p values (Wilcoxon
rank-sum test) to evaluate the performance of these
methods.

Construction of the online platform
To facilitate the use of PAFA, we built an online
platform for the navigation or batch download of target
variants. This platform was developed using Java and
was deployed on a Tomcat server. We developed the
user interface using HTML5, JavaScript, and D3.js. In
addition to conveniently accessing PAFA scores, the
online platform incorporates other functions, such as
evaluating target variants relying on prior databases
containing disease-associated genes, providing enrich-
ment analysis on variant set and relevant annotation
information from 1000 Genomes and genomic databases,
such as ENCODE and OMIM.
To evaluate variants using information from

gene-disease databases (e.g., OMIM, GAD), we first
mapped the variants to a range of annotated elements,
such as exons, TSS, 3′-UTR, 5′-UTR, enhancers, TFBS,
and open chromatin, based on the abundant annotation
source integrated in our database. As variants in differ-
ent types of elements cause discrepant influences on
gene expression, we set empirical weights to variants
based on different types of elements. In addition, the
proportion of overlapping section was considered. After
retrieving the involved genes, a quantitative value was
assigned to the variants in the following way, according
to the occurrence frequency of genes in current
gene-disease databases.
Assume that the target variant overlapped with m

different genes and n different elements were influenced
by each gene. Then, let Le jbe the ith gene’s jth element’s
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length and Loij be the overlapped length between variant
and the ith gene’s jth element. WT represents the weight
value of the type of element, which is set to 1.0 for exon
and TSS, 0.5 for 3′-UTR and 5′-UTR, 0.3 for enhancer,
0.2 for TFBS (PeakSeq) and TFBS (SPP) in the gene, and
0.1 for the gene’s open chromatin. si indicates the ith
gene’s frequency as it appears in gene-disease databases.
The score is calculated as

score ¼
Xm

i¼1
Si

with

Si ¼ si � min1;
Xn

j¼1

Loij
Le j

�WT

To provide enrichment analysis for the target variant
sets, we included background variant sets, such as
variants from 1000 Genomes, genomic annotations from
ENCODE, and canonical pathways in the Molecular
Signatures Database (MSigDB). First, we mapped the

test variants and background variants (user uploaded or
selected) to a range of annotated elements. Then, we
obtained genes related to the test and background
variants. Next, we extracted the related pathways of
these genes in MSigDB. Finally, according to the
relationships among variants, genes, and pathways, we
calculated the p value to estimate the enrichment degree
in relevant pathways using Fisher’s exact test.

Results
Population differentiation of genetic variants associated
with complex diseases or traits
To explore the relationship between the population
differentiation of genetic variants and common complex
diseases or traits, we extracted SNPs associated with
complex traits or diseases (cSNPs) from GWASdb [24].
Multiple categories of diseases/traits were chosen,
including cancers, cardiovascular diseases, and mental
disorders, as well as complex traits, such as hair color,
adiposity, and intelligence (Fig. 2). Subsequently, we
obtained population-specific allele frequencies of these

Fig. 2 Population differentiation of genetic variants associated with complex diseases or traits. Thirty-five complex trait-/disease-associated SNP
(cSNP) sets from GWASdb are listed. The color of the left-most bars represents the different types of diseases/traits, and the length of the bars
represents the number of cSNPs in the sets. Adjacent stack bars represent the percentage of different differentiation degrees among each cSNPs
set. The following four column stack bars exhibit different degrees of allele frequencies among super populations, namely, African (AFR), East
Asian (EAS), European (EUR), and South Asian (SAS)
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cSNPs in four super populations (AFR, EAS, EUR, and
SAS) derived from the 1000 Genomes project (Phase 3
variant calls). The corresponding allele frequency spectra
in super populations for each disease/trait category were
visualized in violin graphs. As shown in Additional file 1:
Figure S9–12, cSNPs associated with different diseases
or traits exhibited noticeably different allele frequencies,
with certain diseases overrepresented in specific popula-
tions. For example, over 50% of testicular cancer-related
SNPs occurred in more than half of Europeans, but in
less than 25% of Africans. This is consistent with
epidemiologic findings that testicular cancer incidence
consistently remained the highest in Northern European
populations and the lowest in African populations [53,
54]. To investigate the population genetic predisposi-
tions underlying these cSNPs, we introduced the fixation
index (FST), which is a measure of population differenti-
ation due to genetic structure. With allele frequencies
and sample sizes of the five super populations available
from 1000 Genomes, we calculated the unbiased
estimates of FST for cSNPs. The frequency distribution
of FST for each disease/trait category was shown in
Additional file 1: Figure S13. According to the criteria
[55] that FST lower than 0.05 means little genetic differ-
entiation and FST larger than 0.25 means high genetic
differentiation, most of the cSNPs exhibited high genetic
differentiations in human populations.
Furthermore, we examined 35 cSNP sets to get a

comprehensive look at the relationship between the
population differentiation of cSNPs and their associated
complex diseases/traits. As shown in Fig. 2, the propor-
tion of cSNPs with large (FST > 0.25), moderate (0.05 <
FST ≤ 0.25), and little (FST ≤ 0.05) genetic differentiation
was displayed in different colors. The number of cSNPs
with 10% allele frequencies that were higher or lower
than all other populations was calculated in each
category based on known allele frequencies in human
populations. As illustrated in the four right-most column
stack bars of Fig. 2, the dark gray bar represents the
frequency of cSNPs in a super population that is higher
than all other super populations, and the light gray bar
represents the frequency of cSNPs in a super population
that is lower than all other super populations. Clearly,
the majority of cSNPs display a strong preference to-
wards specific human populations. For example, cSNPs
associated with hair color showed a high occurrence in
the European population, with nearly a half of them
frequently occurring in European populations, which is
consistent with previous studies [56, 57]. More examples
can be seen in cancer-related diseases. Of the 1828
prostate cancer-related SNPs curated from multiple
literature sources, more than half showed great genetic
differentiation among super populations. Out of these
cSNPs, 720 were reported to likely occur in the African

population, but not in other populations. In fact, African
American men have the highest prostate cancer
incidence rate in the world, although the rate in the
African population is unclear [58, 59]. Taken together,
these examples indicate that different cSNPs exhibit
various levels of population differentiation, and the
incorporation of FST or other allele frequency features
may help evaluate the significance of human genetic
variants.

The PAFA approach
The PAFA algorithm contains two components: priori-
tizing functional genetic variants and annotating variants
by integrating a priori functional genomic data (Fig. 1).
To discriminate potential functional variants from
background variants, sparse logistic regression with L1
regularization was applied to train a noncoding sensitive
discriminative model. To be noncoding sensitive, PAFA
utilizes training data sets located in noncoding regions
and selects features with the ability to prioritize noncod-
ing variants. First, the training variants were partly
derived from ClinVar, GWASdb v2, and 1000 Genomes.
PAFA classified them into two distinct variant sets (func-
tional and control) with multiple filtration steps, includ-
ing filtering duplicates and conflicting records, selecting
element-overlapping SNPs associated with complex
traits or diseases, and measuring the similarity between
common variants from 1000 Genomes and functional
variants based on various annotations. For the functional
variant set, variants annotated as “pathogenic” in
ClinVar were first selected; these variants are mainly lo-
cated in coding regions. Considering that genome-wide
association studies have reliably linked coding or
noncoding genetic variants to complex diseases or traits,
significant cSNPs (p value < 10E−8) in GWASdb were
selected as another source of the functional variant set.
Noncoding SNPs may affect target genes by disrupting
their normal regulatory mechanism. To reduce the
number of selected noncoding variants, we only chose
the variants that overlapped with any genomic elements
from ENCODE [7] and UTRdb [29]. For the control
variant set, variants annotated as “benign” in ClinVar
were the first data source. Common variants from 1000
Genomes were usually labeled benign by previous
supervised classifiers (e.g., GWAVA [17]). However,
more than 80% of curated SNPs archived in GWASdb
are also present in the SNP list of 1000 Genomes, since
most GWAS studies have been performed using
genotyping SNP arrays based on common variants
(Fig. 3a). In addition to these shared SNPs in GWASdb
and 1000 Genomes, a large number of unannotated
common variants in 1000 Genomes may also be clinic-
ally important, as the number of diseases and traits
studied by GWAS is still not sufficiently comprehensive
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[60]. Ignoring or misclassifying these potential functional
SNPs may lead to an incorrect assessment of target
genetic variants. Therefore, we employed the FST index
as a metric to infer the potential biological significance
of variants in 1000 Genomes. We first compared the
distribution of FST indexes for SNPs in 1000 Genomes
with those in GWASdb, and we found that over 90% of
variants in 1000 Genomes showed little genetic differen-
tiation (Fig. 3b). In contrast, more than half of the
cSNPs in GWASdb displayed enhanced genetic differen-
tiation. A considerable fraction of variants (over 6
million out of 84 million) show high population
differentiation indices (> 0.25) in 1000 Genomes, the
number of which is much larger than the total number
of variants presented in GWASdb. To generate the
control variant set, we first constructed a regressive
model based on various features of the cSNPs used in
the training stage. Then, we selected variants with very
low FST values (< 0.01) from 1000 Genomes. The
constructed regressive model was used to rank the
selected low-FST variants. According to the rank of
variants, we selected the variants that were inversely

associated with cSNPs utilized by PAFA as another
source for the control variant set. Finally, PAFA incorpo-
rated simulated rare benign variants as part of the
control variant set.
The features used in PAFA can be classified into three

categories: population-level metrics, evolutionary conser-
vation, and genomic annotations. These features show
distinct patterns in the functional and control variant
sets and exhibit certain abilities in annotating noncoding
variants. Among these features, population-level metrics
consist of fixation index (FST), allele frequencies, and
dispersion score (DS) that is calculated based on allele
frequencies. FST, which is frequently used as a summary
of genetic differentiation among groups, was first intro-
duced as a feature to distinguish between functional and
background variants. DS was also incorporated, as stand-
ard deviation is by far the most widely used measure of
dispersion. As shown in Fig. 3c, the population-level
features alone exhibited better performance than all
other feature groups, with an AUC of 0.840 (tenfold
cross-validation). To reveal which feature has a stronger
impact in the PAFA model, we selected three variants
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represents the mutations that exist in both GWASdb and 1000 Genomes. b FST scores for cSNPs in GWASdb versus variants in 1000 Genomes
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sets related to complex diseases, including 6147 variants
related to ovarian serous cystadenocarcinoma (OSC)
from the TCGA database [34], 1339 variants associated
with age-related macular degeneration in East Asians
[61], and 150 variants related to type 2 diabetes from
European populations [62]. These diseases are all
reported to be population-relevant [63–66]. As shown in
Fig. 3d, the constructed model based on the combin-
ation of FST, DS, and allele frequencies exhibited much
better performance in evaluating these variants associ-
ated with complex diseases than the model based on
allele frequencies or FST alone. In addition, the PAFA
classifiers without features of FST and DS exhibited a
poorer performance than the classifiers without allele
frequencies, according to the p values calculated by a
Wilcoxon rank-sum test (Fig. 3d).
In addition to prioritizing functional variants, PAFA

also provides gene-centric annotations for both coding
and noncoding variants. PAFA integrates genetic ele-
ments, including annotated enhancer, TSS, exon, 3′-UTR,
and 5′-UTR, from curated databases, including ENCODE.
To test the reliability of the annotated genomic elements,
functional enrichment analysis was performed on 10,143
de novo mutations identified from 200 autism spectrum
disorder (ASD) parent-child trios [67]. Among these
mutations, 5635 variants do not have any overlap with
annotated coding regions. We obtained the affected genes
of coding and noncoding variants through the
gene-centric database of PAFA, and we performed enrich-
ment analysis on these genes separately using DAVID
[68]. All enriched pathways listed in Additional file 1:
Figure S14 were reported to be closely related to ASD in
previous studies. Several pathways were apparently
enriched in the affected gene sets of both coding and
noncoding variants, indicating that these noncoding
variants may cooperate with coding variants in the devel-
opment of ASD. For example, the affected gene sets of
both coding and noncoding variants were enriched in the
cAMP pathway, with Benjamini-adjusted p values of 3.31E
−05 and 5.81E−05, respectively. The affected gene sets of
coding and noncoding variants are not consistent, with
several enriched pathways that are specific to noncoding
variants (Additional file 1: Figure S14).

Performance comparison on prioritizing functional
variants
To evaluate the performance of PAFA on prioritizing
functional variants from background variants, we
compared PAFA with seven widely used prioritization
methods, CADD [12], FATHMM-MKL [13], DANN
[16], GWAVA [17], DIVAN [18], Eigen [11], and
LINSIGHT [19]. A detailed comparison of these tools is
shown in Additional file 1: Table S1. Considering that
FATHMM-MKL provides two different scores by using

different features, namely, a “coding score” and a “non-
coding score,” PAFA was compared with both of them.
Eigen provides Eigen and Eigen-PC scores by using
different algorithm strategies, and GWAVA provides
Region, TSS, and Unmatched scores by using different
training datasets; thus, all these scores were included in
the comparison. Similarly, the Region and TSS scores
provided by DIVAN were also included. For comparison,
we downloaded pre-computed GWAVA (v1.0), DANN
(Oct 10, 2014), DIVAN (Dec 6, 2016), Eigen (Jan 4,
2016), and LINSIGHT (Aug 15, 2016) scores from their
source websites, and we obtained CADD (v1.3) and
FATHMM-MKL (Jan 11, 2015) scores through their on-
line retrieval systems.
We first performed a comprehensive evaluation of

seven tools (PAFA, Eigen, CADD, GWAVA, DANN,
FATHMM-MKL, and LINSIGHT) by assessing five
different types of variant sets, including benign and
pathogenic coding variants, common variants with
frequencies of at least 1% in the populations studied in
1000 Genomes, cSNPs, and recurrent noncoding
variants (Fig. 4). LINSIGHT was not involved in asses-
sing pathogenic and benign coding variants because it
mainly inferred the selective pressure on noncoding sites
and only provided scores for noncoding sites. We
randomly selected 12,035 variants in chromosome 22
from the 1000 Genomes project (Phase 3 variant calls),
and we downloaded the variant data sets used in the
Eigen paper, which presented the four other types of
variant data sets. In total, we obtained 16,545 patho-
genic/likely pathogenic variants and 3482 benign or
likely benign nonsynonymous variants from the ClinVar
database, 121,507 recurrent somatic noncoding variants
in the COSMIC database [1], and 14,915 cSNPs that
were found to be genome-wide significant and were re-
ported in the GWAS Catalog at the National Human
Genome Research Institute (NHGRI). After removing
the variants used in the training dataset, the common
variants were reduced to a total of 11,035 variants, and
the benign/likely benign variants and pathogenic/likely
pathogenic variants were reduced to 1671 and 2429,
respectively. Similarly, the number of recurrent variants
and cSNPs from the GWAS Catalog were reduced to
120,437 and 11,570, respectively. After generating these
five datasets, PAFA and the six other tools were used to
compute scores to evaluate these variants.
As shown in Additional file 1: Table S2, all tested

tools (except for GWAVA, which aims to predict the
functional impact of noncoding genetic variants) per-
form well in distinguishing pathogenic coding variants
from benign ones, with AUC values ranging from
0.702 to 0.885. However, when we evaluated their
abilities in prioritizing recurrent noncoding variants
and cSNPs from common variants in the 1000
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Genomes, some tools exhibited decreased perform-
ance with AUC values < 0.5 (Fig. 4e and Add-
itional file 1: Table S2). Besides PAFA, which
performed well with an AUC value of 0.701 (Fig. 4a),
Region score of GWAVA, Eigen, coding, and noncod-
ing scores of FATHMM-MKL and CADD exhibited
moderate performance in distinguishing recurrent
noncoding variants from common variants with AUC
values ranging from 0.534 to 0.589 (Fig. 4 b–d, f ). In
general, among these supervised and unsupervised al-
gorithms, PAFA achieved comparable performance to
CADD and Eigen on pathogenic coding variants, with
an AUC value of 0.821. Remarkably, PAFA exhibited
the best performance in discriminating multiple types
of variants associated with complex diseases or traits,
with an AUC value of 0.796 for prioritizing recurrent
noncoding variants and an AUC value of 0.701 for
prioritizing cSNPs (Fig. 4a and Additional file 1: Table S2).

Prioritizing coding risk variants
We first compared the performance of PAFA, Eigen,
CADD, GWAVA, FATHMM-MKL, and DANN on pri-
oritizing coding variants from five well-studied genes
(MLL2, CFTR, BRCA1, BRCA2, and TERT) associated
with Kabuki syndrome, cystic fibrosis, breast cancer, or
aggressive thyroid tumor, respectively. After removing
variants used in the training stage of PAFA, we obtained
37 disease-associated variants in BRCA1, 15 in BRCA2,
41 in CFTR, 92 in MLL2, and 42 in TERT. At the same
time, variants of these genes that were labeled benign in
ClinVar were obtained for comparison. The p values
were determined by comparing the scores of
disease-associated variants with those of benign variants
using a Wilcoxon rank-sum test. As shown in Add-
itional file 1: Table S3, for variants in BRCA1, CFTR,
and MLL2, most tools could identify risk variants from
benign ones with p values smaller than 0.05. However,
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for variants in BRCA2 and TERT, PAFA outperformed
all other methods by prioritizing more variants with
much more significant p values.
We further evaluated PAFA’s performance in prioritiz-

ing risk coding variants from adjacent variants utilizing
two cancer-related coding variant sets. The first dataset
includes 916 driver variants that were identified from
560 breast cancer samples in a recent study [37]. These
driver variants are all located in coding regions. Corres-
pondingly, variants adjacent to these disease-related
variants (50 bp upstream and downstream) were
extracted from 1000 Genomes and were used as the
control dataset. As shown in Additional file 1: Figure
S15A, previous methods, such as CADD, DANN, and
FATHMM-MKL, exhibited good performance on priori-
tizing rare pathogenic variants from adjacent common
variants, with AUC values larger than 0.8. PAFA exhib-
ited the best performance with an AUC value of 0.947.
Without population-level metrics, the PAFA classifier
exhibited a decreased AUC value dropping to 0.714
(Additional file 1: Figure S16A–16B), which indicates
that population-level metrics can greatly improve the
performance of PAFA in discriminating coding risk
variants from common variants. To further explore the
role of various features used in the PAFA classifier, we
constructed three models using different features. As
shown in Additional file 1: Figure S16C–16E, all three
features, including evolutionary conservation, genomic
annotations, and population-level metrics, exhibited the
ability to prioritize these breast cancer-related variants.
Among them, population-level metrics showed an AUC
value of 0.969, where common variants with low popula-
tion differentiation indexes were assigned relatively low
scores, and rare variants exhibited an even distribution
of scores. In the following, we constructed five different
models using various combinations of the training
datasets (Additional file 1: Figure S16F–16J). After
removing pathogenic rare variants from the training
datasets, the PAFA classifier cannot distinguish breast
cancer-related rare variants from adjacent common
variants, with an AUC value of 0.052 (Additional file 1:
Figure S16F).
The second dataset contains 6133 ovarian serous

cystadenocarcinoma (OSC)-related variants that were
obtained from the TCGA database [69]. More than 97%
of these variants overlapped with exons. Correspond-
ingly, we generated rare noncoding variants as the
control dataset by simulating variants of the number of
OSC-associated variants ten times; these variants are
adjacent to the risk rare variants (50 bp upstream and
downstream). PAFA, CADD, FATHMM-MKL, and
LINSIGHT exhibited an ability to discriminate
OSC-associated variants from simulated rare noncoding
variants, with AUC values ranging from 0.565 to 0.682

(Additional file 1: Figure S15B), and PAFA exhibited the
best performance. We constructed different PAFA
classifiers to test feature groups as described above
(Additional file 1: Figure S17A–E). The PAFA classifier
that was constructed based on genomic annotations
exhibited fairly good performance, with an AUC value of
0.747 (Additional file 1: Figure S17C), and the classifier
constructed based on evolutionary conservation features
had a moderate performance, with an AUC value of
0.543 (Additional file 1: Figure S17D). As expected,
when the PAFA classifier utilized population-level
metrics alone, it had no ability in discriminating risk rare
variants from simulated ones, with an AUC value of 0.48
(Additional file 1: Figure S17E), since we only had
population differentiation information of variants with
frequencies of at least 1% in the populations studied in
the 1000 Genomes. However, PAFA performed better
than the PAFA classifier without population-level
features (Additional file 1: Figure S17A–B). In addition,
we found that the pathogenic rare variants and
simulated rare benign noncoding variants in the training
datasets also contributed to the performance of PAFA
(Additional file 1: Figure S17F–17J).

Applying PAFA to noncoding genetic variants associated
with complex diseases
To assess PAFA’s performance in prioritizing noncoding
variants associated with complex diseases and traits, we
first compared PAFA with seven tools, namely, DIVAN,
LINSIGHT, Eigen, GWAVA, CADD, DANN, and
FATHMM-MKL. The tools were used to prioritize
diseases or traits related to variants in the GRASP
database [35], which includes approximately 8.87 million
SNPs identified from 2082 GWAS. Considering that
DIVAN constructed a specific classifier for each disease
and only provided scores for variants related to 45
diseases, we selected 36 matched variant sets in GRASP
as a test dataset; over 85% of these variants were
noncoding common variants. The corresponding benign
variants were randomly selected by sampling all the risk
variants from the 1000 Genomes ten times; all GRASP
variants were excluded from sampling. As shown in
Fig. 5a, CADD, DANN, FATHMM-MKL, and the Region
scores provided by GWAVA exhibited poor ability in pri-
oritizing common variants associated with complex dis-
eases/traits. Unsupervised methods, namely, LINSIGHT
and Eigen, exhibited moderate performance in some
diseases/traits, such as heart failure and ulcerative colitis,
with AUC values larger than 0.55. PAFA achieved the best
performance out of all methods, with AUC values in the
range of 0.738–0.858 (median 0.799), followed by the per-
formance of TSS and Region scores provided by DIVAN
and Unmatched and TSS scores provided by GWAVA.
DIVAN achieved comparable performance with PAFA in
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several immune diseases, such as Behcet syndrome and
systemic lupus erythematosus. Moreover, we found that
PAFA outperformed all other methods in prioritizing
variants associated with immune-related diseases, cancers,
and cardiovascular diseases, with a median AUC value of
0.810.
Next, we selected two of the most recently published

functional variant sets identified by genome-wide associ-
ation studies to further evaluate the performance of
PAFA. The first dataset includes 221 variants associated
with human blood metabolites [38], among which 150
are common noncoding variants. The second dataset
contains 647 common variants associated with macular
telangiectasia type 2 [39], among which are 554 common
noncoding variants. For each dataset, variants adjacent
to the disease-related variants were extracted from 1000
Genomes and were used as the corresponding control
dataset. Ultimately, we obtained 706 variants for human
blood metabolites and 1764 for macular telangiectasia
type 2 as control datasets. As shown in Fig. 5b, c, PAFA
exhibited the best performance out of all the tools in
prioritizing these complex disease/traits related to
variants identified by whole-genome sequencing, with an
AUC of 0.710 for human blood metabolites and 0.736
for macular telangiectasia type 2. The Region scores
provided by GWAVA exhibited moderate performance

in prioritizing blood metabolites, with an AUC of 0.563.
The TSS and Unmatched scores provided by GWAVA
exhibited an ability to prioritize macular telangiectasia
type 2, with AUC values of 0.621 and 0.579, respectively.
Except for PAFA and GWAVA, the other tools exhibited
a poor ability to prioritize the two functional variant
datasets identified from GWAS. Genomic annotations
and conservation metrics were not efficient to discrimin-
ate common noncoding functional variants from
common noncoding neutral variants (Additional file 1:
Figure S18A–18B, S19A–19B). For blood metabolites
and macular telangiectasia type 2, the PAFA classifier
constructed based on population-level metrics had
improved performance, with AUC values of 0.884 and
0.826, respectively (Additional file 1: Figure S18C,
S19C). In addition, the training data from GWASdb and
1000 Genomes also contributed to the performance of
PAFA (Additional file 1: Figure S18F–18G, S19F–19G).
Without the training data from GWASdb or 1000
Genomes, the PAFA classifier exhibited a dramatic
decrease in its ability to prioritize common variants
associated with diseases from adjacent common variants,
with AUC values of 0.405 and 0.556, respectively, for
human blood metabolite-related variants and AUC
values of 0.350 and 0.559, respectively, for macular
telangiectasia type 2-related variants.
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Fig. 5 Performance comparison on prioritizing noncoding variants associated with complex diseases. a Heatmap of AUC values for performance
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1000 Genomes
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Applying PAFA to cancer-related noncoding variants
To assess PAFA’s ability in discriminating common
recurrent from non-recurrent variants, we selected ten
cancer-related variant sets from ICGC Cancer Genome
Projects [36] (Additional file 1: Table S4). We selected
variants located in noncoding regions as well as those
recorded in 1000 Genomes, obtaining 127~74,685
noncoding common variants for each cancer dataset.
Here, we deemed a noncoding variant that was observed
in at least two donors of a specific cancer as a recurrent
noncoding variant. As shown in Fig. 6a, for common
variants from THCA-SA, most of the methods exhibited
an ability to prioritize recurrent variants from
non-recurrent ones, with AUC values ranging from 0.5
to 0.56. However, except for PAFA, these methods
exhibited poor performance for variants from other pro-
jects. For variants from BTCA-JP, BOCA-FR, LAML-KR,
PAEN-AU, PAEN-IT, and EOPC-DE, most of the previous
methods (LINSIGHT, Eigen, FATHMM-MKL, CADD,

and DANN) could not discriminate recurrent from
non-recurrent noncoding variants, with AUC values
ranging from 0.369 to 0.496. PAFA, however, exhibited
better performance in prioritizing recurrent noncoding
variants, with AUC values larger than 0.5 for seven out of
ten samples.
To explore the role of population-level metrics on

common noncoding variants introduced in the PAFA
classifier, we tested its ability in prioritizing recurrent
variants from non-recurrent ones by removing
population-level features. Under default settings, the
PAFA classifier exhibited better performance in discrim-
inating common recurrent variants according to ten
cancer-related variant sets from ICGC (Fig. 6b). After
removing population-level features, however, recurrent
variants tended to have more decreased scores than
non-recurrent variants (Fig. 6c).
To assess PAFA’s ability in discriminating rare recur-

rent variants, we first compared PAFA’s performance in
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prioritizing noncoding rare risk variants from adjacent
common variants with other algorithms. For variants
from ICGC, we selected variants located in noncoding
regions as well as those not recorded in 1000 Genomes,
and we obtained 963, 242,564, 5408, 129,975, 31,632,
76,763, 95,741, 25,388, 1181, and 111,088 noncoding
rare variants for BLCA-CN, COCA-CN, ESCA-CN,
PAEN-AU, BOCA-FR, EOPC-DE, PAEN-IT, BTCA-JP,
THCA-SA, and LAML-KR, respectively (Additional file 1:
Table S4). For each of the ten variant sets from ICGC,
benign variants adjacent to the cancer-related variants
(50 bp upstream and downstream) were extracted from
1000 Genomes and were used as control datasets. As
shown in Fig. 6d, the previous methods exhibited
unstable and relatively poor performance in discriminat-
ing noncoding rare risk variants from adjacent common
variants. For example, CADD, DANN, Eigen, and
FATHMM-MKL exhibited an ability to prioritize rare
risk variants from PAEN-IT, PAEN-AU, BOCA-FR, and
ESCA-CN, with AUC values ranging from 0.502 to
0.561, but they could not discriminate cancer-related
variants from LAML-KR and THCA-SA, with AUC
values ranging from 0.414 to 0.488. PAFA outperformed
all other methods in all ten variant sets, with AUC
values ranging from 0.682 to 0.877. As shown in Add-
itional file 1: Figure S20, the good performance of PAFA
relied on the introduction of population differentiation
features. Because these benign common variants are
close to the cancer-related variants, prioritization
methods that were solely based on genomic annotations
did not perform well. According to LINSIGHT scores,
noncoding rare risk variants from ESCA-CN, BLCA-CN,
and BTCA-JP exhibited higher degrees of evolutionary
constraint than adjacent common variants, with AUC
values ranging from 0.509 to 0.539, but the noncoding
rare risk variants from the other seven projects exhibited
indistinguishable or lower degrees of evolutionary
constraint compared with adjacent common variants,
with AUC values ranging from 0.452 to 0.5. More-
over, we assessed the six tools’ performance in priori-
tizing rare recurrent noncoding variants, which are
population-irrelevant. As shown in Fig. 6e, all current
methods exhibited poor performance in prioritizing
rare recurrent noncoding variants from non-recurrent
ones. Among these algorithms, PAFA achieved the
best performance in THCA-SA, BLCA-CN,
LAML-KR, ESCA-CN, COCA-CN, BTCA-JP, and
PAEN-AU. LINSIGHT, CADD, DANN, Eigen, and
FAHMM-MKL exhibited an ability to discriminate
rare recurrent noncoding variants in THCA-SA, with
AUC values larger than 0.5. LINSIGHT also exhibited
a slight discrimination ability for variants from
BLCA-CN, COCA-CN, and EOPC-DE, with AUC
values of 0.503, 0.503, and 0.51, respectively.

An integrated online platform for PAFA
We developed an online platform to facilitate the use of
PAFA. Precomputed PAFA scores for all 231 million
variants of dbSNP and 2.68 billion single nucleotide
variants throughout the human genome are integrated
into this online platform, where users can access these
precomputed PAFA scores through batch download or
can submit a list of genomic locations or variants of
interest to obtain target PAFA scores and gene-centric
annotations. As shown in Additional file 1: Figure S6,
this platform provides a simple and intuitive interface to
help users determine the functional significance of vari-
ants. Its major functions include performing enrichment
analysis for variants; annotating variants with known risk
variants, genomic annotations, disease-associated genes,
and pathways recorded in curated databases (e.g.,
ClinVar, COSMIC, and ENCODE); and providing scores
for target variants based on their associated genes’
occurrence frequency in disease-related databases.
Moreover, for variants that are found in 1000 Genomes,
population-level information is also shown, including
the FST index, allele frequency spectrum, and associated
genomic elements. All curated knowledge data have
been stored in MySQL, the platform was developed in
JAVA, and the interactive interface was created with
HTML5 and JavaScript.

Discussion
PAFA is an integrative method for prioritizing clinically
relevant variants from background variants by concen-
trating on factors associated with population-specific
diseases/traits and common variants with weak effect.
Through extensive evaluations, we demonstrated that
PAFA consistently outperforms the latest published
supervised and unsupervised methods. First, PAFA
exhibits the best performance in discriminating signifi-
cant cSNPs in the GWAS Catalog and recurrent somatic
noncoding variants in the COSMIC database from
common variants in 1000 Genomes. Second, PAFA
exhibits high sensitivity and specificity in prioritizing
pathogenic variants related to Mendelian diseases as well
as prioritizing coding risk variants from both adjacent
common variants and simulated noncoding variants.
Third, PAFA has an increased capability to prioritize
common variants related to 36 complex diseases/traits
and two newly published variant sets identified by
genome-wide analyses from background variants with
population-level metrics. It also outperforms previous
methods in discriminating recurrent common noncod-
ing variants from non-recurrent noncoding variants. In
addition, PAFA also provides gene-centric functional
annotations for variants based on the integrated
annotated functional elements. To facilitate its usage, we
developed a user-friendly online platform that not only
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allows users to evaluate variant sets by PAFA but also
provides multiple functions, including enrichment
analysis on target variant sets and comprehensive
annotations for variants/genes.
Previous supervised classifiers are good at prioritizing

coding functional variants but have limited ability to
prioritize and annotate noncoding variants. As an
unsupervised method, Eigen avoids the problem caused
by erroneous labeling, but it still cannot distinguish
complex disease-/trait-associated variants from the
background variants. PAFA exhibited much better
performance in prioritizing noncoding variants than the
currently available approaches, no matter supervised or
unsupervised methods, under comprehensive evalua-
tions. Its good performance can be attributed to three
types of improvements. First, PAFA employs a population
differentiation index to prioritize population-specific
associations of common risk variants for complex
diseases. This feature relies on the variants in Phase 3 of
1000 Genomes and considers both population difference
and diversity within populations by calculating FST and
dispersion score (DS). It improves the performance of
PAFA in prioritizing common functional noncoding
variants from background variants. Second, the
optimization of training datasets from GWASdb and 1000
Genomes helps PAFA prioritize common functional
variants and reduce its false-positive rate. Due to the
limited amount of verified functional noncoding variants,
we introduced cSNPs from GWAS, which is composed of
tens of thousands of loci associated with various human
diseases and traits. Since noncoding variants are suspected
of disrupting the normal regulatory control mechanisms
of target genes [18], we selected significant cSNPs that
overlap genomic elements from GWASdb as functional
variants in the training stage. Considering that 1000
Genomes may contain a large number of functionally or
clinically important variants, we selected likely benign
variants from 1000 Genomes utilizing multiple filtration
strategies. Based on the cSNPs used in the training stage,
we constructed a regressive model and selected variants
from 1000 Genomes with the least similarity and low
population differentiation indices as control variants.
Third, we integrated multiple genomic annotations and
selected verified pathogenic variants from ClinVar as a
part of PAFA’s training set, and the results showed that
PAFA exhibited improved performance in prioritizing
recurrent from non-recurrent variants and performed well
in discriminating noncoding risk variants.
In this work, we describe PAFA, an effective method

for the prioritization and functional assessment of
genetic variants associated with complex traits or dis-
eases, particularly population-relevant noncoding vari-
ants. PAFA employs a sophisticated model for feature
integration by combining multiple features, including

genomic annotations, evolutionary conservation metrics,
and population differentiation metrics. The population
differentiation index is adopted to improve predictive
performance due to the high genetic differentiation of
cSNPs among human populations. Genomic annotations
help PAFA discriminate risk variants by the information
of genomic elements the variants overlapped. Functional
regions are more likely to have higher evolutionary
conservation degree than neutral regions. These features
work together by employing a sparse logistic regression
algorithm with L1 regularization, and this algorithm is
fit for sparse matrices by ignoring missing values. In
addition, to avoid strong model assumptions, PAFA
employs an integrative supervised approach. Considering
that the number of verified noncoding variants is
limited, PAFA selects the training set from curated
databases with multiple filtration strategies. This
combination of more efficient features and reliable
training sets makes PAFA more powerful and robust
than existing state-of-the-art methods, both supervised
and unsupervised, in detecting functional noncoding
variants. However, as a correctly labeled training set is
the key to improving the sensitivity and accuracy of
prioritization methods, more verified annotated noncod-
ing variants are still expected. Pre-computed PAFA
pathogenicity scores for 2.68 billion human SNVs based
on the GRCh37/hg19 assembly are now available for batch
download through our constructed online platform. Users
can navigate variants based on either GRCh37/hg19 or
GRCh38 using the lift-over tool integrated in PAFA. We
will update the PAFA tool and its web portal when new
versions of annotated noncoding variants and genomic
annotations (e.g., ClinVar and ENCODE) are available.
New released resources, like gnomAD frequency data
[70], are expected to be integrated in a future update. We
believe that PAFA will be an indispensable tool for
prioritizing and annotating functional noncoding variants
that are associated with complex traits or diseases.

Conclusion
This study presents a novel supervised algorithm for
prioritization and functional assessment of genetic
variants associated with complex diseases or traits,
especially for noncoding variants. It introduces measures
to evaluate genetic differentiation of variants among
different population groups. PAFA also recalibrates
abundant training variants from curated databases with
multiple new filtration strategies. Through comprehen-
sive performance evaluations, as well as compared with
previous methods, we demonstrated that PAFA exhibits
a much better performance on prioritizing both coding
and noncoding risk variants as well as discriminating
recurrent from non-recurrent variants. We further
constructed a user-friendly web server, which not only
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allows users to evaluate variants using PAFA but also
provides comprehensive functional annotations by
integrating abundant functional genomic elements.

Availability and requirements
The availability and requirements are listed as follows:
Project name: PAFA
Project home page: http://159.226.67.237:8080/pafa;

http://bioinfo.biols.ac.cn
Operating system(s): platform independent.
Programming language: Java, MySQL, JavaScript, HTML5.
Other requirements: Chrome, Firefox, Safari.
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Additional file 1: Table S1. A tabular comparison between PAFA and
seven other ensemble classifiers aimed at detecting functional/
deleterious variants from background variants. Table S2. Comparisons
among PAFA, Eigen, CADD, GWAVA, DANN, FATHMM-MKL, and LINSIGHT
in evaluating variants from four curated databases, including ClinVar,
1000 Genomes, GWAS Catalog, and COSMIC. Table S3. Comparisons
among PAFA, Eigen, CADD, GWAVA, FATHMM-MKL, and DANN in
discriminating pathogenic variants from benign variants associated with
Mendelian diseases. Table S4. Statistics often cancer-related variant sets
from ICGC projects. Figure S1. Genetic and genomic resources used in
PAFA and their screenshots. Figure S2. Genetic and genomic resources
used in the 1000 GENOMES part of the PAFA online platform and their
screenshots. Figure S3. Genetic and genomic resources used in the
ANNOTATION part of the PAFA online platform and their screenshots.
Figure S4. Genetic and genomic resources used in the VSEA part of the
PAFA online platform and their screenshots. Figure S5. Genetic and
genomic resources used in the SEARCH part of the PAFA online platform
and their screenshots. Figure S6. An integrated PAFA online platform for
variant prioritization and functional annotation. Figure S7. Flowchart of
selecting and filtering training variants used in PAFA. Figure S8. Tenfold
cross-validations are applied to evaluate the performance of features used
in PAFA. Figure S9. Distribution of allele frequencies for 24 cancer-
associated variant sets from GWASdb among super populations. Figure
S10. Distribution of allele frequencies for nine complex trait-associated
variant sets from GWASdb among super populations. Figure S11.
Distribution of allele frequencies for eight mental disorder-associated
variant sets. Figure S12. Distribution of allele frequencies for 17 complex
disease-associated variant sets. Figure S13. Distribution of FST values for
variant sets associated with complex diseases and traits. Figure S14.
Enriched pathways of genes associated with coding and noncoding
variants. Figure S15. Sensitivity and specificity of tools in distinguishing
coding risk variants from adjacent variants. Figure S16. Distributions of
PAFA scores for breast cancer-related variants and adjacent variants from
the 1000 Genomes. Figure S17. Distributions of PAFA scores for OSC-re-
lated variants from TCGA and simulated noncoding rare variants. Fig-
ure S18. Distributions of PAFA scores for human blood metabolite-
related variants and adjacent variants from 1000 Genomes. Figure
S19. Distributions of PAFA scores for macular telangiectasia type 2-
related variants and adjacent variants from 1000 Genomes. Figure
S20. Distributions of PAFA scores for bladder cancer-related variants
and adjacent variants from 1000 Genomes. (PDF 2069 kb)
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