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Abstract

Advanced cancer genomics technologies are now being employed in clinical sequencing, where next-generation
sequencers are used to simultaneously identify multiple types of DNA alterations for prescription of molecularly
targeted drugs. However, no computational tool is available to accurately detect DNA alterations in formalin-fixed
paraffin-embedded (FFPE) samples commonly used in hospitals. Here, we developed a computational tool tailored
to the detection of single nucleotide variations, indels, fusions, and copy number alterations in FFPE samples.
Elaborated multilayer noise filters reduced the inherent noise while maintaining high sensitivity, as evaluated in
tumor-unmatched normal samples using orthogonal technologies. This tool, cisCall, should facilitate clinical
sequencing in everyday diagnostics. It is available at https://www.ciscall.org.

Background
In recent years, large-scale cancer genome projects such
as the International Cancer Genome Consortium [1–3]
(ICGC) and The Cancer Genome Atlas (TCGA) have
greatly expanded the available knowledge on genomic
alterations in cancer. Along with this increasing know-
ledge, the number of investigational and approved drugs
that target aberrant gene products continues to grow
[4]. Genomics technologies that have matured through
research are now being translated to the clinical setting.
In cancer clinical sequencing, next-generation sequen-
cing (NGS) is applied to identify genetic alterations in
biopsy or surgical specimens [4–6]. The detected
variants are used as targets for molecularly targeted
drugs. The advantage of NGS technologies is that they
allow the simultaneous detection of various types of ab-
errations, i.e., single nucleotide variations (SNVs), indels,

copy number alterations (CNAs), and gene fusions, in a
multitude of genes.
A practical application of clinical sequencing is the

identification of DNA alterations in the exons of
hundreds of genes in formalin-fixed paraffin-embedded
(FFPE) samples, as reported by Frampton et al. [6]. FFPE
samples are the first choice for clinical sequencing be-
cause such archival samples are needed for mandatory
pathological examination, and their storage at room
temperature is substantially less costly than that of fresh
frozen tissues. One critical issue is the accurate calling
of DNA alterations from FFPE-based sequencing data.
Chemical processing damages and fragments genomic
DNA, resulting in increased error rates and artificial
base substitution bias [6–8]. Moreover, low tumor purity
[6] and the non-availability of matched normal samples
and panels of normal (PON) samples [9] are frequent
problems peculiar to clinical sequencing that arise owing
to practical and ethical reasons.
Most current computational tools [9–21] for calling

cancer DNA alterations have been developed for
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exploratory research, mostly assuming the use of fresh
frozen samples with relatively high tumor purity for Illu-
mina exome/genome sequencing. Some tools for SNVs
assume low tumor content but high read depth [22, 23].
Clearly, these tools are not optimal for FFPE sequencing.
One successful variant caller for FPPE samples has been
reported by a private company [6]; however, the software
is not publicly available.
Here, we report the development of an accurate caller

termed “clinical sequencing caller” (cisCall), specialized
for identifying DNA alterations from FFPE samples. cis-
Call is composed of cisMuton, cisFusion, and cisCton,
which respectively call SNVs/indels, DNA gene fusions,
and CNAs. We show that this computational tool ex-
hibits high performance under a variety of experimental
conditions. In this report, we focus on the bioinformatics
research aspects of the present calling tool for FFPE
samples. The regulatory or clinical testing standards, as
well as the clinical significance and the validity of experi-
mental processes (which have been discussed elsewhere
[24]), are beyond the scope of this work.

Methods
Materials
Sequencing data were derived from cell lines (HCC78
and NCI-H2228), patient samples, and a commercial
sample. HCC78 and NCI-H2228 were provided by
Dr. John D. Minna of the UT Southwestern Medical
Center. Snap-frozen tumor and normal tissues as well as
FFPE archival samples that had been obtained at diagnosis
were provided by the National Cancer Center (NCC)
Biobank. A commercial synthetic human FFPE sample,
HD200, was purchased from Horizon (Cambridge, United
Kingdom). Twenty normal DNA samples were extracted
from noncancerous lung tissues deposited in the NCC
Biobank (the biobank did not collect control
non-pathological FFPE samples). Half of the lung tissues
were from smokers. From the mixture of the 20 normal
DNA samples, an unmatched pooled sample was prepared
and used as a background dataset in alteration calling. In
total, 70 FFPE clinical samples were used as foreground
datasets for SNV/indel analysis, and 75 FFPE clinical sam-
ples were used as foreground datasets for CNA analysis
(five samples were increased because CNA analysis was
performed later than SNV analysis). The details on
samples are summarized in Additional file 1: Table S1. We
validated alterations in 27 and 23 FFPE samples for SNV/
indel and CNA analyses, respectively.
Genomic DNA from FFPE tissues was prepared with a

QIAamp DNA FFPE tissue kit (Qiagen, Hilden,
Germany) and quantified using a Qubit dsDNA BR assay
kit (Thermo Fisher Scientific, Waltham, MA, USA) as
well as quantitative PCR analysis. The ratio of
PCR-amplifiable DNA to total dsDNA indicates DNA

quality. When this quality value was ≥ 0.1, samples
were retained for sequencing. We further selected
FFPE samples with a pathologically measured tumor
purity of ≥ 10%.

Targeted Illumina sequencing
We used custom gene panels for target capture sequen-
cing: the NCC oncopanel v1 (all exons of 134
tumor-related genes and introns of three fusion genes)
and v2 (all exons of 90 tumor-related genes and introns
of 35 fusion genes; Additional file 2: Table S2) and the
NCC Hospital East oncopanel (all exons of 121
tumor-related genes and introns of 12 fusion genes).
The bait libraries were designed with SureDesign (Agi-
lent Technologies, Santa Clara, CA, USA). Sequencing
libraries were prepared using SureSelect XT reagent
(Agilent Technologies), and paired-end read sequencing
was performed on MiSeq or HiSeq sequencers (Illumina,
San Diego, CA, USA).

Targeted Ion sequencing
We used custom gene panels for target capture sequen-
cing: the NCC oncopanel v1 and the RET panel (37
fusion genes), the latter of which was specifically
designed for genes fused with RET [25–28]. The bait
libraries were designed with SureDesign, and the
sequencing libraries were prepared using SureSelect XT
reagent. For amplicon sequencing, we used the commer-
cial Ion AmpliSeq Cancer Hotspot Panel v2 (hotspot
regions of 50 genes; Thermo Fisher Scientific). The se-
quencing libraries were prepared using an Ion AmpliSeq
Library Kit (Thermo Fisher). Single-end read sequencing
was performed on Ion PGM or Proton sequencers
(Thermo Fisher).

Validation of SNVs/indels by mass spectrometry
SNVs/indels were validated by iPLEX SNP genotyping
using Sequenom MassARRAY, according to the manu-
facturer’s instructions (Agena Bioscience, San Diego,
CA, USA). PCR primers and an extended primer were
designed using Assay Design Suite software (Agena Bio-
science). After PCR amplification and single-nucleotide
extension, data were collected on the MassARRAY
Analyzer 4 system.

Validation of CNAs by qPCR
CNAs were validated by qPCR using TaqMan Fast Uni-
versal Master Mix and TaqMan probes (Additional file 3:
Table S3) on an Applied Biosystems 7500 Fast Sequence
Detection System according to the manufacturer’s in-
structions (Applied Biosystems, Foster City, CA, USA).
Samples were run in triplicate and standardized against
endogenous RNase P with RNase P Detection Reagents
Kit (Applied Biosystems).
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cisMuton
cisMuton was developed for variation calling from Illu-
mina sequencing data from FFPE samples and Illumina/
Ion sequencing data from frozen tissues. cisMuton uses
FASTQ and BAM file formats. The algorithm comprises
prep filters, the variant extraction step, and eight and
nine noise filters for Illumina and Ion sequencing data,
respectively (Additional file 2: Figure S1). The prep fil-
ters filter out reads based on mapping and base qualities.
The variant extraction step uses several statistics derived
from Fisher’s exact test to detect A/C/G/T and indels at
each chromosomal position. The subsequent noise filter
consists of three sets. The first set contains the misalign-
ment filter, strand-bias filter, and others, for which we
utilized as many statistical tests and internal controls as
possible. Filters in the second set remove erroneous
reads and trim erroneous read ends, followed by a
second Fisher’s exact test for the remaining reads. Filters
in the third set remove errors that escaped the previous
filters, utilizing statistical tests based on variant allele
frequencies (VAFs). The algorithmic details are
described in Additional file 2: Text S1.

cisFusion
cisFusion is a fusion caller applicable to single-end (Ion)
and paired-end (Illumina) DNA sequence reads. cisFu-
sion searches for a gene fusion of which at least one
gene is indicated by a user. The algorithm consists of
the “2map” and “VF” steps for the single-end mode, and
further of the “paired-end” step for the paired-end mode
(Additional file 2: Figure S2). The 2map step searches
for reads that are mapped to two different genes on the
right and left ends, with fusion breakpoints. The VF step
saves reads that are missed by the 2map step because of
too short alignment, using “virtual fusion” sequences
constructed from reads found in the 2map step. The
paired-end step searches for R1 and R2 reads between
which a fusion breakpoint exists. The algorithmic details
are described in Additional file 2: Text S1.

cisCton
cisCton first executes a GC-content correction, in which
locally weighted scatterplot smoothing (LOWESS)
regression between binned depths and GC content is
performed to correct the depths. Then, it performs cir-
cular binary segmentation (CBS) with a non-parametric
statistic (the Mann–Whitney U statistic) for logR calcu-
lated from the GC-corrected depths. For a fast computa-
tion, cisCton splits a chromosome into windows of a
specified size, within which it performs CBS to finally
compile the CBS results to chromosome-size segments.
It then executes the abortion process: it aborts a seg-
ment if the number of individual logR values that deviate
from the median logR of a segment exceeds a threshold.

Finally, cisCton defines amplifications or deletions by a
bootstrapping approach. The algorithmic details are
described in Additional file 2: Text S1.

Performance evaluation
Details of the procedures for performance evaluation are
presented in Additional file 2: Text S1.

Results
We evaluated cisCall using maximally 75 FFPE samples
from a clinical study for entry into early-phase clinical
trials at the National Cancer Center Japan [24]. In the
study, all exons of 90 genes and reportedly translocated
introns of 35 fusion genes (12 kinases and 23 partners)
were captured by our original gene panel (NCC onco-
panel v2; Additional file 2: Table S2). These exons
and introns were sequenced for the detection of SNVs/
indels, CNAs, and DNA gene fusions. Target capturing
and sequencing were performed using Agilent SureSelect
and Illumina MiSeq. Paired-end 150-base sequencing
reads were obtained. Reads from a tumor sample and
from a frozen sample mixed with noncancerous
samples of 20 individuals were used as test (fore-
ground) and control (background) datasets to call
DNA alterations, respectively.
The FFPE samples were mostly from breast (31%), gas-

tric (29%), and ovarian (14%) cancers; the histologically
determined median tumor content was 40% (interquar-
tile range of 25–65%). The median sequencing depth
was 760× (interquartile range, 526–903×). The traceable
storage time of all but one FFPE sample sequenced on
the basis of the threshold of the FFPE sample quality
(Methods) was less than 10 years. For more detailed in-
formation about the samples, please refer to Additional
file 1: Table S1 and Additional file 2: Figure S3.

SNV/indel calling
Features of cisMuton
cisMuton detects SNVs/indels from targeted sequencing
data. It extracts variants using a non-parametric test,
Fisher’s exact test [10], by statistically comparing the
numbers of A/C/G/T and insertions/deletions of a
tumor sample with those of a control sample at each
chromosomal position. We chose this method because a
non-parametric test makes fewer assumptions than
model-based (likelihood or Bayesian) methods; no as-
sumptions are made on Phred scores or error rates,
for which the calibration and degrees may differ be-
tween FFPE and frozen samples and between different
experimental conditions.
cisMuton is characterized by elaborate noise filters

to manage the high level of noise in FFPE samples
(Additional file 2: Figure S1). Variant extraction
methods such as the frequency cutoff method [29]
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and likelihood or Bayesian methods [11–15, 22, 23]
alone do not suffice to filter out noise that arises
from errors correlated between different chromosomal
positions, such as misalignment. Because we observed
that FFPE samples produce many correlated errors,
we focused on the improvement of noise filters by
incorporating multiple, robust statistical tests and
internal controls (e.g., error rates calculated from the
data), resulting in a greater flexibility to handle data
with different qualities.
We devised the following filters: 1) misalignment filter,

2) strand-bias filter, 3) within-long-homopolymer filter, 4)
MQ0 filter, 5) read-end-call filter, 6) surrounded-by-dust
filter, 7) abnormal-BQ-drop filter (for Ion-derived indels
only), 8) second Fisher filter combined with mismatch
filter and trim filter, and 9) VAF-lees filter.
For example, the VAF-lees filter removes “lees” of calls

that show suspiciously low VAFs but are not filtered by
the other filters for unknown reasons. The distribution
of VAFs is regarded as a beta-mixture distribution and
the component beta distributions are automatically de-
tected by the expectation maximization algorithm [30].
The algorithm calculates the ICL-BIC criterion [31] to
select the best model of all models with different num-
bers (ranging from 1 to 10) of beta components. The
algorithm then searches for the beta component for
which the distribution’s average is within a range of low
frequencies (e.g., 1–3%), which means that a peak of the
VAFs is found at such a low value. It regards such a
component as an error distribution, and performs a
beta-binomial test for variant and depth counts in a
tumor sample to remove lees. cisMuton itself does not
have any hard cut-off for VAFs, though variants with
low VAFs may be removed from a clinical viewpoint by
the tumor board. The algorithmic details and illustra-
tions of all filters are presented in Additional file 2:
Text S1 and Additional file 2: Figure S1, respectively.
The execution time of cisMuton is typically 1 h
50 min ± 22 (standard deviation (s.d.)) min on a
10-core 2.0 GHz CPU with 264 GB memory for
FASTQ files with 7.9 ± 0.6 million reads (either R1
or R2 reads) with 150-bp length.

Performance evaluation of cisMuton
We evaluated the performance of cisMuton in compari-
son with Mutect [9], Shearwater [23], Varscan2 [10], and
Strelka [11]. We first evaluated these tools using con-
trolled negative/positive data. As negative data, the same
tissue block was used to extract tumor FFPE samples for
foreground data and tumor frozen samples for back-
ground data. Here, not FFPE but frozen samples were
used as the background because we assumed unavailabil-
ity of non-pathological FFPE samples in actual clinical
sequencing. The extracted FFPE and frozen samples

theoretically have the same tumor mutations; therefore,
any calls from these data should be false positives in the
FFPE samples. cisMuton and Mutect yielded no calls
(Fig. 1a). Shearwater and Varscan2 reported some (2 and
10 per 477 kb target size) calls, whereas Strelka gener-
ated ~ 1000 calls per 477-kb target size (Fig. 1a).
For the false-negative rate, we used semi-simulated

data as positive data because it is difficult to know all
variants in natural samples. We randomly mixed reads
from a lung cancer cell line (100% tumor purity) with
reads from an unmatched normal sample to mimic a
wide range of tumor purity. The depth was 970 on aver-
age, where we aimed for a depth of 1000 because our
power calculation suggested that this would be ideal. We
used these mixed datasets and a different normal dataset
as the fore- and background datasets for calling, respect-
ively. Variants genotyped by SNP arrays in the pure
cell-line sample were used as answers. cisMuton showed
100% sensitivity for cell line/normal sample ratios down
to 10%, and nearly 80% sensitivity at a ratio of 5%
(Fig. 1b). Strelka showed the same sensitivity, but the
other tools performed less well. The specificity was al-
most the same (~ 1) among all the tools. Based on both
the negative control and these positive control results,
cisMuton demonstrated the best performance.
Next, we made calls for 70 FFPE samples

(Additional file 2: Figure S4). For each tool, we
counted the number of variants called, as well as
those not called by the given tool but detected by all
other tools, because we considered that such isolated
calls would reflect the specific nature of each algo-
rithm. cisMuton reported the least isolated SNVs and
indels, indicating that it was the most balanced
among all tools (Fig. 1c). For reference, the numbers
of variants removed by the noise filters are shown in
Additional file 2: Table S4. cisMuton’s calls together
with their VAFs and histologically determined tumor
purity are shown in Additional file 2: Figure S5.
Variants with low VAFs (such as < 10%) are recom-

mended to be filtered out in sequencing of FFPE
samples [32]. Because our criterion in this clinical
sequencing was to select FFPE samples with a patho-
logically measured tumor purity of ≥ 10%, we strati-
fied the isolated calls at 5% VAFs (assuming the
maximum major clone in the copy number neutral
state). Even taking into account ≥ 5% VAFs, substan-
tial numbers of isolated calls were found in all of the
other tools for SNVs, and cisMuton was the most
balanced (Fig. 1c). For indels, cisMuton was not the
most balanced anymore; many (23 per 477 kb target
size) indels were called only by cisMuton. Neverthe-
less, validation analysis, as described below, should be
needed for such isolated calls, which may be false
negatives for the other tools.
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We selected variants from isolated calls in Fig. 1c for
validation by mass spectrometry (Sequenom MassAR-
RAY), where calls with ≥ 5% VAFs were selected because
of difficulty in detecting variants with lower VAFs by
mass spectrometry, and because of our criterion to
select FFPE samples with a tumor purity of ≥ 10%. We
refer to false positives/negatives in this isolated-call val-
idation as severe conditioned-false positives/negatives
(SC-FPs and SC-FNs) because isolated calls were

expected to be less validated than the other calls such as
those called by multiple tools. We compared the per-
formance of cisMuton with that of Mutect and Strelka
for SNVs and indels, respectively. Whereas cisMuton
yielded 1/16 SC-FPs and 2/13 SC-FNs, Mutect gener-
ated 15/16 SC-FPs and 11/13 SC-FNs (Fig. 1d). An
Integrative Genomics Viewer [33] screenshot of mass
spectrometry-validated SNVs that were called by cis-
Call but missed by Mutect shows substantial noise around

a b

c

d e

Fig. 1 cisMuton calls. a False-positive SNV calls in negative control data where tumor FFPE (for foreground data) and tumor frozen samples (for
background data) were taken from the same tissue block. The numbers were normalized by target region size (477 k bp). b Sensitivity estimation
using semi-simulated data. We mixed reads from a cell line and reads from an unmatched normal sample to mimic decreasing tumor purity.
Variants genotyped by SNP arrays in the pure cell line sample were used as answers. c Isolated calls, i.e., variants called by each given tool, and
those not called by the given tool but by all the others, in 70 FFPE samples. Target regions were the same between all the tools and the
numbers were normalized by the target region size. d SC-FPs and SC-FNs evaluated by mass spectrometry for variants from the datasets of panel
c. The sample size (n) is indicated below the x-axis. Variants with ≥ 5% VAFs were selected. e Integrative Genomics Viewer (IGV) [33] screenshot of
an SNV that was called by both cisCall and mass spectrometry but missed by Mutect
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the SNV that was supposed to come from FFPE processes
(Fig. 1e). For deletions, cisMuton yielded no SC-FNs,
whereas Strelka generated 4/4 SC-FNs. Both tools did not
greatly differ (one or zero counts) in SC-FP in deletions
and SC-FP/FN in insertions.
We examined factors that may be associated with

performance. 1) SC-FP and SC-FN variants seemed to
be affected by depth and tumor purity. The effective
depth, defined by the depth of each variant × patho-
logically measured tumor purity, was low for the
SC-FP variants in cisCall (median 26.0, compared
with 184.5 for the other variants) and in Mutect
(29.7) (plotted in Additional file 2: Figure S6). The
effective depth was low for the SC-FN variants in
cisCall (53.1) and high for those of Mutect (503.1),
probably due to excess filtering as shown above in
Fig. 1e. 2) The FFPE storage time seemed to affect
the performance. SC-FP tended to be found in older
FFPE samples (median 53.0 and 55.0 months over
samples with SC-FP variants for cisCall and Mutect,
compared with 24.5 months over the other samples;
Additional file 2: Figure S6). 3) Mutation load did not
seem to be related to SC-FP and SC-FN (Additional
file 2: Figure S6), although the range of the number
of mutations was insufficient in this study (5–20 som-
atic mutations detected in 90% of the samples).

Fusion calling
Features of cisFusion
cisFusion detects gene fusions and their breakpoint
positions in either single-end or paired-end targeted
DNA sequencing reads. In contrast, most existing
tools have been developed for RNA-seq or paired-end
whole-genome sequencing [18]. As RNA is more
prone to degradation than DNA, we used DNA for
fusion calling from the FPPE samples. Because most
gene fusions occur in intron regions [25], we designed
capture regions to include such introns. cisFusion uti-
lizes local alignment (BWA-SW [34]) to easily extract
breakpoint positions; in contrast, many other callers
primarily use global alignment, in which additional
complex procedures such as splitting reads are usually
required for extracting breakpoint positions. Please
refer to the “Methods” and Additional file 2: Text S1
for the algorithmic details. cisFusion typically takes
1 h 52 min ± 35 min (s.d.) using the same settings
described above in the cisMuton section.

Performance evaluation of cisFusion
Because the prevalence of fusion genes in actual clinical
samples is very low [35], we used cell lines (n = 5), frozen
tissue (n = 4), and FFPE tissue samples (n = 5) known to
contain fusion genes (Additional file 1: Table S1). We

compared cisFusion with FusionMap [16], which is also
applicable to DNA target sequencing using single- and
paired-end reads. In all 14 datasets, cisFusion ranked
correct fusions as the top candidate, as indicated by
signal-to-noise (S/N) ratios of more than one (Fig. 2a, b).
cisFusion yielded no false positives in all but one case, as
indicated by S/N ratios noted as infinity. In contrast,
FusionMap ranked incorrect fusion candidates as the top
candidate in 12 of the 14 samples, as indicated by S/N ra-
tios of less than one. In two of the five FFPE samples
(Fig. 2b), FusionMap did not even list correct fusions, as
indicated by S/N ratios of zero. Fig. 2c shows an example
of support reads of a fusion gene in an FFPE sample that
was detected by cisFusion but not by FusionMap. Mis-
match bases are substantially observed. The normalized
support read count (Fig. 2a, b) indicates that cisFusion
demonstrated better sensitivity than FusionMap in all
cases except one. In particular, remarkable superiority in
both the specificity (the S/N ratio) and sensitivity was ob-
served in FFPE samples. Additionally, fusion breakpoints
were correctly predicted in 9/9 frozen and 3/5 FFPE cases
by cisFusion, and in 8/9 frozen and 1/5 FFPE cases by
FusionMap (although with some differences in base pairs;
Additional file 4: Table S5).

CNA calling
Features of cisCton
cisCton discovers CNAs in targeted sequencing data on
the basis of the log ratio of the read depth of a tumor
sample to that of a control sample. cisCton utilizes a
non-parametric statistic in the circular binary segmenta-
tion (CBS) framework [36] and a process to abort de-
tected segments with high fluctuations to manage the
strong noise in FFPE data, as shown in Fig. 3a. De-
tails of the algorithm are described in the Methods
and Additional file 2: Text S1. cisCton typically takes
1 h 55 min ± 6 min (s.d.) using the same settings de-
scribed above in the cisMuton section.

Performance evaluation of cisCton
We first evaluated false positives using the same negative
control data as used in SNV/indel calling. Performance
was compared with that of Varscan2 [10], ExomeCNV
[19], and Control-FREEC [20], which can call somatic
CNAs from targeted (or exome) sequencing data by
the read-depth method [21]. For a fair comparison,
we counted the number of amplified or deleted
target-capture regions. In the negative control data,
cisCton called no amplified regions and almost no (3 per
477-kb target size) deleted regions (Fig. 3b, c). The other
tools called hundreds of false amplified and deleted
regions per 477-kb target size (Fig. 3b, c).
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Next, we ran the tools on the 75 FFPE samples. The
Venn diagrams of the calls are shown in Additional file 2:
Figure S7. In clinical sequencing, molecularly targeted

drugs are usually applied to amplifications; thus, we
focused on amplifications. For each tool, we counted iso-
lated calls, i.e., amplified regions called by the given tool,

a

b

c

Fig. 2 cisFusion calls. cisFusion evaluation for cell lines and frozen clinical samples (a) and for FFPE clinical samples (b). The y-axis represents the
signal-to-noise (S/N) ratio: the ratio of the number of support reads for a correct fusion gene to the number of support reads for an incorrectly
detected fusion candidate with the largest number of support reads. S/N > 1, shown with the red broken line, indicates that correct fusions are
ranked at the top. The normalized support read count in the y-axis represents the number of support reads for a correct fusion divided by the
number of all mapped reads. The asterisks indicate datasets where the target panels were designed to capture one gene of a fusion pair; otherwise,
the panels were designed to capture both genes. The details of datasets and panels are presented in Additional file 1: Table S1. Sqcr sequencer. c IGV
[33] screenshot showing an example of support reads in an FFPE sample for a fusion detected by cisFusion but missed by FusionMap
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and those called by the other tools but not the given
tool. cisCton had the lowest count of isolated calls,
whereas ExomeCNV and Control-FREEC yielded ap-
proximately 100 isolated calls (Fig. 3d). From isolated
calls made at the gene level, we randomly selected 65
calls for which qPCR probes were successfully designed.
qPCR experiments revealed that cisCton was most
balanced for SC-FPs (0/59) and SC-FNs (3/6) (Fig. 3e).
ExomeCNV had many SC-FPs (36/59) but no SC-FNs
(0/6). Control-FREEC yielded 21/59 SC-FPs and 5/6
SC-FNs. Varscan2 yielded the same number of SC-FPs
(0/59) as cisCton but slightly more SC-FNs (4/6).

Discussion
We developed an SNV/indel/fusion/CNA calling tool
specialized for data obtained from FFPE samples. cisCall
was previously employed in clinical sequencing for a
clinical study [24], in which a good validation rate of
128/129 for SNVs and 12/13 for indels in 70 samples

was confirmed by mass spectrometry. We also used a
commercially available FFPE reference material and suc-
cessfully detected all eight SNVs with > 5% VAFs, further
obtaining a good concordance between expected and
computed VAFs (R = 0.99; Additional file 2: Figure S8),
although the specificity cannot be evaluated in this type
of material because not all variants are known in ad-
vance. We conducted a rigorous tool comparison using
SC-FPs and SC-FNs based on isolated calls; however, it
is worth noting that these numbers would be inflated
compared with the validation rate based on all calls. A
more rigorous way to evaluate the performance would
be to 1) prioritize samples, 2) call alterations by tools, 3)
validate all alterations called by any of the tools based
on orthogonal methods such as mass spectrometry and
qPCR, and 4) calculate evaluation indices such as speci-
ficity, sensitivity, and F-measure. We demonstrated that
cisCall outperformed currently available tools developed
for exploratory research purposes, which generally as-
sume the use of cell lines or fresh-frozen clinical

a b

c d e

Fig. 3 cisCton calls. a Log ratio values and segmentation in negative control data for an FFPE sample. Red and blue regions indicate regions called as
amplifications and deletions, respectively, despite the data being negative control data. b Normalized numbers of regions called as amplified or deleted
out of the target capture regions in the negative control data of two FFPE samples. The normalization was based on target region size (477 k bp) for
possible comparison with other gene panels with different sizes. No calls are expected in these negative control data. c Violin plots to show the sizes of
consecutive regions in panel b. d Isolated calls, i.e., regions called by each tool, and those not called by the given tool but called by all the other tools,
for 75 FFPE samples. The normalization was based on the target region size (477 k bp). e Numbers of SC-FPs and SC-FNs confirmed by
qPCR for 65 calls randomly selected from the datasets in panel c. The sample size (n) is indicated below the x-axis
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samples. One caveat is that we used default parameters
for the compared tools; we did not use LODT of > 50 for
Mutect, which is recommended for FFPE samples [37].
We reason that our tool performed well because 1) we

used non-parametric statistical methods wherever pos-
sible to absorb abrupt, unpredictable fluctuations stem-
ming from FFPE errors, and 2) we elaborated noise
filters for all types of mutations, such as the misalign-
ment filter for SNVs/indels and the abortion filter for
CNAs. We believe that this design concept also makes
cisCall applicable to reads from Ion sequencers. When
we evaluated the performance of cisMuton for Ion
PGM data using semi-simulated data, it showed the
highest (100%) sensitivity among all tested tools for
cell line/normal mixtures down to 10% cell line ratios
(Additional file 2: Figure S9; the specificity was ~ 1
for all tools).
Commercially developed algorithms for detecting SNVs/

indels and CNAs from FFPE-based sequencing data have
been reported [6]; however, the software is not publicly
available. Moreover, regarding SNVs, the software perform-
ance was systematically evaluated mainly using cell lines,
the sample features of which are more similar to frozen
than to FPPE clinical samples, and based on germline,
not tumor, variants [6]. In addition, the fusion algo-
rithm was not systematically evaluated. Another re-
search group reported an in-house SNV/indel-calling
program fine-tuned for FFPE samples [38]; however,
the detailed algorithm was not described, and the
tools were not subjected to systematic comparison
with other tools. In contrast, we evaluated all SNV/
indel/CNA/fusion calling algorithms in FFPE samples.
Our software tool is publicly available.
Although cisCall showed the best performance on

SC-FN in CNA evaluation (Fig. 3), the SC-FN rate was
relatively high. The reason for this was the discrepancy
in the strength of GC-content correction between FFPE
and frozen samples. Depth values fluctuated more in
foreground FFPE samples than in the background frozen
sample. Depth values in regions with high GC content in
the FFPE samples scattered up to high values. Because
there were only a few high GC content regions in our
targeted regions, the LOWESS curve was easily pulled
upward. GC-content correction was thus weaker in
FFPE samples than in frozen samples for regions with
high GC content, and hence amplification signals in
FFPE samples were cancelled out. cisCall failed to call
CNAs in high GC-content regions. It is necessary to im-
prove the LOWESS procedure for regions with high
GC content. Also, use of control FFPE samples will
be another possibility to improve the baselines for
CNA detection.
The limitations of our algorithms are: 1) large indels

are not targeted, i.e., we assumed indels with

BWA-mapped sizes (≤ 6 bps found in our cases); 2) we
did not assume whole-exome or whole-genome sequen-
cing; and 3) consequently, we cannot handle structural
variations beyond targeted fusion genes. We are cur-
rently working on overcoming these limitations. For
application to different experimental settings, such as
whole-exome sequencing, elaborate parameter tuning
will be necessary. Additionally, application to other gene
panels should be tested and the algorithms and codes
should be improved for faster computation.
Because matched normal samples were not available in

this project, we evaluated our tool in tumor–mixed
normal paired samples. To filter out germline SNPs, we
removed mutations listed in SNP databases and those
with 40–60% and > 96% VAFs. This simple approach can
largely remove germline SNPs and a more sophisticated
approach using machine learning may be possible [39];
however, it is desirable to use matched normal samples
for precise filtering if such samples are available. It is in
principle possible to apply our tool to tumor–matched
normal paired samples and we are obtaining preliminary
results in such samples, though further investigation
should be needed. Off-target reads that mapped on
non-target regions constituted more than 0.1× coverage
(0.3–0.4× on average) genome-wide in our data; utilization
of these reads may help identifying copy-number loss re-
lated to homologous recombination repair deficiency
in non-target regions in FFPE samples [40, 41]. cis-
Call was developed for research purposes in clinical
studies and is not intended for use in clinical tests
regulated by the authorities, where analytical validity
at the manufacturing level should be demonstrated.
Nevertheless, these alteration-calling algorithms
enable first steps in the translation of cancer clinical
sequencing to everyday diagnostics.

Conclusions
Clinical sequencing requires an accurate computational
tool to call multiple types of DNA alterations—SNVs/
indels, fusion genes, and CNAs—from NGS data in
FFPE samples. We developed such a tool and demon-
strated that our tool outperformed seven other tools that
have been developed for explanatory research purposes.
This is because our tool uses robust non-parametric sta-
tistics to select alteration candidates and more than ten
elaborated noise filters that maximally utilize internal
control values automatically calculated from observed
data as inputs for the tool’s parameters so that the tool
can efficiently remove inherent noise arising in FFPE
samples that cannot be filtered out using other tools.
Our tool allows us to accurately detect DNA alterations
in multiple genes, which will promote more accurate
and efficient cancer precision medicine.
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