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Abstract

Background: Residents of long-term care facilities (LTCF) may have high carriage rates of multidrug-resistant
pathogens, but are not currently included in surveillance programmes for antimicrobial resistance or healthcare-
associated infections. Here, we describe the value derived from a longitudinal epidemiological and genomic
surveillance study of drug-resistant Escherichia coli in a LTCF in the United Kingdom (UK).

Methods: Forty-five of 90 (50%) residents were recruited and followed for six months in 2014. Participants were
screened weekly for carriage of extended-spectrum beta-lactamase (ESBL) producing E. coli. Participants positive for
ESBL E. coli were also screened for ESBL-negative E. coli. Phenotypic antibiotic susceptibility of E. coli was
determined using the Vitek2 instrument and isolates were sequenced on an Illumina HiSeq2000 instrument.
Information was collected on episodes of clinical infection and antibiotic consumption.

Results: Seventeen of 45 participants (38%) carried ESBL E. coli. Twenty-three of the 45 participants (51%) had 63
documented episodes of clinical infection treated with antibiotics. Treatment with antibiotics was associated with
higher risk of carrying ESBL E. coli. ESBL E. coli was mainly sequence type (ST)131 (16/17, 94%). Non-ESBL E. coli from
these 17 cases was more genetically diverse, but ST131 was found in eight (47%) cases. Whole-genome analysis of
297 ST131 E. coli from the 17 cases demonstrated highly related strains from six participants, indicating acquisition
from a common source or person-to-person transmission. Five participants carried highly related strains of both
ESBL-positive and ESBL-negative ST131. Genome-based comparison of ST131 isolates from the LTCF study
participants with ST131 associated with bloodstream infection at a nearby acute hospital and in hospitals across
England revealed sharing of highly related lineages between the LTCF and a local hospital.

Conclusions: This study demonstrates the power of genomic surveillance to detect multidrug-resistant pathogens
and confirm their connectivity within a healthcare network.
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Background
Escherichia coli is a leading cause of bloodstream and
urinary tract infections [1, 2]. In the United Kingdom
(UK), there has been an increase in E. coli bloodstream
infections since 2008, with a 16.7% rise in cases between
2010 and 2014 [3]. The uropathogenic E. coli (UPEC)
lineage sequence type (ST)131 was initially reported in
several countries during 2008 [4–6] and has since be-
come widely disseminated. E. coli ST131 frequently car-
ries plasmid-mediated extended-spectrum beta-
lactamase (ESBL) genes that confer resistance to third-
generation cephalosporins [7–9]. Infection with ESBL E.
coli is associated with increased hospital stay, healthcare
costs and mortality compared with infections caused by
non-ESBL E. coli [10–12]. The most frequently identified
ESBL gene in E. coli ST131, blaCTX-M-15, is globally dis-
seminated and predominates in this ST in North Amer-
ica [6, 7], the UK [13], Europe [14–16], Asia [17, 18] and
South America [19]. E. coli bloodstream isolates submit-
ted between 2001 and 2010 to the British Society for
Antimicrobial Chemotherapy (BSAC) Bacteraemia Re-
sistance Surveillance Programme demonstrate the preva-
lence of this lineage within the UK [20]. Clonal complex
(CC) 131 accounted for 12% of isolates and contained
81.7% of all blaCTX-M-1 group (which includes blaCTX-
M-15) genes [20].
Global surveillance of antibiotic consumption and the

emergence of resistance is gathering pace through nu-
merous initiatives, including those by the World Health
Organization (WHO), European Centre for Disease Pre-
vention and Control (ECDC) and the Department of
Health [21–25]. Target species include E. coli, particu-
larly E. coli that are resistant to third-generation cepha-
losporins and fluoroquinolones. The development of
surveillance frameworks requires consideration of the
target populations.
The global increase in life expectancy has been associ-

ated with a rise in the number of people requiring care
in long-term care facilities (LTCFs). LTCFs also provide
increasing levels of post-acute, rehabilitative and pallia-
tive care to optimise patient flow through acute hospitals
[26, 27]. Point prevalence studies have reported carriage
rates of multidrug-resistant E. coli in residents of LTCF
in excess of 50% in Ireland and 40% in the UK [28, 29].
This is significantly higher than the general population,
with a recent meta-analysis of community carriage rates
reporting a pooled prevalence of ESBL carriage of 2% in
the Americas, 4% in Europe, 15% in the eastern Mediter-
ranean and 22% in South East Asia and Africa [30].
Although high rates of ESBL E. coli in LTCFs have

been established, genomic characterisation of the associ-
ated isolates has been limited and published studies have
utilised molecular techniques such as pulsed-field gel
electrophoresis and polymerase chain reaction (PCR)-

based assays [28, 29, 31–33], which lack the discrimin-
ation of whole-genome sequencing (WGS). Here, we de-
scribe a longitudinal study of ESBL-E. coli carriage by
residents of a LTCF, in which we determine the fre-
quency of E. coli ST131 isolates and of non-ESBL E. coli
isolates in the same patients. Analysis of WGS data for
399 E. coli isolates provided a detailed genetic under-
standing of the relationships between ESBL-positive and
ESBL-negative E. coli within and between study partici-
pants. We extended this analysis by comparing 297
ST131 study genomes with more than 200 ST131 ge-
nomes of bacteria associated with bloodstream infection
in patients across England to place our LTCF isolates
into a broader genetic context.

Methods
Study design, setting and participants
A prospective observational cohort study was conducted
during a six-month period in 2014 at a LTCF in Cam-
bridgeshire in the UK, details of which have been pub-
lished previously in relation to the study of Enterococcus
faecium [34]. In brief, the LTCF had 105 beds and was
sub-divided into five separate units to which residents
were assigned based on cognitive impairment and phys-
ical disability.

Sampling, microbiology and data collection
All residents admitted to the LTCF during the study
period were eligible for inclusion. Residents were ex-
cluded if they refused consent, were on an end-of-life
care pathway or were strongly resistant to basic personal
care. Healthcare staff collected stool and urine speci-
mens weekly from study participants, which were proc-
essed within 24 h (48 h at weekends). A total of 10 μl of
each sample was plated either directly (urine samples
only) or following overnight enrichment in 5 mL of
Tryptic Soy broth (Sigma-Aldrich, St Louis, MO, USA)
supplemented with cefpodoxime (Oxoid, Basingstoke,
UK) at 1 μg/mL onto Brilliance ESBL agar (Oxoid,
Basingstoke, UK) and incubated at 37 °C in air for 24 h.
Putative ESBL E. coli colonies based on colony colour on
chromogenic agar were speciated using matrix-assisted
laser desorption/ionization time-of-flight mass spec-
trometry (MALDI-TOF) (Bruker Daltoniks, Bremen,
Germany). A single colony from each positive sample
was taken forward for further testing. Antimicrobial sus-
ceptibility was determined using the Vitek2 instrument
(BioMérieux, Marcy l’Etoile, France) with the N206 card.
Expression of ESBL was confirmed using the ESBL and
AmpC Detection Disc Set (D68C1, Mast Group, Bootle,
UK). All stools positive for ESBL-E. coli were cultured
for non-ESBL E. coli by plating 10 μL of stool onto Bril-
liance UTI agar (Oxoid, Basingstoke, UK) and incubat-
ing at 37 °C in air for 24 h. Presumptive E. coli colonies
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were sub-cultured onto Columbia Blood Agar with the
addition of a 10 μg cefpodoxime disc (Oxoid, Basing-
stoke, UK). Colonies growing at the edge of the zone of
inhibition were selected for identification and antimicro-
bial susceptibility testing as above. Data were collected
from participant nursing care plans and medical records
on episodes of infection and antimicrobial consumption.
Statistical analysis was performed using STATA v13.1
(STATA, College Station, TX, USA).

Bacterial sequencing and analysis
Genomic DNA was extracted from single colonies using
the QIAxtractor (QIAgen, Hilden, Germany). Library
preparation was conducted according to the Illumina
protocol, and sequencing was performed on an Illumina
HiSeq2000 with 100-cycle paired-end runs. Ninety-six
samples were multiplexed per lane to give an average
depth of coverage of ~90-fold. Sequence data have been
submitted to the European Nucleotide Archive (ENA)
under the accession numbers listed in Additional file 1.
Sequence reads were assembled using Velvet v1.2 [35]

and VelvetOptimser v2.2.5 (http://www.vicbioinforma-
tics.com/software.velvetoptimiser.shtml). Assembly im-
provement was performed using the assembly with the
best N50 and SSPACE was used for contig scaffolding
[36]. GapFiller was used to close sequence gaps [37] and
annotation was performed using PROKKA v1.11 [38]
and a genus specific database from RefSeq [39]. STs were
identified from the sequence data using the Warwick
MLST database [40] and an in-house script [41, 42]. Se-
quence reads for ST131 isolates were mapped to the E.
coli reference genome NCTC13441 (European Nucleo-
tide Archive [ENA] accession number ERS530440) using
SMALT v0.7.4 [43]. Variants were detected using sam-
tools mpileup v0.1.19 [44] and the parameters ‘-d 1000 –
DsugBf ’ and bcftools v0.1.19, giving a BCF file of all vari-
ant sites. A variant quality score of greater than 50 and
mapping quality of greater than 30 was used. The major-
ity base call was required to be present in more than
75% of reads with a minimum mapping of four reads,
with at least two mapping to each strand. A pseudo-
genome was created by substituting bases called at each
site in the BCF file into the reference genome. Any sites
deemed uncertain following quality scoring were
substituted with an N, along with any deletions identi-
fied in the context of the reference genome. To create a
‘core’ genome, mobile genetic regions were masked if
they were annotated as predicted phage-, plasmid-, in-
sertion sequence (IS)- or transposon-related genes, or if
PHAST identified a putative prophage [45]. Gubbins
was used to identify and remove recombination within
each genome, giving the final ‘core’ genome [46], and
maximum likelihood phylogenies were created using
RAxML with 100 bootstraps and a mid-point root [47].

Trees were visualised using FigTree (v1.4.2) [48] and
iTOL (v3) [48, 49].
The presence of antimicrobial resistance genes was de-

termined by comparison of genomes to an in-house
database using ResFinder [50]. fimH alleles were identi-
fied using in silico PCR and primers detailed in Weiss-
man et al. [51] and Colpan et al. [52]. Seaview was used
to curate and assign fimH types, detect fluroquinolone
resistance mutations and SNPs associated with C0 and
C2 [53]. Analysis of the accessory (non-core) genome
composition was conducted as described previously [54].
Distribution of a mobile genetic element (MGE) among
the isolates was determined through assembly alignment
with MUMmer [55] and with sequence read mapping
using SRST 2 [56].
Two further whole-genome sequence datasets were re-

trieved from the European Nucleotide Archive: (1) 75
ST131 isolates associated with bloodstream infection in
patients at the Cambridge University Hospitals NHS
Foundation Trust between 2006-2012 (Project
PRJEB4681); and (2) ST131 isolates associated with
bloodstream infection in ten hospitals in England be-
tween 2001 and 2011, submitted to the British Society
for Antimicrobial Chemotherapy Resistance Surveillance
Project (n = 146, Project PRJEB4681).

Results
Study participants
Forty-five of 90 (50%) eligible residents were recruited to
the study. The median age of study participants was
82 years (range = 40–104 years, interquartile range
[IQR] = 71–87 years), and 29 (64%) were women. Three
participants were lost to follow-up because of death (n =
2) or transfer elsewhere (n = 1). The median duration of
residence in the LTCF by the time the study began was
16 months (range = 5 days–54 months, IQR = 6–41
months). Twenty-nine percent (n = 13) of recruited resi-
dents had the capacity to consent for themselves to take
part. The remaining 71% (n = 32) were recruited follow-
ing discussion with a resident’s consultee who consid-
ered whether the resident in question would agree
themselves to take part if they had the capacity to do so.
Stool samples were collected at recruitment and then at
least one week apart until the end of the study period,
discharge from the LTCF or death.

Infective episodes and antibiotic consumption
Debilitated patients are more prone to bacterial infection
and antibiotic consumption selects for antibiotic resist-
ant bacteria. In light of this, we collected information on
episodes of infection and antibiotic consumption during
the study and antibiotic consumption in the 12-month
period preceding this. During the study, 23/45 (51%)
participants had 63 documented infective episodes
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(median = 1, range = 1–5, IQR = 1–3.5). Infections of the
urinary tract were the most common (n = 33, 54%),
followed by those affecting the respiratory tract (n = 16)
and skin and soft tissue (n = 8). The focus of infection
was not specified in four cases. Diagnoses were based on
clinical features alone with the exception of urinary tract
infections, which were investigated using urinalysis to
detect leucocytes and nitrites. No clinical specimens
were collected from the study cohort for microbiological
culture. All episodes were treated with at least one
course of empiric antibiotics (median = 2 courses per pa-
tient, range = 1–6, IQR = 1–4). The most frequent antibi-
otics used were trimethoprim (16/63 infective episodes,
25%), co-amoxiclav (14/63, 22%) and flucloxacillin (10/
63, 16%). In addition, two catheterised residents (partici-
pants P4 and P6) were on long-term prophylactic antibi-
otics (trimethoprim and metronidazole, respectively).
Antibiotic consumption was also common in the
12 months prior to enrolment, with 31/45 (68.9%) par-
ticipants receiving a total of 83 courses of antibiotics
(median = 3, range = 1–5, IQR = 1–4). The three most
frequently prescribed antibiotics prior to enrolment were
trimethoprim (23/83, 28%), co-amoxiclav (21/83, 25%)
and amoxicillin (11/83, 13%).

E. coli carriage
ESBL E. coli was cultured from stool from 17/45 partici-
pants (38%) (isolated from 241/691 stool samples tested),
none of whom were known previously to be ESBL E. coli
carriers. Figure 1 shows the timeline for positive and nega-
tive samples. Most ESBL-positive E. coli participants were
positive on the first stool tested and were carriers there-
after. The exceptions were P9, who became positive after
13 negative samples, and P16, who became negative after
13 ESBL-positive E. coli samples. Urine was also cultured
if a urinary catheter was present. Two of the three cathe-
terised participants (P3 and P6) had ESBL E. coli isolated
from urine (3/4 samples and 18/18 samples, respectively),
both of whom carried ESBL E. coli in stool. The third case
(P4) had ESBL-negative E. coli in both urine and stool.
Almost one-half (7/17, 41%) of ESBL-positive E. coli

participants lived in unit 3, which provided residential
and minor nursing care for residents with dementia. The
majority (15/17, 88%) of ESBL-positive E. coli partici-
pants had received at least one course of antibiotics in
the 12 months prior to study enrolment, compared with
16/28 (57%) participants who were ESBL-negative. Anti-
biotic consumption on at least one occasion was associ-
ated with higher risk of having ESBL E. coli isolated

Fig. 1 Timeline of results for ESBL-positive E. coli participants. Each row represents an ESBL-positive E. coli participant (P) and their culture results for ESBL E.
coli and non-ESBL E. coli over 27 weeks. Each positive week is shown by a capsule of two halves, the left side representing isolation of ESBL E. coli and the
right side non-ESBL E. coli. Results shown are for stool culture, with the exception of yellow dotted half-capsules, which represent ESBL-positive E. coli catheter
urine (P3 and P6), and red dotted half-capsules (P3 and P6), which represent a positive stool and urine sample in the same week. Capsules are coloured by
ESBL E. coli (red: ST131 ESBL E. coli, orange: ST38 ESBL-E. coli) and non-ESBL E. coli (dark blue: ST131 non-ESBL E. coli; light blue: non-ST131 non-ESBL E. coli).
White asterisk, ST not known as sequencing failed to generate high quality data; black square, sample taken but no E. coli isolated; dashed line, not yet re-
cruited into the study or no longer enrolled. Numbers shown for non-ESBL E. coli represent MLST sequence type
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from stool (odds ratio [OR] = 5.6, 95% confidence inter-
val [CI] = 1.1–29.4, p = 0.04 – logistic regression model).
All 241 stools positive for ESBL E. coli were also cul-

tured for non-ESBL E. coli). At least one isolate was cul-
tured from all 17 ESBL-positive E. coli participants
(isolated from 139/243 stools).

Characterising E. coli isolates by MLST and ESBL encoding
genes
We sequenced 401 E. coli isolates (241 ESBL-E. coli from
stool, 21 ESBL-E. coli from urine and 139 non-ESBL E.
coli from stool). Two non-ESBL E. coli genomes were
excluded from further analysis based on inadequate
quality of sequence data. STs were identified from se-
quence data for the 399 remaining isolates. The 262
ESBL E. coli isolates were assigned to ST131 (n = 249) or
ST38 (n = 13). Sixteen participants carried ST131 ESBL
E. coli and the remaining participant (P9) carried ST38
ESBL E. coli (Fig. 1). Non-ESBL E. coli were more genet-
ically diverse, with 21 STs identified among the 137 iso-
lates. The most common ST for non-ESBL E. coli was
also ST131 (n = 48, 35%), which was carried by 9/17 par-
ticipants, eight of whom were also positive for ST131

ESBL E. coli (Fig. 1). Seven participants were positive for
more than one ST (median = 1 ST, range = 1–5 STs) and
five STs were carried by more than one participant
(ST10, ST12, ST34, ST62 and ST131) (Fig. 1). ESBL was
encoded by blaCTX-M-15 in all 262 ESBL E. coli isolates.

Genomic focus on E. coli ST131 from LTCF participants
A maximum likelihood tree based on 797 single nucleo-
tide polymorphisms (SNPs) in the core genome of 297
ST131 (see Additional file 1 for sequencing quality data)
isolates from 17 participants compared with the refer-
ence E. coli NCTC13441 genome is shown in Fig. 2a.
Isolates were distributed into multiple highly related
clades, each corresponding to a positive participant. The
pairwise SNP difference for isolates within each clade
was in the range of 0–12 SNPs (median = 4 SNPs). Based
on the upper limit of 12 SNPs for within-host diversity,
three groups of participants were defined as carrying the
same clade: P19 and P42; P21, P28 and P42; and P19,
P25 and P26, labelled as 1, 2 and 3, respectively in
Fig. 2a. These six participants all resided in unit 3. Add-
itionally, three participants (P19, P12 and P42) each car-
ried two distinct ST131 clades. In each case, these were

a b

c

d

Fig. 2 Phylogeny of ST131 isolates from study participants. a Mid-point rooted maximum likelihood tree based on the core genome of 297 ST131
isolates from 17 participants and the reference E. coli NCTC13441 genome after removal of MGEs and recombination events. The inner ring
provides a link between each isolate genome and the participant from which this was cultured. The outer ring shows the presence of blaCTX-M-15,
expression of which results in an ESBL phenotype. Grey shaded blocks highlight three clades of closely related isolates from multiple participants.
Red triangles indicate nodes with bootstrap values of more than 90%. b, c, d Isolates from P10, P22 and P12, respectively
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deemed to be independent based on their genetic dis-
tance (more than 100 SNPs apart in each case) and pos-
ition in the phylogenetic tree.
Of the 16 participants who carried ESBL E. coli ST131,

11 carried only ST131 ESBL E. coli and eight carried a
mixture of ST131 ESBL E. coli and ST131 non-ESBL E.
coli. In addition, P9 carried non-ESBL E. coli ST131 in
combination with ST38 ESBL E. coli. The degree of
within-host relatedness between ESBL E. coli and non-
ESBL E. coli ST131 was illustrated by annotating the tree
for the presence of blaCTX-M-15 (Fig. 2a), which revealed
two patterns. Participants P10, P15, P16, P19 and P22
each carried clades that contained a mixture of highly
related ESBL E. coli and non-ESBL E. coli (see Fig. 2b
and c for examples based on genomes from P10 and
P22). By contrast, participant P19 carried genetically dis-
tinct ESBL E. coli and non-ESBL E. coli ST131 clades,
which may be indicative of failure of blaCTX-M-15 to
transfer in vivo from one clade to the other. P12 ap-
peared to display carriage of both patterns and carried
two distinct clades, one consisting of only isolates har-
bouring blaCTX-M-15 and a second clade containing both

highly related ESBL and non-ESBL E. coli (Fig. 2d). Vari-
ation in the presence of beta-lactam (blaOXA-1), amino-
glycoside (aac-(6’)-Ib-cr), macrolide (mphA),
trimethoprim (dfrA17), tetracycline (tetA), sulphonamide
(sul1 and sul2) and streptomycin (strA and strB) resist-
ance genes (Fig. 3) was also observed (Additional file 1).
In five clades, loss/gain of other genes was associated
with blaCTX-M-15, which is consistent with these residing
on the same MGE. Analysis of the accessory (non-core)
genome composition was performed to examine the
context of the blaCTX-M-15 gene in ESBL E. coli isolates.
In all blaCTX-M-15 positive isolates, the gene was associ-
ated with an MGE that resembled the peK499 plasmid
[9], a hybrid of Incompatibility Type F replicons FIA and
FII. The ESBL E. coli isolates revealed several variants of
the peK499-like plasmid, as shown by the variable cover-
age after aligning the whole genome sequences against
the peK499 plasmid (Fig. 3). Sequence coverage of the
plasmid among the blaCTX-M-15 positive isolates was in
the range of 54–83% (median = 76%). Interestingly, in
non-ESBL E. coli isolates, carriage of peK499-like plas-
mid sequences that lacked a region containing the

Fig. 3 Antimicrobial resistance genes present in LTCF ST131 isolates and results of mapping to plasmid pEK499. Mid-point rooted maximum
likelihood tree based on the core genome of 297 ST131 isolates from 17 participants and the reference E. coli NCTC13441 genome after removal
of MGEs and recombination events. The first vertical coloured column links genomes to study participant. Antimicrobial resistance genes are shown
as black (present) or white (absent). blaOXA1 beta-lactam, aac-(6’)-Ib-cr aminoglycoside, mphA macrolide dfrA17 trimethoprim, tetA tetracycline,
sul1/sul2 sulphonamide, strA/strB streptomycin resistance genes. Fragments of the pEK499 plasmid that are shared with a corresponding isolate
are shown as red horizontal blocks. The blaCTX-M-15 cassette (the blaCTX-M-15 gene together with the flanking IS elements) is highlighted in dark blue
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blaCTX-M-15 gene was also observed. In the peK499 plas-
mid, blaCTX-M-15 is flanked on both sides by insertion se-
quence (IS26) transposase genes, suggesting a highly
mobile cassette that may explain the loss and gain of
ESBL status in the highly related ST131 isolates.

Relatedness between ST131 from the LTCF and other
healthcare settings
Thirteen of the 17 ESBL-positive E. coli participants
were admitted to the LTCF from the Cambridge Univer-
sity Hospitals NHS Foundation Trust (CUH) in the year
prior to enrolment or during the study period. To deter-
mine the genetic relatedness between the study ST131
isolates and ST131 from patients at this hospital and fur-
ther afield in England, we combined study genomes with
whole-genome sequence data for 75 ST131 isolates (22
ESBL E. coli, 53 non-ESBL E. coli) from CUH and 146
ST131 isolates (52 ESBL E. coli, 94 non-ESBL E. coli)
from ten hospitals across England, all associated with
bloodstream infection. A subset of 30 study participant
isolates were included in the analysis, consisting of one
each of ESBL E. coli and non-ESBL E. coli from each
lineage carried by participants. Data for these 251 ST131
isolates were used to construct a maximum likelihood
tree based on 7676 SNPs in the core genome (Fig. 4). In
this broader genetic context, isolates from LTCF partici-
pants fell into six clusters that were interspersed
throughout the tree, although the majority (20/30, 16
ESBL E. coli and four non-ESBL E. coli) resided in a sin-
gle cluster containing isolates from 12 participants. The
remaining clusters contained 1–4 isolates, from up to
two different participants (Fig. 4). Three of these six
LTCF clusters contained closely associated CUH isolates.
For each of these three clusters we calculated the pair-
wise SNP differences between the LTCF and CUH iso-
lates in the same cluster, which were in the ranges of 7–
66, 19–67 and 10–11 SNPs, respectively.
The 251 ST131 isolates were further categorised by

defining the fimH allele, which demonstrated that 194
carried the fimH30 allele, placing them in clade C [57].
The remaining 57 isolates carried the following fimH al-
leles: H1 (n = 3), H12 (n = 2), H17 (n = 30), H25 (n = 2),
H6 (n = 19) and unknown (n = 1). Clade C has been fur-
ther divided into three sub-clades termed C0, C1 and C2
based on point mutations [58–60]. The sub-clades of
clade C were determined in this collection and are
shown in Fig. 4, together with information on the muta-
tions identified in Additional file 1.

Discussion
Prolonged or repeated antimicrobial use is a driver for
the emergence of antimicrobial resistance and is an
established risk factor for ESBL carriage [61–63]. We
found that study participants who carried ESBL E. coli

had been prescribed significantly more antimicrobials
than those who did not. Residence in a LTCF is also a
known risk factor for faecal carriage of ESBL E. coli [61].
In our six-month study, 38% of participants carried
ESBL E. coli, which is consistent with carriage rates
identified in previous studies from the UK [28, 29] and
internationally [31, 64–66].
Serial sampling allowed us to describe within-host di-

versity of the same and different clades and lineages.
WGS of healthcare-associated pathogens has begun to
delineate the potential for complex within-host diversity
[67–69]. To date, a small number of studies have investi-
gated within-host diversity of ESBL E. coli using WGS
[70, 71]. Sequencing of 16 bacterial colonies isolated
from single stool samples obtained from eight children
presenting to a hospital in Cambodia identified within-
host carriage of multiple E. coli lineages and variation in
virulence and antibiotic resistance genes [70], supporting
the findings in our study. Bayesian estimation of substi-
tution rates in ST131 gave a value of ~1 SNP per gen-
ome per year [72]. The median level of within-host
diversity in LTCF residents was four SNPs, which is con-
sistent with long-term carriage and within-host evolu-
tion. We also analysed the relationship between ESBL E.
coli and non-ESBL E. coli within individuals. Some par-
ticipants carried ST131 ESBL E. coli and non-ESBL E.
coli that were indistinguishable at the core genome level.
This is consistent with previous studies that described
loss and acquisition of either blaCTX-M-15 or the ESBL
plasmid within an ST131 population and the presence of
insertion and transposon sequences flanking the up-
stream and downstream regions of blaCTX-M-15 [72, 73].
The dominant ESBL E. coli lineage identified in our

study was ST131, a finding consistent with previous
studies [74–76]. We also isolated ST38 ESBL E. coli
from one participant, which was acquired from an un-
known reservoir during the study period. ST38 is com-
monly identified among human carriage and invasive
isolates [76–78] and is increasingly being associated with
blaOXA-48, a beta-lactamase gene with significant carba-
penamase activity, although this was not identified here
[79, 80].
An important observation in this study was the value

of contextual genetic databases in defining the relation-
ship of ST131 isolates between study participants. Ana-
lysis of ST131 LTCF isolates alone suggested that
participants carried several related but distinct popula-
tions, with three groups of participants carrying distinct
clones of the same lineage. However, placing ST131
LTCF isolates into the genetic context of local and na-
tional ST131 collections revealed that the majority of
isolates from LTCF participants clustered together, indi-
cating acquisition of ST131 ESBL E. coli from a local
lineage or a shared reservoir predating the study. The
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remaining LTCF isolates formed genetically distinct
clades, indicating multiple introductions to the LTCF.
Our study had a number of limitations. A compre-

hensive understanding of carriage and transmission
patterns requires 100% data capture, but we were
only able to recruit 50% of the LTCF residents. Fur-
thermore, our study design did not include sampling
of healthcare workers, family members or the

environment, all of which are potential donors or re-
cipients of ESBL E. coli.

Conclusions
We confirmed that residents of a LTCF were a reservoir
for multidrug-resistant E. coli and that ST131 dominated
in this setting. We found evidence for a shared reservoir
for ST131 within the LTCF, and between the LTCF and a

Fig. 4 Phylogeny of representative LTCF ST131 isolates and ST131 isolates from CUH and a national collection. Mid-point rooted maximum
likelihood tree of the core genome of 30 ST131 isolates from the LTCF and 221 ST131 isolates associated with bloodstream infection at the
nearest acute hospital (CUH) and nationally following removal of MGEs and recombination events. The outer ring shows the origin of each isolate.
Black dashed lines highlight three highly related clusters of LTCF and CUH isolates. Filled red triangles indicate nodes with bootstrap values of more
than 90%. Coloured branches demonstrate the sub-clade divisions
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nearby acute hospital. This suggests putative transmis-
sion within this broader healthcare network and under-
lines the importance of the interconnectivity in the
spread of multidrug-resistant pathogens.

Additional file

Additional file 1: Additional information for the dataset used in this
study. The additional file includes demographic information including
location of isolation and sample type along with genome sequence QC
data, results of genomic typing and screening for antimicrobial resistance
genes. (XLSX 145 kb)
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