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Abstract

Accurate characterization of the repertoire of the T-cell receptor (TCR) alpha and beta chains is critical to
understanding adaptive immunity. Such characterization has many applications across such fields as vaccine
development and response, clone-tracking in cancer, and immunotherapy. Here we present a new methodology
called single-cell TCRseq (scTCRseq) for the identification and assembly of full-length rearranged V(D)J T-cell
receptor sequences from paired-end single-cell RNA sequencing reads. The method allows accurate identification of
the V(D)J rearrangements for each individual T-cell and has the novel ability to recover paired alpha and beta
segments. Source code is available at https://github.com/Elementolab/scTCRseq.

Background

T-cell receptors (TCRs) are molecules found on the
outer surface of their corresponding lymphocytes that
play a part in recognizing foreign molecules. The gener-
ation of diversity in these receptors enabled by somatic
recombination involves choosing one from multiple vari-
able (V), diversity (D), and joining (J) to produce VD]
gene segments in TCR beta chains or V] segments in
TCR alpha chains. These receptors play an essential role
in regulating the selection, function, and activation of T-
cells and also allow the unique identification of a single
cell’s clonal ancestry or clonotype. In the case of T-cells,
the proper assignment of paired alpha and beta gene re-
arrangements may also help link T-cell function and
TCR specificity [1, 2]. Accurate characterization of these
repertoires, including reliable determination of each
junction, would likely provide novel insight into anti-
bodies, track the modulation of TCR expression, and
allow the monitoring lymphoid malignancies or possible
detection of circulating tumor-infiltrating lymphocytes
among other applications. Past attempts at recovering
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these repertoires have largely involved using polymerase
chain reaction (PCR) amplification from cell populations
followed by sequencing to detect each junction. Caveats
include lack of chaining between alpha and beta chains
and possible PCR amplification biases, although there
have been some methods developed that attempt to ad-
dress this [3-6].

The recent development of single-cell RNA sequen-
cing (scRNAseq) allows the transcriptomes of thousands
of cells to be processed simultaneously [7], bringing a
way to identify subpopulations of cells and provide func-
tional insights [8] such as the identification of each cell’s
unique TCRs and paired alpha and beta heterodimers
that were previously masked in the analysis of an ensem-
ble of multiple cells. However, scRNAseq is not devoid
of biases and noise. For example, scRNAseq can only
quantify the expression of most highly expressed genes
and likely suffers from PCR amplification biases.

Many current PCR-based methods for the amplifica-
tion of V(D)] segments either use primer sets that intro-
duce amplification artifacts owing to the differential
amplification of some DNA templates over others,
requiring the usage of complex normalization methods
[9, 10] or require complex protocols based on template-
switching effect of reverse transcriptase for the unbiased
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preparation of TCR cDNA libraries [6]. If successful, a
single-cell sequencing model for TCRs may avoid these
issues and recover these complex repertoires alongside
the rest of the transcriptome present in T-cells.

In this paper, we address the accurate characterization
of T-cell repertoires from scRNAseq data. We describe a
computational method “single-cell TCRseq” (scTCRseq)
to identify and count RNA reads mapping to specific
TCR V and C region genes, then perform multiple align-
ment of reads mapping to V and C regions with a signifi-
cant count to create consensus V and C gene sequence
“contigs” across which gap-filling is performed in a man-
ner similar to de novo transcript assembly. This allows
the identification of a single cell’s V(D)] gene rearrange-
ment(s) and recovers the entire receptor sequence in-
cluding constant region and nucleotides inserted and
deleted at junctions. We applied scTCRseq to identify
paired alpha and beta receptor rearrangements by reana-
lyzing scRNAseq data from 91 naive Cd4+ T helper cells
in mice [11], RNAseq data generated from human Jurkat
cell lines [12, 13], and also performed in silico simula-
tions of single-cell T-cell RNAseq data. We found that
scTCRseq facilitates the identification of productive and
paired alpha and beta chain V(D)] TCR rearrangements
and enables the recovery of full TCR including the
nucleotide insertions and deletions at junctions in single
T-cells. Single-cell TCRseq provides an avenue for
phenotypic investigation of T-cells in conjunction with
the accompanying whole-transcriptome data.

Methods

Single-cell TCRseq read filtering and V gene counting
Single-cell RNAseq reads were preprocessed in Trim
Galore [14] using command line settings —stringency 5
and —q 20 and then the processed reads were formatted
to FASTA format for processing by custom BLAST-
mapping. The formatted reads were then submitted for
nucleotide BLAST-mapping with a user-defined eValue
against custom databases comprising TCR Alpha V
genes, Beta V genes, Alpha C genes, and Beta C genes
downloaded from IMGT [15], which had been processed
to include only the first allele of each separate gene from
the database, as the correct allele would subsequently be
regained in the consensus alignment in the next stage of
the pipeline. The BLAST expected value cutoff can be
selected to be variable but parameter variation showed
that a value of 1e-8 provided a good threshold to cut off
spurious mappings and this was set as the default for the
pipeline. This value is somewhat more stringent than the
BLAST expected value threshold used to directly analyze
CDR3 regions due to the smaller reference database
used for this method and that scTCRseq is not aligning
to the highly variable junctions that increase the uncer-
tainty of mapping in these regions.
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TCR V gene consensus alignments

A table of the counts of reads meeting BLAST expected
value cutoffs for each alpha and beta variable and con-
stant genes was formulated for each sample. Due to the
nature of the V and C genes in TCRs, some regions of
these genes display high sequence similarity and a conse-
quence of this was to produce ambiguity in the “top hit”
produced in BLAST. Subsequent steps of reanalysis were
required in the method to produce the correct candidate
V and C region consensus sequences. For each candidate
V or C region that had greater than 10 % of reads map-
ping to any V region mapping to the candidate in ques-
tion, the following procedure was followed: (1) a pileup
of reads mapping to this gene of interest was created; (2)
if the pileup did not show coverage over the entire gene
above a predetermined minimum of 5x then this gene
was rejected as a false positive. Coverage of 5x was se-
lected based on simulated data as sufficient to distin-
guish false-positive regions. False-positive hits showed
apparent coverage in regions of high sequence similarity
to the “true-positive” V or C genes and either zero or
very low coverage in the regions where their sequence
similarity diverged from the “true-positive” V or C genes;
(3) for genes that met the minimal coverage over the en-
tire gene the consensus sequence from the pileup was
chosen as the candidate sequence; (4) candidate se-
quences for each of the loci (for example, if there were
three consensus V beta sequences generated from candi-
dates) were then compared to each other and if any se-
quence formed a subsequence to another it was
removed from further analysis due to the two sets of
reads mapping to the same gene; (5) this process was
performed for the Alpha and Beta V and C regions for
each candidate and a list of possible “contigs” was
returned along with their mean coverage.

Scaffold concatenation and gap-filling

Once a set of consensus V and C sequences was ob-
tained for both the alpha and beta chains, they were
then concatenated to produce gapped-scaffolds. If there
were multiple V regions, then each V region was
concatenated separately to the corresponding C region
and a string of “N” nucleotides was generated in be-
tween the V and C gene consensus genes and put into a
FASTA file for gap-filling to be performed. In detail, we
ascertained the approximate length between V and C re-
gions [16—-18] and this distance was used to inform the
gap between V and C regions, to produce concatenated
V-C gap candidates with three nucleotides trimmed
from the ends of the V and C consensus sequences. As
required by GapFiller, a library file was then created for
each sample containing the gapped contig fasta file, the
processed reads files, with bwa [19] chosen for the align-
ment algorithm stage for aligning reads with the gapped
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contig. An estimated insert size was calculated based
upon the mean length of the reference J or D-J regions
with a tolerance of plus or minus 50 %, resulting in an
insert estimate of 33-99 bp which was easily sufficient
to encompass any variation in CDR3 lengths that had
previously been observed in TCR alpha or beta junctions
[20-22]. GapFiller [23] was then run on these libraries
with parameters (-r 0.7 -n 5 -d 50 -t 0 -g2 -T 1 -i 3)
and the minimum number of reads needed to call a base
during an extension set to reflect the minimum coverage
selected earlier and the minimum number of overlap-
ping bases with the sequences around the gap set be 20,
unless for very short read lengths where it was set lower.

A junction was considered to be filled if the program
successfully closed the junction gap fully, otherwise the
gapped sequence was rejected. Output files were then
created containing all full closed gap receptor sequences
and also the candidate V and C consensus sequences
along with their mean coverage.

Source code written in python is available at https://
github.com/ElementoLab/scTCRseq together with docu-
mentation on how to install and run the pipeline.

RNA sequencing data

Single-cell RNAseq data for the mouse the T helper cells
have previously been described [11] and we downloaded
data from the ArrayExpress [24] under accession num-
ber E-MTAB-2512. The RNAseq data generated for
three replicate human Jurkat cell lines was downloaded
from GEO [12] under accession number GSE45428.
Simulated RNAseq reads for the in silico testing was
generated as follows: GemSim [25], a General Error-
Model based SIMulator, capable of generating paired-
end reads generated using a reference genome and a
given error model was used on the hgl9 human refer-
ence genome to generate read pairs of read lengths
25 bp, 50 bp, 75 bp, and 100 bp with a mean length of
fragments of 300 bp with standard deviation of 30 bp.
Noise and errors were added according to the ill100v4_p
error model: llumina GA IIx with Illumina Sequencing
Kit v4 chemistry, paired reads. TCR alpha and beta chain
sequences were generated for 30 pairs by randomly con-
catenating variable (diversity), junction, and constant re-
gions (V-J-C for alpha and V-D-J-C for beta) selected at
random from the IMGT reference human databases for
each gene region [15]. Random bases were then inserted
at the junction segments of lengths 0 bp, 3 bp, 6 bp, and
9 bp to model the junctional diversity of VD] recombin-
ation that occurs in TCRs. Empirically we calculated
from the Jurkat cell line RNAseq data that approxi-
mately 0.3 % of all mapped reads mapped to the recon-
structed TCR loci; therefore, for each simulated alpha
and beta chain sequence we then again applied GemSim
to the synthetic TCR alpha and beta sequences to
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generate simulated read pairs at the required length and
error model and concatenated them with the reference
RNAseq simulated data from the hgl9 models in a ratio
of 3:997 to generate realistic error-rich read-pair data
generally reflective of a scRNAseq run at the required
read length and depth, with the depths selected so that
on average the TCR alpha and beta chains had average
coverage of 10x, 50x, and 100x, generating 120 simulated
paired read files for each read length and average TCR
coverage.

Transcript identification and quantification

Paired-end reads from the 91 single-cell RNAseq sam-
ples were mapped simultaneously to the Mus musculus
genome (Ensembl version 38.70) and we counted reads
for each gene using htseq-count [26] to generate a raw
counts table of genes across all 91 samples. The raw
counts were then processed and filtered according to the
edgeR vignette [27] and the unadjusted FPKM for each
gene was calculated as its cpms (counts per million
(CPM) mapped reads) normalized by the summed length
of its exons.

Data quality control and pre-filtering

Paired-end reads from the 91 single-cell RNAseq sam-
ples were mapped simultaneously to a custom reference
genome comprising the Mus musculus genome
(Ensembl version 38.70) along with the ERCC spike-in se-
quences (available from https://www.ebi.ac.uk/arrayex-
press/experiments/E-MTAB-2512/files/). After alignment
was performed, we counted reads for each using htseq-
count [26] to generate a raw counts table of genes and
reads mapping to ERCC spike-ins across all 91 samples
(Additional file 1: Table S1). Following the counting of
mapped reads, we applied the following quality control fil-
ters: total number of reads > 0.25 million, percentage of
reads mapping to known exons>40 %, number of
genes detected per cell >6000 and ratio of reads map-
ping to ERCC<0.6. This produced 71 samples meet-
ing these criteria.

Results

A pipeline for TCR analysis of scRNAseq

The scTCRseq pipeline takes as input unaligned single
or paired-end reads from whole transcript scRNAseq. It
is run on each cell individually. Briefly, the pipeline takes
paired-end reads as input and first creates high-
confidence V and C region sequences separated by a
gap, then fills the gap using a process similar to de novo
assembly. In more detail, the pipeline works as follows
(Fig. 1): first, it maps reads using NCBI nucleotide
BLAST against a custom blastn [28] database comprising
TRA/B variable and constant gene loci downloaded from
IMGT [29] (Fig. 1a). For each set of reads mapping to
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Fig. 1 Schematic overview of scTCRseq pipeline. a Input fastq files are BLAST-aligned to custom reference TCR alpha and beta variable and constant
regions genes. b Consensus-driven multiple alignment to candidate genes is performed to create V and C gene sequence “contigs.” Correct alleles are
inferred from the consensus. ¢ Each consensus V region is concatenated to its corresponding C region consensus with a gap to create a scaffold to
perform gap-filling. d GapFiller finds read pairs of which one member matches within a sequence region and the second member falls (partially) within

the gap to join the scaffolds and recover full alpha or beta chains if successful

the V region alpha or beta chains, we then perform a
pileup and multiple alignment of these reads to any par-
ticular variable gene that shows a significant number of
mapped reads (we set the threshold at 10 % of mapped
reads but this can be altered in the pipeline) to generate
consensus variable gene sequences that satisfy a minimum
coverage (Fig. 1b). A multiple sequence alignment is also
performed on the set of reads mapping to constant re-
gions to generate consensus constant region sequences.
Once a set of V and C region “contigs” are obtained for
variable and constant regions of interest in the single-cell

sample, each consensus V region is concatenated to its
corresponding C region consensus with a gap inserted be-
tween the V and C regions to create a scaffold (Fig. 1c).
The gap is filled using gap-filling software GapkFiller [23].
To achieve this, GapFiller uses all paired reads from the
sample and seeks to find read pairs for which one read
matches within a sequence region and the second read
falls (partially) within the gap (Fig. 1d). The latter reads
are then used to close the gap through a predefined se-
quence (k-mer) overlap. If a gapped scaffold satisfies the
gap-filling procedure at a predefined minimum coverage
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they can then be analyzed for V(D)] sequence alignment
in tools such as igBlast [30] or IMGT V-QUEST [31]. A
full account of the pipeline is also provided in the
“Methods” section.

The method outlined offers a novel approach to the
recovery of TCRs in scRNAseq data. It differs from cur-
rently available software such as MiTCR [32] and Vidjil
[33] in that scTCRseq adopts an “outside-in” rather than
an “inside-out” approach. Alternative software is de-
signed primarily to analyze CDR3-containing reads gen-
erated from primer and PCR-based approaches; in
general, they target the extraction of the entire CDR3 se-
quence and then report on clonotypes based upon the
CDR3 frequency without trying to accurately determine
the specific V or C gene unless very long read coverage
is available.

scTCRseq is built with the presumption that the
RNAseq data came from a single cell with at most two
or three separate alpha or beta chains to be identified
and therefore takes a different approach. The first step
of scTCRseq is to determine with high accuracy the se-
quences of the variable and constant regions of an alpha
or beta chain and generate two separate “contigs” (a full
variable region and a full constant region of the chain in
question) with the aim of leveraging this information
to join the “contigs” together using a gap-filling as-
sembly akin to some methods used in de novo tran-
script assembly [34, 35].

There are multiple reasons why we have adopted this
different approach: due to the CDR3 sequence being in-
herently more variable than the V and C segments either
side of it, the alignment stage for software that detects
CDR3 sequences relies upon generating vastly larger ref-
erence libraries of all possible junction sequences with
the additional problem of accounting for nucleotide in-
sertions and deletions at the junctions. This means that
the alignment for scTCRseq in the V and C regions can
be more stringent and then use a consensus-driven ap-
proach to generate the V and C regions that is more ro-
bust both to shorter read lengths and higher sequencing
error-rates. scI'CRseq takes advantage of the information
inherent in the read pairs (given sufficient information
about the total read length) so that we can leverage a
gap-filling assembly as we have high confidence of the V
and C regions either side of the gap, unlike the “inside-
out” approaches that necessarily require reads to span
the entire length of the CDR3 region and take no advan-
tage of information of the mate-pair read. This means
that scTCRseq can perform at lower read length and
lower read depth, as we use the information of a far
higher proportion of RNAseq reads mapping to a TCR
to provide information either regarding generating the
consensus V and C “contigs” or in assembling across the
gap between the two.
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Unlike many cases of de novo transcript assembly we
know the range of the gap size between “contigs” with high
accuracy from analysis of currently known CDR3 lengths
[16-18]. The assembly is also agnostic to generating a li-
brary of junction sequences and instead uses a consensus
approach, which allows reads that do not quite span the
whole CDR3 region to provide additional information to
the generation of either the alpha or beta chain sequence.

Validation and in silico simulations

To validate our method for the recovery of full-length
TCR alpha and beta chains, we ran scTCRseq on
RNAseq data generated from a human Jurkat cell line
[12, 13] for which the complete alpha and beta receptor
sequences had previously been determined [36, 37].
RNAseq data from the Jurkat cell line provides a good
control to scRNAseq data due to its clonal nature and
because it has been extensively studied the sequence of
it alpha and beta chain TCRs are well known [38]. The
Jurkat T-cell messenger RNA was then analyzed on an
Mlumina HiSeq2000 with each run producing approxi-
mately 80 million reads with paired-end read length of
101 bp and total length of approximately 350 bp using
the [llumina TruSeq RNA Sample Prep Rev. A.

First, we asked whether scTCRseq can recover the
alpha and beta chains at different total read depths ob-
served in the three replicate samples. We also compared
the performance of the pipeline on the Jurkat cell line
data at various read depths with two other programs:
iSSAKE [39] and VIDJIL [33]. These programs had pre-
viously been designed to process CDR3-containing reads
in RNAseq libraries.

The scTCRseq sequencing pipeline was run on the
three replicate samples with standard parameters (with
BLAST eValue threshold 1e-8, minimum supporting
read coverage 5 and estimated mean insert size of 148)
and in all three cases returned one productive alpha and
beta chain that were identical (alpha chain of TRAVS-
4*01/TRAJ3*01/TRAC*01 and beta chain of TRBV12-
3*01/TRBD1*01/TRBJ1-2*01/TRBC2*01) and which had
VJ and V(D)] combinations in agreement with the refer-
ence sequences (Additional file 2: Table S2). This con-
firms that scTCRseq can reliably recover alpha and beta
chain sequences from a validated sample. We also ran
the programs iSSAKE and VIDJIL on these datasets with
a range of parameters appropriate for the RNAseq
dataset (iSSAKE -m 15,30,45,60 —o 2,5,10,100 —r 0.7
—p 1 and a range of values for —d from 100 to 400
and VIDJIL —c clones —r 5,50,100). In the case of
ISSAKE, we were unable to produce any clonotypes
that mapped to a TCR alpha or beta chain sequence
or produced a correct result when subsequently ana-
lyzed using IMGT V-Quest [31] while trying all dif-
ferent combinations parameters listed. VIDJIL aligns
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reads spanning the junctions and therefore was not
able to return the entire sequence of either the alpha
or beta chain and was unable to specify exactly which
variable genes were the correct assignment in either
case (the short length of V region sequence resulted
in five possible beta variable V regions and three pos-
sible alpha variable V regions). However, VIDJIL was
able to extract a correct clonotype corresponding to
both alpha and beta chains for the TCR and also
amino acid sequences for the junctions that were in
agreement with scTCRseq.

We performed subsampling of the read-sets to deter-
mine an approximate read coverage required to infer ac-
curate detection of the entire alpha and beta chains, and
again compared this to the read depth required for the
program VIDJIL to accurately infer the junction se-
quences. We used the program seqtk (downloaded from
https://github.com/lh3/seqtk) to perform subsampling
on the three replicate sets of Jurkat cells, subsampling at
depths of 50 k, 100 k, 500 k, 1 million, and 5 million
read pairs and used six different random seeds for each
sample and coverage to produce 18 independent read-
sets at each depth. We ran scTCRseq and VIDJIL with
their standard parameters (scTCRseq with BLAST
eValue threshold 1le-8, minimum supporting read
coverage 5, and estimated mean insert size of 148
and VIDJIL: -c¢ clones —r 5) and the results (Additional
file 2: Table S2) show that scTCRseq recovered the beta
chain sequence in all cases at a depth of 100 k read pairs
and the alpha chain in all cases at a read depth of 500 k
read pairs. When VIDJIL was run for the same datasets
the beta chain required 500 k read pairs to discover the
junctions in all cases and the alpha chains required 1
million read pairs to discover the junctions in all cases.
Again, in these cases VIDJIL was unable to identify the
correct variable genes due to only being able to align
reads spanning the junctions.

To further validate scTCRseq’s ability to filter and ac-
curately determine the TCR alpha and beta chain se-
quences, we applied it to a set of error-prone simulated
reads generated at various read lengths and read counts.
GemSim [25], a General Error-Model based SIMulator,
capable of generating paired-end reads generated using a
reference genome and a given error model was used on
the hgl9 human reference genome to generate read
pairs of read lengths 25 bp, 50 bp, 75 bp, and 100 bp
with a mean length of fragments of 300 bp with standard
deviation of 30 bp. Noise and errors were added accord-
ing to the ill100v4_p error model: llumina GA IIx with
[lumina Sequencing Kit v4 chemistry, paired reads. TCR
alpha and beta chain sequences were generated for 30
pairs by randomly concatenating variable (diversity),
junction, and constant regions (V-J-C for alpha and
V-D-J-C for beta) selected at random from the IMGT
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reference human databases for each gene region [15].
Random bases were then inserted at the junction seg-
ments of lengths 0 bp, 3 bp, 6 bp, and 9 bp to model
the junctional diversity of VD] recombination that occurs
in TCRs. Empirically, we calculated from the Jurkat
cell line RNAseq data that approximately 0.3 % of all
mapped reads mapped to the reconstructed TCR loci.
Therefore, for each simulated alpha and beta chain
sequence we then again applied GemSim to the syn-
thetic TCR alpha and beta sequences to generate sim-
ulated read pairs at the required length and error
model and concatenated them with the reference
RNAseq simulated data from the hgl9 models in a
ratio of 3:997. This generates realistic error-containing
read-pair data generally reflective of a scRNAseq run
at the required read length and depth. In these ran-
dom runs, the depths were selected so that on aver-
age the TCR alpha and beta chains had average
coverage of 10x, 50x, and 100x, generating 120 simu-
lated paired read files for each read length and aver-
age TCR coverage. We defined that scTCRseq had
accurately recovered the alpha or beta chain sequence
in question if it fully recovered the junction sequence
and sufficient V, J, and C gene to uniquely determine
the chain that was simulated. We also ran VIDJIL on
the simulated data to check the recovery rate of the junc-
tion sections. The results of the simulations (Additional
file 3: Table S3) show that given sufficient coverage
scTCRseq was able to accurately recover both TCR loci at
all read length at greater than or equal to 90 % accuracy
for TCR average coverage of 50x. Due to the requirement
to have reads spanning the entire junctional segments of
the alpha and beta chains, VIDJIL was unable to deter-
mine any alpha or beta chain sequence for simulated data
with read lengths 25 bp or 50 bp, but could accurately de-
termine the junction sequence at rates comparable to
scTCRseq for coverage of 50x or greater (without deter-
mining the unique correct V genes). However, scTCRseq
was able to accurately determine the TCR loci at lower
coverage, especially for longer read lengths where at 10x
coverage and 100 bp read length it recovered 94 % of
alpha chain sequences and 100 % of beta chain sequences
versus 48 % for VIDJIL in both cases.

Altogether, the results from running scTCRseq on the
Jurkat cell lines and simulated single-cell data indicate
that this method can accurately determine entire TCR
loci from single T-cell sequence data, with a greater sen-
sitivity than other current methods and at a greater
range of read lengths.

Application to single T-cell RNAseq shows that TCR
variable region transcripts are highly expressed

We applied the method to study two populations of differ-
entiating T helper cells that had been profiled using
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scRNAseq previously [11]. In brief, the naive Cd4" T
helper cells were activated and polarized with IL-4 to in-
duce differentiation towards a Ty2 subtype. Four and a
half days after stimulation, the cells were sorted into a
GA4P group (fourth generation, IL-13—GFP" cells) and a
G2N group (second generation, IL-13—GFP™ cells) and
pooled in equal proportions. A set of 91 asynchronously
dividing cells from the pool (including both fully and par-
tially differentiated cells) was captured using the Fluidigm
C1 system and sequencing libraries were prepared and
processed, producing libraries of paired-end 75 bp reads
with an average of approximately 16 million paired end
reads (mean 16.06, minimum 2.20, maximum 28.85,
standard deviation 4.62 million reads) for each single-cell
sample, a summary of read counts. Further information
on the protocol and libraries are available at [40, 41] and a
summary of read-count, quality statistics, and phenotypes
for each sample is shown in Additional file 1: Table S1.
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After the read-data were downloaded from ArrayExpress
[24] under accession number E-MTAB-2512, we compared
the counts of reads mapping to the TCR variable genes
to the transcriptome as a whole to gauge relative ex-
pression of these genes. After mapping to the refer-
ence genome, the raw counts were normalized and
their counts per million reads were calculated in the
manner of the edgeR package [27]. We observed that
the TRAV and TRBV FPKM (fragments per kilobase of
exon per million reads mapped) values were, on aver-
age across all the samples, some of the most highly
expressed of the 7990 genes observed after quality
control (Fig. 2a). The list of most highly expressed
gene transcripts is seen in Fig. 2b. Among the most
highly expressed genes were B2m (a component of MHC
class I molecules), Actb (a commonly used housekeeping
gene in T lymphocytes) [42], multiple ribosomal proteins,
and Mif (a key regulator in innate immunity) [43].

Mean
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Single-cell TCRseq recovers paired expression of TCR
alpha and beta chain variable genes

Quality control was performed (“Methods” and Additional
file 1: Table S1) and 71 samples were subsequently se-
lected for processing in scTCRseq (with BLAST eValue
threshold 1e-8, minimum supporting read coverage 5, and
estimated mean insert size of 175). The reads were
mapped in BLAST using the custom mice variable and
constant gene databases as described previously. The TCR
variable region counts for each sample were counted and
analyzed (Additional file 4: Table S4). The tables produced
are raw counts of how many reads mapped to a particular
alpha or beta variable gene in each sample. For each sam-
ple, the relative frequency of reads mapping to a particular
variable gene were then calculated and for the beta vari-
able genes the single variable gene with the highest per-
centage mapping reads had a mean of approximately 84 %
and median of approximately 89 % of the sum of all reads
that mapped to any beta variable genes for the sample. For
the alpha variable genes, the corresponding figures were a
mean of approximately 54 % and median of 52 %, this
lower number could be explained in a number of ways:
either by the increased sequence similarity of the alpha
chain variable genes making a precise mapping more diffi-
cult to achieve and also that in many cases it is possible
for a single T-cell to have multiple distinct alpha or beta
chains [3, 44]. In the case where multiple variable regions
of a particular chain had a significant count, they were all
consensus aligned, which either resolved the two se-
quences to be identical or produced multiple candidate
sequences for gap-filling assembly.

We observed preferential expression of several TCR
beta variable genes (TRBV5,20,13-1,1-9,1,13-2,4,29)
(Fig. 3a) but a more diverse usage of the alpha variable
genes across samples (Fig. 3b) which has been observed
in previous studies [45]. The relative expression of the
TCR variable genes varied widely across the 71 samples
(Fig. 3c) where the reported total normalized cpms for
the alpha and beta chain variable TCR genes with the
TRBV genes showed a wide range.

Paired analysis in the 48 samples of the major alpha
and beta variable genes (Fig. 3d) showed that the com-
bined recovered alpha and beta paired variable genes
was diverse in terms of the count of alpha-beta chain
pairings, with the same alpha-beta chain pairing occur-
ring twice only three times. Although this is a single set
of sample observations, it shows that this single-cell
method could provide a rich analysis of the TCR alpha-
beta pairing and give further insights into the repertoire
diversity under various adaptive immune conditions, and
whether these chains are always selected together inde-
pendently [46].

After normalizing the total reads mapped to TRAV
and TRBV genes by the total number of aligned reads in
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each sample, we found there was a correlation of the
log-counts per million reads between TRAV and TRBV
expression of 0.45 (R*=0.23, p = 1e-06) and a wide vari-
ability in the log-normalized density of reads (TRAV:
mean, 2.50; standard deviation, 0.56; TRBV: mean, 2.80;
standard deviation, 0.52) among the 71 samples. There
was no significant difference in expression of TCR
variable genes among the two cell phenotypes of GFP-
positive and GFP-negative cells (briefly naive Th cells
from IL-13-eGFP mice had been activated under condi-
tions inducing Th2 differentiation; IL-13-eGFP-negative,
undivided cells and IL-13-eGFP-positive cells that had
undergone four cycles of cell division) under a ¢-test
(TRAV: p =0.36; TRBV: p = 0.33).

After selection, the potential alpha and beta chains
were concatenated and gap-filled assembly was per-
formed. The consensus alignment produced at least one
alpha chain V sequence in 65 samples (91.5 %) and at
least one beta chain V sequence in 69 samples (97.2 %)
that were then used in gap-filling assembly. The assem-
bled transcripts were also analyzed in IMGT V-QUEST
[31] producing V, D, and ] region alleles, as well as per-
centage identity and nucleotide insertions/deletions at
junctions (Additional file 5: Table S5). At least one pro-
ductive alpha chain was recovered in 77.5 % of samples
and at least one beta chain was recovered in 91.5 % of
samples. The recovery rate of functional TCR chains we
demonstrate is within the range of what has been
achieved by PCR-based methods [1, 3, 47, 48]. For sam-
ples that showed high expression of both TRAV and
TRBV genes (Additional file 1: Table S1), the recovery
rate for at least one productive alpha chain was 88.1 %
and for beta chains 96.6 %. GFP-positive cells had a re-
covery rate of 73.9 % alpha chains and 95.6 % beta
chains; GFP-negative had a recovery rate of 84 % alpha
chains and 84 % for beta chains.

Multiple alpha and beta chains were also recovered for
a single cell: two productive alpha chains were recovered
in 20 % of cells that recovered at least one alpha chain
and two productive beta chains were recovered in
23.1 % of cells that recovered at least one productive
beta chain. We also observed two samples in which
three productive alpha chains were recovered (in one of
these samples, there were two productive beta chains re-
covered so the possibility of there being multiple cells
present in this sample cannot be discounted). These
rates of recovery for multiple TCR alpha and beta chains
are within the range of previously reported studies that
have reported that up to 42 % of T-cells contain two
alpha chain recombinants and up to 22 % contain two
beta chain recombinants [44, 49, 50].

An example (Fig. 4a) of a full productive beta chain
V(D)] rearrangement recovered from a sample is shown
along with the reads mapping to this receptor sequence
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as a reference with mean coverage of 1857x per bp. The
full sequence also allowed the elucidation of the pro-
ductive junctional diversity regions (Fig. 4b) in both
alpha and beta chains.

Discussion

The ability to recover the entire sequence of TCRs is
critical as these receptors play an essential role in con-
trolling the selection, function and activation of T-cells
[51]. In this paper, we report the development of a novel
pipeline for the analysis of scRNAseq data with the pur-
pose of the recovery of the entire paired alpha and beta

chain of the TCR of a single cell. The possibility of iden-
tifying both the TCR alpha chain paired with a TCR beta
chain also provides a more unique CDR3 alpha/beta sig-
nature for tracking which has many possible applications
across the fields of adaptive immunity including vaccin-
ation development and response [52], clone tracking
[53], and immunotherapy [54].

Current methods to extract information on TCR usage
in cells require the extensive usage of primers and a
subsequent PCR amplification that result in the risks of
primer bias, misamplification or even the failure of amp-
lification [55]. Our new framework scTCRseq avoids
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these problems by addressing TCR usage at a single-cell
level while also providing paired alpha and beta chain
usage and more complete sequence information as PCR-
amplified transcripts are necessarily shorter than the
true transcript. Also the extraction of TCR sequence in-
formation from scRNAseq avoids the costs of perform-
ing another costly and involved laboratory procedure.

In this study, we outlined a new method for character-
izing the TCR alpha and TCR beta chains expressed by
T-cells and as a proof of concept applied it to a set of 71
single-cell mouse T-cell RNAseq samples. We showed
that the transcript expression of these genes are among
the most expressed in T-cells (Fig. 2), demonstrated the
identification of the TCR alpha and beta variable gene
usage across each sample along with their paired usage
(Fig. 3), and in a majority of cases were able to assemble
the entire alpha and beta chain. As a validation we ap-
plied the pipeline to recover of full-length TCR alpha
and beta chains in human Jurkat cell lines [12, 13] for
which the alpha and beta receptor sequences had
previously been determined [36, 37] (Additional file 2:
Table S2) and also tested the performance of the pipeline
on a set of simulated read datasets to assess its sensitiv-
ity and accuracy, while also comparing it to other pro-
grams currently available that detect CDR3 sequences
(Additional file 3: Table S3). We were also able to dem-
onstrate that the recovery of full TCR sequences is pos-
sible at a number of different read lengths, and gauge a
minimum read depth or sequencing coverage at which
this is achievable. Altogether, these results demonstrate
that paired alpha and beta chain recovery is feasible from
scRNAseq. This opens up interesting avenues in studies of
immune response to a variety of challenges as well as in
immunotherapy to explore clonal dynamics before and
after treatment and the determinants of clinical response
to checkpoint blockade. Potential other directions for fur-
ther research include adaptation of scTCRseq to other se-
quencing technologies such as DropSeq [56].

Additional files

Additional file 1: Table S1. Summary data of 91 single-cell mouse T-cell
RNAseq samples. Provided as a separate Excel file. (XLSX 59 kb)

Additional file 2: Table S2. Results of scTCRseq and VIDJIL run on
three replicate Jurkat T-cell RNAseq samples. Provided as a separate Excel
file. (XLSX 14 kb)

Additional file 3: Table S3. Results of scTCRseq and VIDJIL run on
simulated scRNAseq data at different read lengths and coverage.
Provided as a separate Excel file. (XLSX 10 kb)

Additional file 4: Table S4. Raw counts of reads mapping to TRA and
TRB variable gene loci in 71 selected single-cell mouse T-cell RNAseq
samples. Provided as a separate Excel file. (XLSX 69 kb)

Additional file 5: Table S5. Summary of recovered alpha and beta
chains in 71 selected single-cell mouse T-cell RNAseq samples. Provided
as a separate Excel file. Samples with multiple productive alpha or beta
chain sequences highlighted in yellow. (XLSX 96 kb)
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