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Abstract

Background: Disagreements over genetic signatures associated with disease have been particularly prominent in
the field of psychiatric genetics, creating a sharp divide between disease burdens attributed to common and rare
variation, with study designs independently targeting each. Meta-analysis within each of these study designs is
routine, whether using raw data or summary statistics, but combining results across study designs is atypical. However,
tests of functional convergence are used across all study designs, where candidate gene sets are assessed for overlaps
with previously known properties. This suggests one possible avenue for combining not study data, but the functional
conclusions that they reach.

Method: In this work, we test for functional convergence in autism spectrum disorder (ASD) across different study
types, and specifically whether the degree to which a gene is implicated in autism is correlated with the degree to
which it drives functional convergence. Because different study designs are distinguishable by their differences in effect
size, this also provides a unified means of incorporating the impact of study design into the analysis of convergence.

Results: We detected remarkably significant positive trends in aggregate (p < 2.2e-16) with 14 individually significant
properties (false discovery rate <0.01), many in areas researchers have targeted based on different reasoning, such as
the fragile X mental retardation protein (FMRP) interactor enrichment (false discovery rate 0.003).
We are also able to detect novel technical effects and we see that network enrichment from protein–protein
interaction data is heavily confounded with study design, arising readily in control data.

Conclusions: We see a convergent functional signal for a subset of known and novel functions in ASD from all
sources of genetic variation. Meta-analytic approaches explicitly accounting for different study designs can be
adapted to other diseases to discover novel functional associations and increase statistical power.

Keywords: Autism spectrum disorder, Rare variation, Common variation, Loss-of-function, Recurrence, Effect sizes,
Functional enrichment, Gene candidate score, Meta-analysis

Background
Over the past decade, enormous progress has been made
in characterizing sources of DNA variation contributing
to disease. Most of this progress has been enabled by
study designs which are carefully tailored to exploit
technologies targeting particular classes of variation.
Researchers have used chromosomal analysis arrays [1–
4], genotyping arrays [5–8], whole-exome sequencing
(WES) [9–13], and whole genome sequencing (WGS)
[14, 15] to identify risk loci and alleles. The results from
these studies cannot be naively compared; common

variants are limited to regions of the genome with
known variation (a SNP is known) but only reach signifi-
cance with large numbers, while rare or ultra-rare vari-
ants are conditioned on not being in this list of common
variants. Trio and quad studies are used mainly in WES
and WGS study designs, while large case and control co-
horts are required for signals in genome-wide associ-
ation studies (GWAS). Thus, for each study design, we
are asking distinct questions that relate to the popula-
tion prevalence, disease mechanism, burden, and risk.
Within each study, however, it is commonplace to look

to overlapping functional properties of candidate disease
genes to find the biologically meaningful signal among
the positive results. Candidate genes are prioritized
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based on enrichment analyses in pathways related to the
phenotype (e.g., neuronal activity regulation) or some
other disease feature shared by the genes (e.g., expres-
sion in the brain). If these methods return no significant
results, more complex methods are performed to extract
common features from the disease gene set [16], such as
co-regulatory module detection from co-expression net-
works [17] or binding from protein–protein interaction
(PPI) networks [18]. Regardless of the study design, the
analysis with respect to functional convergence follows a
similar (and largely separable) design: genes selected as
hits are tested for the presence of some joint signature
with the null provided by genes which are not hits. By
the same logic that suggests testing hits for functional
convergence relative to the background, we hypothesize
that sets of genes which are “strong” hits will show more
functional convergence than those which are “weak”
hits.
We suggest that the degree of functional convergence

may by hypothesized to vary (monotonically) with the
degree to which genes are causal for the disease. Genes
only weakly causal, whether due to high false positive
rates in the study design or low effect sizes, are not
strongly implicated as sharing a joint role by their co-
occurrence as disease-related. For instance, disease
candidates from GWAS have low relative risks (and
therefore low effect sizes) as they are inherited common
variation in the population. On the other hand, de novo
mutations are a form of genetic variation which evolu-
tionary forces have had little time to act upon [19] (e.g.,
unless embryonically lethal) and are of high risk (and
high effect sizes). Studies also suffer from type I errors
(false positives), and this too should be reflected in an
aggregate disease signal of the candidate genes, as quan-
tified by their common functional properties. A set of
genes with de novo mutations will show a strong aggre-
gate disease signal, while we might expect a weaker signal
from the gene candidates from GWAS [20]. Measuring
their “functional convergence”, as determined by a gene
set enrichment test or network analysis, we can thus ex-
ploit our knowledge of gene candidates’ effect sizes and
false positive rates. For a true disease property, we expect
the correlation between gene set effect size and functional
convergence to be strong, and for a weak or artifactual
property, we expect no significant correlation.
We propose to test this hypothesis by running a meta-

analytic study on autism spectrum disorder (ASD [MIM
209850]) candidates across numerous genetic studies
and over a wide range of gene properties and functions.
ASD is a neurodevelopmental disease commonly charac-
terized by behavioral traits such as poor social and
communication skills [21]. In more severe cases, ASD is
comorbid with mild to severe intellectual disability, facial
and cranial dysmorphology, and gastrointestinal disorders.

Perhaps because of grouping these multiple and some-
times distinct phenotypes into one disorder, and the
complexity of behavior as a trait, understanding the
genetic architecture of this cognitive disease has been
non-trivial [22]. The genetic component of ASD is esti-
mated to be 50–60% [23]; however, in a substantial
number of cases the underlying genetic factors of the
disease are still unknown. Due to these levels of hetero-
geneity, multiple studies and study designs have been
used to determine the underlying genetics which we
make use of here. Taking these different studies, we
construct several disease gene candidate collections,
each containing genes of similar levels of risk, as deter-
mined by their odds ratios and relative risks. On every
gene collection, we run a number of analyses, calculat-
ing the functional convergence using standard enrich-
ment methods, and more complex network analysis
enrichments. By exploiting trends in targeted genetic
variation and their known effect sizes, we demonstrate
it is possible to discriminate biologically convergent
signals from likely technical artifacts at a very fine reso-
lution. The disease properties with strong trend signals
are largely consistent with the known literature on ASD
(e.g., FMRP interactor enrichment), but we also see a
few otherwise interesting properties as unlikely to be
disease-specific. Particularly protein–protein interaction
networks and some co-expression networks, which extract
artifactual signals from the study design, show signals in
control data using that study design. Our focus here
is on autism due to our interest in the disorder, its
well-powered data, and also its phenotypic and gen-
etic heterogeneity.

Methods
Study design
An overview of our study design and method is shown
in Fig. 1. Briefly, we start by characterizing the ASD gene
sets collected for this analysis. Each study’s results were
collapsed individually into a set of genes, with an esti-
mated average effect size for that candidate set (Fig. 1a).
We calculate a functional effect (e.g., statistical overlaps
with known functions; Fig. 1b) for disease-specific and
more general gene functional properties. We then calcu-
late the correlation of these functional convergences
with the estimated effect size of that variant class
(Fig. 1c). More specifically, we test to see if the set of
genes with high effect sizes have strong relative func-
tional convergences as measured by a functional enrich-
ment of some disease property across them, and if those
with low effect sizes have weaker functional signals. We
apply this test to numerous functional properties on
candidate gene sets from a variety of study designs.
Functions with positive correlations (positive trends) we
believe will show signatures that are likely associated
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with autism and can be used for further functional
characterization of the disease. Throughout our work we
refer to the “effect size” as the disease burden or risk of
a gene candidate (or the average of such values within a
gene set), and the “functional convergence” as the sig-
nificance of a functional test for a disease gene set after
controlling for the set size.

Study data
Disease gene candidate sets
We first collected candidate disease gene sets from avail-
able autism studies. We selected the largest study of
WES of families from the Simons Simplex Collection
(SSC) [24]. We defined different sets of genes from over
2000 gene candidates, splitting into recurrent (at least
two probands having the mutation) and non-recurrent
mutations, according to mutation type (loss-of-function,
missense, and silent mutations). We selected copy num-
ber variant (CNV) data also from the individuals in the
SSC [25] and parsed it into similar sets. We then used
the CNVs as parsed by Gilman et al. [26], which priori-
tized genes with their NETBAG algorithm. For GWAS

gene sets, we generated two lists from the Psychiatric
Genomics Consortium (PGC) study on autism and re-
lated psychiatric disorders [22]: one from the reported
gene list and a second list of all adjacent genes as listed
in the GWAS NHGRI-EBI catalog [6]. Our negative con-
trol sets included using the genes with mutations in the
unaffected siblings of the probands from the SSC stud-
ies. This yielded 11 candidate gene lists, categorized by
average effect size.
As an additional test, we perform a control experiment

to test the ability of our method to discern psychiatric
GWAS from other traits and diseases. To assess this, we
will swap out the autism GWAS candidate lists for other
candidate lists from other GWAS and rerun our ana-
lyses. We took all the GWAS data in the GWAS catalog
[6], totaling over 1396 traits across 2066 studies. For
each trait, we created gene lists with the reported genes.
We conditioned on traits with at least 27 genes, which
left us with approximately 148 traits. Each of those gene
sets was then substituted for the autism GWAS, allow-
ing us to test which GWAS data shows most conver-
gence with the other autism data.

Genes with 

mutations in 

controls

Genes with SNPs 

implicated by 

GWAS

Genes with de novo 

loss of function 

mutations

Estimating effect size of gene sets

E
ff

ec
t 

si
ze

Gene set

Gene

Functions

Gene set

Gene set 
enrichment 

e.g., FMRP genes
FMRP 
genes

Disease 
set

P-value ~ 1e-5

Network 
connectivity

e.g., Co-expression N
o

d
e 

d
eg

re
e,

 s
u

b

Node degree, whole

P-value ~ 1e-10

Gene scores 
and properties 

e.g., Mutation rates F
re

q
u

en
cy

Score

P-value ~ 1e-8

Differential 
expression

e.g., Embryonic

Development 

E
xp

re
ss

io
n

 le
ve

ls

Development stage

P-value ~ 1e-8

Testing of functional convergence of a gene set

Correlations

F
re

q
u

en
cy

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

Testing for functional convergence trends

Disease 
effect size 

Functional 
effect size

Across all 
functional 
properties 

Excess signal

rs = 0.9

Disease effect size

F
un

ct
io

na
l c

on
ve

rg
en

ce

Strong No convergence

Disease effect size

F
un

ct
io

na
l c

on
ve

rg
en

ce

rs = -0.2

Correlation 
for a given 
functional 
property

C

BA

Fig. 1 Functional convergence trend calculation. a Starting with disease gene set collections, we rank each by the average effect size of the
genes within that set. b We then run “functional tests” on these genes sets and calculate a functional convergence for each. c Then, using the
ranking of the disease gene sets, we measure the functional convergence signature—the correlation of the trend line of the functional convergences
versus the rank
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Gene functional annotation data
Co-expression networks
The majority of recent studies used co-expression net-
works from BrainSpan to illustrate network convergence
among disease genes of ASD (e.g., [27–29]). In a similar
fashion, we generated a brain-specific network from the
BrainSpan RNA-seq data (578 samples). In addition to
this, we generated an aggregate co-expression network
from 28 brain tissue and cell-specific microarray experi-
ments (3362 samples). For more general networks, we
used our aggregate RNA-seq and microarray co-
expression networks as previously described by Ballouz
and colleagues [30]. In brief, these are the aggregates of
50 networks (1970 samples) and 43 networks (5134)
samples, respectively, across various tissues, cell types,
and conditions. As a comparison to the aggregate net-
works we recommend, we constructed and tested indi-
vidual networks from single experiments that are more
commonly used. This includes tissue-specific co-
expression networks from the GTEx data [31] (29 tis-
sues) and age-specific co-expression networks (five age
groups). As additional tests, we took a further 227 RNA-
seq expression datasets with at least 20 samples within
each experiment from GEMMA [32], and have gener-
ated a further 454 individual human co-expression net-
works, using all annotated transcripts (30,000,
GENCODE [33]), and then only protein-coding genes
(18,000).

Protein–protein interaction networks
We used the human physical PPIs from BIOGRID (ver-
sion 3.2.121) [34] and created a binary PPI network,
where each protein is a node and each PPI is an edge.
Because of the sparseness of the network, we extended
the network by modeling indirect connections [35], tak-
ing the inverse minimum path length between two pro-
teins as the weighted edge, with a maximum distance of
six jumps roughly as described in Gillis and Pavlidis
[36]. We repeated this for alternative PPI datasets in-
cluding: I2D [37] (v2.9), HPRD [38] (release 9), HIPPIE
[39] (v1.8), IntAct [40], the CCSB interactome database
[41] (HI-III v2.2), STRING [42] (v10), and PIPs [43]. A
non-interacting PPI network was created from data from
the negatome [44] (v2).

Gene sets and collections
We considered common functional gene sets and
neurological-specific sets, as used in numerous studies,
as gene sets to test for ASD candidate enrichment.
These included the post synaptic density (HPSD) gene
set [45], synapse sets [46], the synaptosome [47], chro-
matin remodeling set [48], fragile X mental retardation
protein (FMRP) set [49], and gene essentiality [50]. For
more standard sets, we also took the Gene Ontology

(GO) terms (April 2015) [51] and KEGG pathways [52].
For each GO term, we only used evidence codes that
were not inferred electronically and propagated annota-
tions through the ontology (parent node terms inherited
the genes of their leaf node terms). To minimize redun-
dancy from GO, we restricted our enrichment analyses
to GO term groups with sizes between 20 and 1000
genes. These GO terms and KEGG groups were used in
the enrichment analyses with the full multiple hypoth-
esis test correction penalty. As an extension to the ori-
ginal study, we collected alternative gene property sets
for more functional enrichment tests. For this we used
all the collections from MSigDB [7] (gene sets H, C1–
C7). We calculated the multifunctionality of a gene
based on the number of times a gene is seen as being
annotated to a function (using GO) [53].

Disease gene score sets
We used disease gene scoring methods that rank genes
according to how likely they are to have damaging ef-
fects if they are mutated. This included the Residual
Variation Intolerance Score (RVIS) [54], haploinsuffi-
ciency (HI) scores [55], mutational rates, and con-
strained gene scores and probabilities (pLI) from ExAC
[56].

Expression data
To obtain brain-specific expression and differential ex-
pression information, we used three common and large
sample size brain-specific transcriptomic sets. These in-
cluded the Human Brain Transcriptome (GSE25219)
[57], BrainSpan [58], and the Human Prefrontal Cortex
transcriptome (GSE30272) [59]. We divided the samples
into fetal (post-conception week) and post-birth stages,
and performed a straightforward differential expression
fold change analysis (averaging across these stages) [60].

Calculating average disease effect sizes
For the 11 candidate disease and control gene sets
(Table 1, Fig. 2a), we ranked the set according to the
overall or average “effect size” of the genes within it. For
the de novo mutation candidates, we took the ratio of
observed counts of mutations to silent mutations within
the study for that class of mutations, and then the ratio
of those odds between siblings to probands (as calcu-
lated in Sanders et al. [10]). To calculate this effect size
for the GWAS results, we took the average odds ratios
from the individual studies of each SNP, which ranged
between 1.01 and 1.1. For the control sets (siblings and
the silent mutations), we took the effect size to be null.
We then ranked the sets based on these overall effect
sizes. After these calculations, we ended up with three
general classes: null effects (as controls), weak effects
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(missense and common variants), and strong effects
(rarer loss-of-function and copy number variants).

Calculating functional convergences
Our functional tests, described below, return p values
which are dependent on the size of the gene set being
considered. The statistical tests differ depending on the
mode of analysis (e.g., enrichment or network), but by
“functional convergence” we simply mean significance (p
value) after correcting for the set size, typically by down-
sampling. For the downsampling, we took a subset of
genes, recalculated the p value 1000 times, and then took
geometric means of the adjusted p values. Throughout,
where we write “functional convergence” it is possible to
read “p value after correcting for set size”.

Network connectivity
We measure the clustering of sets of genes within net-
works through the use of a network modularity calcula-
tion. We compare the degree of connections a gene has
to all the genes in the network (global node degree), and
to those of interest within the sub-network they form
(local node degree). The null expectation is that genes
will be connected equally well to genes within the sub-
network as to those outside. Genes with large positive
residuals have more weighted internal connections than
external connections, implying a well inter-connected
module. We test the significance of this distribution of

residuals to a null set (random similarly sized set of
genes, Mann–Whitney-Wilcoxon test, wilcox.test in R)
to determine our test statistic.

Gene set enrichment testing
As a way to determine the level of enrichment of the
candidate gene sets within other functional sets, we used
a hypergeometric test with multiple test correction (phy-
per in R). The downsampled p value was used as the
functional convergence measure.

Disease gene property testing
For the disease gene scoring properties, we tested the
significance of the scores of the candidate genes using
the Mann–Whitney-Wilcoxon test (wilcox.test in R).
The functional convergence was the p value of this test.

Measuring functional convergence trends
For each gene property tested, we then measured the
“trend” by calculating the correlation of the ranked func-
tional effect sizes of our gene sets, whereby the gene sets
are ordered according to their effect size ranks. A
positive correlation is one where the function tested is
correlated with our ordering. We computed this using
Spearman’s rank coefficient to capture the degree of
variation, but the significant subsets identified are gener-
ally robust to choice of measurement metric such as the
Pearson’s coefficient. We limited our functional conver-
gence tests to the subset of functions where at least one
gene set of the 11 showed a significant functional
convergence signal (p < 0.05). In essence this filtering
removes gene sets where there are, for example, no over-
laps with any disease sets and should not affect our ana-
lysis. For our main analysis, we tested 4210 functional
properties, the majority being GO and KEGG groups.
The additional functional properties we included such as
MSigDB and all co-expression networks increased this
number to a total of 18,116 tests.

Determining significance of the functional convergence
trends
To calculate a null, we permute the labels of the gene sets
and calculate the functional convergence trends. Note that
in the ranked case, this is simply the null distribution of a
Spearman correlation, with similarly associated signifi-
cances. We first filter for functional tests where any one of
the disease and control gene sets have a functional conver-
gence of 0.05, but report both pre- and post-filtering re-
sults. Because our hypothesis (and test) are concerned
with the ordering of functional effect sizes, filtering so that
the data have at least one significant value changes the
null distribution only slightly (e.g., probability of ties). We
calculate the number of significant correlations based on
the false discovery rate (FDR) at 0.01 and 0.05. Known

Table 1 Disease gene sets used in the study

Gene set Set size
(genes)

Odds ratios/
effect sizes

Rank

WES resultsa

De novo loss-of-function, recurrent 27 4.1 11

De novo CNVs 72 3.95 10

De novo missense, recurrent 153 1.6 9

De novo loss-of-function 341 1.5 8

De novo missense 1339 1.06 5

GWASb

GWAS, reported genes 49 1.08 7

GWAS, adjacent genes to SNP 116 1.08 6

Control sets, no effect

De novo silent 590 NA 2.5

Control groups, no disease

De novo loss-of-function (sibling
controls)

174 NA 2.5

De novo missense (sibling controls) 1066 NA 2.5

De novo silent (sibling controls) 468 NA 2.5
aVarying effect sizes depending on mutation and recurrence. Odds ratio is
calculated as in Sanders et al. [10] (ratio of observed counts of mutations to
silent mutations, and then ratio of those odds between siblings to probands)
bMultiple hit models, low effect size per gene. Odds ratios between 1 and 1.1
NA not applicable
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confounds of disease gene sets are gene length [61] and
gene multifunctionality, and to test this we generated
matched gene set controls by sampling genes with similar
gene lengths, GO multifunctionality and disease multi-
functionality measures. Using the ranked CDS (coding
DNA sequence) region of the genes, we generated sets of
genes of similar ranked length distributions to the 11
real gene sets in the analysis. Downsampled, we then
ran the analyses on these gene sets that are specific-
ally not involved in the phenotype. This was repeated
for multifunctionality as calculated using GO and
then disease (using Phenocarta [62]).

Results
Little overlap of the autism candidate genes across gene
sets of different effect sizes
We find genes with loss-of-function de novo mutations
to be little implicated in GWA studies, with only four

candidate genes overlapping those two sets (Fig. 2b;
hypergeometric test p = 0.76). Interestingly, the more re-
current genes in the loss-of-function de novo set, the
more unlikely they are to be found in other gene sets.
For gene sets with the lower average effect sizes (e.g.,
the genes with missense mutations), their overlap with
other gene sets is greater, in particular with the control
sets (Fig. 2b; hypergeometric tests p ~ 4.4e-3 to 2.4e-6).
The de novo variants are conditioned on being rare (low
frequency) and novel by not appearing in the parents.
The SNPs used in GWAS are generally conditioned on
being common by having minor allele frequencies
greater than 0.05 [63]. Even if this filtering is done on
the variant level, and not on the gene level, it still creates
selection trends within our observations of variants and
thus genes. This is possibly a version of Berkson’s effect
[64], where selecting for an outcome generates negative
correlations between potential causes for it. An additional
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cause is largely technical; since we’ve conditioned on fre-
quency, genes with higher mutability are depleted in our
rare lists and enriched in our common lists. Thus, the lack
of overlap is at least potentially not largely reflective of
underlying genetics or biology, but likely due to the selec-
tion bias in obtaining them. There is also poor overlap
within the rarer variation itself, for instance of genes
within CNVs and those with loss-of-function SNVs (three
genes, p ~ 0.37); there is generally a discrepancy between
study designs focused on (different) sources of rare vari-
ation, and not just rare versus common. It should be
noted that whether biological or technical, the lack of
overlap does nothing to discredit either common or rare
variation as a contributor to the disease, but it does high-
light the need for a framework to combine and analyze
the results of these studies that is aware of these biases
and can distinguish biology from technical effects.

Functional convergence trends as shown through
enrichment and connectivity tests
While enrichment analysis is comparatively straightfor-
ward, we demonstrate an example in Fig. 3a using the
genes with de novo loss-of-function mutations from Ios-
sifov et al. [11] (341 genes) and their overlap with essen-
tial genes (see “Methods”). In Fig. 3a, we represent this
enrichment test as a Venn diagram of the overlap of the
candidate disease gene set with the essential gene set
and calculate the significance of the overlap with a
hypergeometric test (n = 82, p ~ 9.8e-9). We continue
this analysis on the other candidate disease gene sets
from recent ASD studies, varying across study designs
and technologies (WES, GWAS, and arrays). Splitting
each gene set by mutational class, recurrence, and gen-
der, we perform the same hypergeometric tests. To make
comparable assessments between studies and gene sets,
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Fig. 3 Functional properties of disease gene sets are tested using gene set enrichment (top panels) and co-expression network connectivity
(bottom panels). a Gene set enrichment is calculated with a hypergeometric test. A large number (34%) of the genes in the de novo loss-of-function
set overlap with essential genes (hypergeometric test p ~ 9.8e-10). b This is repeated across all disease gene sets (a subset shown here). Sample size is
controlled through downsampling. Gene sets with the higher effect sizes also have the higher functional convergences. c We can now demonstrate
how to calculate the functional convergence trend for the “essential genes” test. The disease gene sets are ordered by an estimate of the average
effect size of genes within the set (from low to high on the x-axis) and the functional convergence of that disease gene set is plotted (y-axis). A trend
between the effect size of the candidate genes and their essentiality can be clearly observed. The network connectivity functional test (d) consists of
calculating the ratio of disease genes’ total connectivity (node degrees calculated from the whole network; sum of their connections) to their internal
connectivity (node degrees of their subnetwork; sum of their connections to one another). The line (in grey) reflects the expected values if there is no
preferential connectivity within the set. We see that a large number (72%) of the genes lie above the identity line. The Wilcoxon p value of the mean
residuals is shown in the inset (p ~ 7.83e-41). e Once again, controlling for sample size through downsampling, the functional convergence of each
gene set is calculated (subset shown). f A weak trend between the effect size of the candidate genes and their degree of co-expression is visible.
Empirical nulls are calculated by permuting disease gene sets and FDRs through a Benjamini–Hochberg correction against the resultant functional
convergence trends

Ballouz and Gillis Genome Medicine  (2017) 9:64 Page 7 of 14



we calculate the functional convergence by downsam-
pling—selecting a subset of genes within that set and
averaging the results over 1000 permutations (schematic
in Fig. 3b). Taking a representative set of studies
(Table 1), we use the degree of disease effect to rank
these sets, noting that recurrence leads to a higher effect
size even for variation and study designs of the same
class by reducing the number of false positives. Placing
the controls sets on the far left, and the highest disease
rank set (recurrent de novo loss-of-function genes) on
the far right, and plotting their functional effect values,
we observe an upward trend (Fig. 3c Spearman’s rs =
0.95, Fisher’s transformation p < 8.24e-06). The slope
(i.e., the correlation) of this trend line represents the
“functional convergence trend”, with higher correlations
indicating higher functional effects.
A less common (likely due to complexity) yet import-

ant functional test is network connectivity. Genes that
are co-regulated or form parts of a functional unit, pro-
tein complex, or pathway are preferentially co-expressed,
and this information is captured in co-expression net-
works. We next demonstrate how network-style effect
sizes can be similarly calculated through a modularity
analysis. In Fig. 3d, we plot the global node degrees (x-
axis) against their connectivity to the remainder of the
genes in the set (y-axis). In the null (grey line), the genes
would be connected to other autism genes in proportion
to the incidence of those genes within the genome. Devi-
ations from this null across all genes generate excess
modularity within this set (studentized residuals shown
in Fig. 3d inset) and determine the statistical results re-
ported for the set overall (Wilcoxon test). A large num-
ber of genes are highly interconnected in this set, as
shown by the number of points above the line (Wil-
coxon test on the studentized residuals, p ~ 7.83e-41). It
is important to note that this network analysis is calcu-
lated against the empirical null for each gene individu-
ally (x-axis) and so is unaffected by any gene-specific
bias (such as length). Only higher-order topological
properties across gene–gene relationships for a given
gene can produce a signal. Even assortativity, the ten-
dency for genes of high node degree to preferentially
interact, is quite low within these data (r = 0.064). As in
the previous steps, we repeat the network connectivity
tests across all gene sets (Fig. 3e), also downsampling to
calculate the functional convergence. Once again, gene
sets with higher proportion of burden genes correlate
with functional convergence tests (Fig. 3e; Spearman’s rs
= 0.69, Fisher’s transformation p < 0.02).

A subset of functional properties are correlated with
disease effect sizes
We extended our analysis to other disease gene property
tests, and calculated their effect size correlations,

plotting the distribution of correlations (Fig. 4a; 4210
functional tests performed, 4164 with calculable correla-
tions). We then calculated the null distribution for the
variation across effect sizes by permuting the estimated
effect size for each real set and rerunning our analysis.
Only limiting our functional tests to those where we had
at least one gene set returning a significant enrichment
signal, we observe a strong signal (61 tests; Fig. 4a; 14
functions FDR <0.01; Table 2). Reducing the stringency
of the underlying enrichment (383 tests; Fig. 4b), we ob-
serve a weaker signal (ten functions FDR <0.01). Remov-
ing the underlying enrichment constraint, we observe
that most functional tests are ordered consistent with
the null, with a few highly correlated functions (Fig. 4c;
enrichment at positive end, three functions FDR <0.01).
The results are broadly reassuring that some weak
artifact is not driving the tendency of the functional con-
vergence and effect size to be correlated because that
correlation occurs almost exclusively where the under-
lying tests themselves are detecting significance. In other
words, the ordering of significances is only non-random
where the underlying values are also non-random. We
focus on the 14 functional properties identified in the
first filtered assessment (Table 2).
Each property can be defined by its vector of effect

sizes across gene sets and so we can cluster the proper-
ties by their Euclidean distance in this space. Taking the
61 properties and highlighting the properties that are
significant (FDR 0.01), they split into approximately
seven clusters and a singleton (Fig. 4e). The interesting
clusters are 1 and 7 as they have the highest correlations
(as depicted by the dark purple scale), and a stronger
significant signal from the de novo set (white/yellow in
heatmap). Cluster 1, specifically, has the most consistent
trends and contains the expression analyses (overexpres-
sion and fold change), the gene essentiality scores, and
some of the neural gene sets. Cluster 3 has the co-
expression networks clustered, and the mutational prob-
abilities, but is slightly weaker as the control sets also
show some enrichment. Cluster 5 contains most of the
GO groups. Cluster 6 has some tests which are function-
ally enriched in the CNV and missense gene sets but are
not significantly enriched for any of the genes in the de
novo recurrent gene set and thus do not show a sub-
stantially positive functional convergence trend. The
clustering speaks to the similarity of some of the tests
(i.e., GO group clustering), but also to a likely neuronal
signature across the disease gene sets.

Significant functional properties are consistent with the
autism literature
One of the properties with the highest correlation was
network connectivity in the BrainSpan co-expression
network; however, all disease gene sets had a significant

Ballouz and Gillis Genome Medicine  (2017) 9:64 Page 8 of 14



functional convergence with BrainSpan, indicating that, in
addition to the real signal, there is a background signal af-
fecting even control data. In particular, the signal from the
silent recurrent mutations in the probands (functional
convergence p = 7.5e-7) shows that control data subject to
only one study design may select genes in a highly non-
random pattern. Most top scoring disease properties are
consistent with the literature on autism candidates such
as average RVIS and haploinsufficiency scores [65], along
with gene length and enrichment for FMRP interactors.
RVIS scores are highly enriched in the loss-of-function re-
current set and the CNVs, but not significant in any of the
other sets (Fig. 5a); as with any meta-analysis, significance
in any one set is not necessary for aggregate significance.
Genes with high haploinsufficiency scores—those that
cannot maintain normal function with a single copy—are
overrepresented in the loss-of-function recurrent genes,

and there is also a significant effect in the GWAS results.
Many interaction networks and traditional functional cat-
egories appear to be poor candidates to determine conver-
gence in disease genes, as they cluster control gene sets
and sets of low effects as well as those of disease genes.
For instance, the extended PPI network has a high effect
in the sibling control sets (e.g., silent functional conver-
gence p ~ 1.3e-5; Fig. 5b). GO terms and KEGG pathways
typically do not survive correcting for multiple testing, al-
though there is a general deviation from the null and the
extremal GO functions are concordant with the known lit-
erature (e.g., GO: 0016568 chromatin modification, hyper-
geometric test p ~ 1e-3 for the de novo recurrent set; or
GO: 0048667 cell morphogenesis involved in neuron dif-
ferentiation, hypergeometric test p ~ 0.04 for the CNV
set). So although functional convergence trends are con-
centrated in more clearly disease-related properties such
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as RVIS, traditional functional categories from, e.g., GO
remain of modest use.

Robustness and relative contributions of study designs
and variants
In order to determine whether the functional conver-
gence trend rose preferentially from a subset of studies,
we conducted a series of robustness analyses (Additional
file 1: Figure S1). Ideally, the significant functional con-
vergence trend we see is due only to effect size estimates
across studies which are themselves robust. Nor do we
want the trends to be strongly affected by ordering of
the gene sets with similar effect sizes. Even though the

average effect sizes for the GWAS sets were the same,
the number of false positives within these sets varies,
and this was incorporated into the ranking scheme. It is
also arguable that the silent mutations in the probands
may have some regulatory effect, or are false negatives.
As a more stringent test, we removed whole classes of
variants from the analyses (e.g., all the controls or all the
common/weaker gene sets) and calculated the trends
once again (Additional file 1: Figure S1d–f ). This is a
negative control experiment in the sense that if the func-
tional convergence trend arises meta-analytically, it
should be largely robust to changing things we are not
certain about (e.g., as above, whether effect sizes are 1.1
or 1.09) and not robust to changing things we are cer-
tain about (common variants play some role in autism).
Removing either controls, gene sets with the highest ef-
fects, or the common variants from the trend analyses
removes all the number of significant correlations,
although some deviation from the null remained
(Additional file 1: Figure S1). When rare variants are ex-
cluded, the distribution of correlations is most similar to
the null, but still significantly different (Student’s paired
t-test p ~ 0.03), while the total significance of the test is
closest to the full version when common variation is ex-
cluded (Student’s paired t-test p ~ 8.2e-7). Since our
common data are likely the weakest due to the tremen-
dous focus of autism data collection toward rare vari-
ation in the SSC, this makes sense, but common
variation still contributes substantial joint signal. These
tests confirm that the approximate order of gene sets by
effect sizes correctly drives the results and that we are
robust to minor variation in the exact effect sizes listed,
but do rely on the joint use of the extremely divergent
study results (rare and common) within the meta-
analysis to attain significant results.

Table 2 Functional properties with significant functional
convergence trends

Functional property Spearman’s
correlation

FDR

Gene essentiality (Georgi et al. [50]) 0.95 0.001

GO:0048699 (generation of neurons) 0.92 0.003

FMRP interactors (Darnell et al. [49]) 0.91 0.003

Brainspan co-expression network 0.90 0.003

SynapseSet (Lips et al. [46]) 0.90 0.003

Haploinsufficiency scores 0.89 0.003

RVIS 0.86 0.007

GSE25219: Overall expression 0.84 0.008

GO:0007409 (axonogenesis) 0.84 0.006

GO:0030182 (neuron differentiation) 0.84 0.006

GO:0048667 (cell morphogenesis involved in neuron
differentiation)

0.84 0.006

GO:0061564 (axon development) 0.84 0.006

Chromatin remodeling gene set (Ronan et al. [48]) 0.83 0.006

GSE25219: Fetal expression 0.83 0.006

rs = 0.86
rs = 0.09
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To control for the impact of gene length and multi-
functionality (the number of functions a gene is listed as
possessing), we repeated a control version of our ana-
lyses. In this case, the real disease gene sets were
swapped out with gene sets matched with respect to
multifunctionality or length. We then reran the evalu-
ation of functional convergence trends to determine if
any previously identified properties arise as correlated
with these control sets (ordered by their match to a spe-
cific disease set, e.g., gene length distribution). Repeating
the analysis in this control case, we find the derived cor-
relations are for the most part extremely similar to the
null (reference). We can additionally use these control
versions as a slightly more stringent null distribution for
expected correlations when we evaluate the real disease
sets. In the analysis where we do not condition on the
underlying tests having reached some level of signifi-
cance (as in Fig. 4a), we see even more correlations pass-
ing significance (Additional file 1: Figure S2), indicating
that the multifunctionality or gene length do little to ex-
plain the general trends we see.
Promiscuous or absent enrichment have both historic-

ally been problematic within disease gene data; both di-
minish the specificity of functional results. When too
many functions are returned from an analysis, we need
to cherry pick and with too few, we have no “leads” and
are left in the dark. We suggest that the strong aggregate
effect we see and small number of significant functions
is likely near to a useful and biologically plausible type
of specificity for downstream analysis, as suggested by
the fact that ad hoc filtering (i.e., top ten lists) usually
are at about this level when not constrained by signifi-
cance. Our set of functional tests and results are shown
in Additional file 2: Table S1 and the full data set is
available online.
One potential failure mode of this analysis comes from

the GWAs we have used. Because the number of autism
GWAS available and well-powered for analysis was rela-
tively small, we used a combined psychiatric genomics
dataset, which included bipolar disorder and schizophre-
nia. We now wish to test how specific our results were
to our disease and not a signal of GWAS in general. In
order to assess this, we reran our analysis replacing the
psychiatric GWAS candidate genes with a candidate list
derived from a different GWA study, iterating through
each of 148 GWAS traits (see “Methods”). If the conver-
gence we identify is specific to autism, we should expect
to identify autism, or related disorders, as producing the
most significant correlations when integrated with the
other (non-GWAS) autism data in analysis. Using the
number of correlations calculated as significant to rank
the 148 traits, the top ten traits include the autism and
schizophrenia GWAS, and a few larger studies such as
“body mass index” (Additional file 1: Figure S3). This is

a fairly striking confirmation of our original hypothesis:
Rare and common variation not only show functional
overlaps when conditioned on effect size, but ones that
are specific to autism, as well as more general overlaps
likely reflective of all disease. The more general overlaps
can be seen by the relatively high ranking of the larger
GWAS, which are not related to psychiatric disorders
but do score well based on very broad disease properties,
such as the gene mutability scores.

Expanding the functional gene tests shows no further
significant properties
We wished to see if we could find other significant asso-
ciations if we expanded our repertoire of functions
within each type of test. Our first set of network analyses
focused on general aggregate co-expression networks
and brain sample-only aggregates. In most analyses, re-
searchers use individual datasets to build their networks
and we wished to compare our results to these. Thus,
we expanded our tests to a total of 540 networks. We re-
peated the same analysis, using an additional six PPI net-
works, 76 condition-specific networks (tissues, sex, and
age), and a further 454 RNAseq co-expression networks
(227 across 18,000 protein coding genes and 227 across
30,000 transcripts). Once again, we see functional con-
vergence across almost all the gene sets with little or-
dered trend by effect size. The network convergence
exists in even the control data and is therefore likely due
to study selection biases alone; none pass an FDR of
0.01 (Additional file 1: Figure S4a).
Initially, we focused on expression data for the brain,

but were curious about how tissue-specific these pat-
terns were, or whether the genes were generally highly
expressed. To this end, we repeated the expression ana-
lyses using tissue-specific expression datasets from
GTEx data [31]. We were also curious to determine if
we could see sex-specific differences, and used add-
itional data from the GEUVADIS project [66]. Repeating
the functional convergence trends on all these expres-
sion datasets shows little to no significant expression in
the individual gene sets, and no significant functional
correlations (Additional file 1: Figure S4b). The func-
tional test with the greatest correlation was also from
brain-specific expression datasets (rs = 0.78).
One last set of gene properties typically used by re-

searchers in their analyses are the curated gene sets from
MSigDB. We repeated our analyses on all eight collections
and calculated the functional convergence trends, using
the hypergeometric test as in the case of calculating en-
richment in GO. The gene sets range from curated data
sets from the known literature to computationally derived
gene sets from cancer microarrays. Perhaps unsurpris-
ingly, we see no enrichment in these gene sets (Additional
file 1: Figure S5) as most are inflammatory or oncogenic
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collections, or versions of GO terms and KEGG pathways
which we had already found to have no enrichment.

Discussion
Advances in sequencing technologies, classifications, and
diagnoses of autism and improved genetic analyses have
vastly expanded the potential candidate list for autism-
linked genes and our overall understanding of the disorder.
Different study designs target different genetic mechanisms
and thus potentially quite distinct molecular or biochem-
ical signals at the gene-level. The most prominent result
from our analysis is that the functional signal is actually
shared, so long as the different effect sizes of the genes are
taken into account. Our meta-analytic approach is robust,
stringent, and partially independent of most conventional
analyses as it exploits trends varying strictly across studies
to find plausible biological signals. We expect that contin-
ued research parsing and defining different classes of aut-
ism will be able to build substantially from this base,
toward integrated models of all genomic variation to deter-
mine aggregate autism risk. One such possibility follows
naturally from our own work, by using the functional
properties our analysis suggests are convergent across
study designs to prioritize genes; i.e., we could score genes
as autism-associated based on how many convergent func-
tions they appear in. While this is comparatively straight-
forward, we suspect that the major thrust of future
research will be toward similar models, but occurring at
the level of candidate variants within those genes. As such
detailed models are constructed, our analyses highlight a
number of points that will be particularly important. First,
differences in the prevalence of different classes of variants
will be a major property to control for. Many of our ana-
lytic choices are centered on not allowing common variant
signals with particular technical properties to “swamp”
rare, but important, signals. A second major contribution
of our work is to highlight which properties are likely use-
ful ones to validate future models. As this work establishes
and previous analyses have also suggested [30], PPI data
are particularly confounded with selection biases that can
create apparent signals. The functional properties we high-
light as most significant within our analysis, and which
other detailed research has supported (e.g., FMRP [67, 68]),
are already targets of intense research interest and also
likely to be valuable for validation of any disease burden
models, where they should continue to show a signal.
Our specific experimental design for assessing a relation-

ship between functional convergence and effect size may
well be open to elaboration and emendation. Potential
weaknesses in our design are our use of non-parametric
tests and downsampling to control for set size. These are,
we think, natural choices for robustness but more finely
tuned alternatives are likely to exist and could easily be a
target of research since our results suggests the observation

of key functional convergence trends is highly robust and
salient within the data. As the number of disease gene sets
expands, and further refinement of risk assessment is
achieved, the resolution of functional convergence trends
should grow. Indeed, incorporating effect size as a meta-
analytic constraint offers a diverse range of novel applica-
tions. That integration may be across study designs and
classes of variation, as we have done, or may involve
phenotype or other properties. So, for example, one could
determine functional convergence trends that grow or
shrink depending on how patients are classified, or even
broken down in a sex-specific manner for interpreting pro-
tective effects. More broadly, as data and the means for
obtaining it grow, techniques to statistically assess its struc-
tured dependencies will grow more useful and important.
Our robustness analysis speaks to this in that while we are
robust to modest losses of data, it is clear that more data
will only improve the signals of the individual classes. More
finely tuned effect size estimates and better separations of
the gene sets and variant classifications will also help refine
the distinction between biological and artifactual signals,
ideally allowing us conduct yet more focused study designs
in a productive feedback loop.

Conclusions
In this work we have found that the stronger the effect size
of autism candidate genes, the more likely they are to ex-
hibit a joint functional signal. The functional properties
identified exhibit some specificity to autism and neuro-
psychiatric disease (e.g., FMRP interactors), but also some
more general links to disease (e.g., RVIS). While there re-
mains substantial heterogeneity between study designs and
the genetic architectures of disease which they may un-
cover, we have shown that there is some commonality
across study designs. The commonality across study de-
signs is not a literal overlap in risk genes, or even func-
tional effect, but that functions weakly identified in GWA
studies are likely to be more strongly identified in rare vari-
ation studies. As evidence for autism and other disorders
continues to develop and continues to be heterogeneous
with respect to ascertainment biases and study designs, we
suspect approaches related to the one we describe will be
of increasing importance.

Additional files

Additional file 1: Figure S1. Trend line robustness analysis. Figure S2.
Functional convergences null for matched length and multifunctionality
controls. Figure S3. Functional convergence correlation/trend distributions
for GWAS. Figure S4. Functional convergence correlation/trend distributions
for all network connectivity tests and all gene expression tests. Figure S5.
Functional convergence correlation/trend distributions for all MSigDB
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