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Extracting a low-dimensional description of
multiple gene expression datasets reveals a
potential driver for tumor-associated
stroma in ovarian cancer
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Abstract

Patterns in expression data conserved across multiple independent disease studies are likely to represent important
molecular events underlying the disease. We present the INSPIRE method to infer modules of co-expressed genes
and the dependencies among the modules from multiple expression datasets that may contain different sets of
genes. We show that INSPIRE infers more accurate models than existing methods to extract low-dimensional
representation of expression data. We demonstrate that applying INSPIRE to nine ovarian cancer datasets leads to a
new marker and potential driver of tumor-associated stroma, HOPX, followed by experimental validation. The
implementation of INSPIRE is available at http://inspire.cs.washington.edu.

Keywords: Gene expression, Variable discrepancy, Low-dimensional representation, Module, Conditional
dependence, Latent variable, HOPX, Tumor-associated stroma

Background
As datasets increase in size, scope, and generality, the
possibility to infer potentially relevant and robust fea-
tures from data increases. Extracting a biologically intui-
tive low-dimensional representation (LDR) of data in an
unsupervised fashion (i.e. based on the underlying struc-
ture in the data, not with respect to a particular predic-
tion task) has become an important step to identify
robust and relevant information from data. Development
of unsupervised LDR learning methods is a very active
area of modern research in machine learning and
high dimensional data analysis [1–3]. Specific machine
learning domains to see noted success recently in-
clude the development of deep learning algorithms
[3], where authors demonstrate enormous increases in
performance on difficult tasks such as image and text

classification [4, 5]. Analogously, in cancer transcripto-
mics, unsupervised LDR learning has seen success on very
difficult problems, such as predicting patient outcome in
breast cancer in the DREAM7 breast cancer prognosis
challenge [6]. The winning team leveraged an unsuper-
vised LDR extraction method on independent transcrip-
tomic data from multiple cancer types and significantly
outperformed the other contestants in the challenge by a
large margin [7] along with all other known prognostic
signatures in breast cancer.
There are three main challenges with applying existing

unsupervised LDR learning approaches to cancer
transcriptomic data. First, any one study may not be
generalizable in that there will be either technical (e.g.
sample ascertainment) or experimental (e.g. batch effects)
confounders that make an LDR of data extracted from an
individual dataset in a naïve way not necessarily
generalizable to other datasets. Second, identifying simple
modules (co-expressed sets of genes) using methods such
as WGCNA [8] or simple clustering approaches [9, 10]
will not necessarily capture complex dependence struc-
tures among the modules. Appropriately accounting for
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rich dependencies among these modules will improve
their biological coherence. It has been shown that
modeling the dependencies among modules improves
the quality of the inferred modules from gene expres-
sion data [11]. Finally, and most importantly, most
cancer transcriptomic data are within the p≫ n re-
gime (high-dimensional), i.e. we usually have tens of
thousands of genes, but only hundreds of samples at
most. This means that a successful method must
include a very aggressive dimensionality reduction
mechanism that allows generalization across datasets,
since the potential for overfitting is high. This implies
that models that allow for arbitrarily rich dependen-
cies among variables (such as those used in deep
learning methods) cannot necessarily be applied with-
out overfitting the data.
We present a novel unsupervised LDR learning method,

called INSPIRE (INferring Shared modules from multiPle
gene expREssion datasets), to infer highly coherent and
robust modules of genes and their dependencies on the
basis of gene expression datasets from multiple independ-
ent studies (Fig. 1). INSPIRE is an unconventional and ag-
gressive data dimensionality reduction approach that
extracts highly biologically relevant and coherent modules
from gene expression data, where the number of samples
is much less than the number of observed genes – the

norm for cancer expression data. INSPIRE addresses the
three aforementioned challenges. First, INSPIRE naturally
integrates many datasets by modeling the latent (hidden,
unobserved) variables in a probabilistic graphical model
[12], where the latent variables are modeled as a Gaussian
graphical model, which is the most commonly used prob-
abilistic graphical model for continuous-valued variables
(Fig. 1). Each observed gene is treated as a noisy and inde-
pendent observation of these underlying latent variables.
By jointly inferring the assignment of observed genes to
latent variables and the structure of the Gaussian graph-
ical model among these latent variables, we can naturally
capture both modules and their dependencies that
generalize across multiple datasets (Fig. 1). This addresses
the issue with generalizability of modules across datasets.
Second, our method naturally models the dependencies
among the modules, which allows us to capture more
complicated dependencies among pathways, cell popula-
tions, or other biologically driven modules than naïve ap-
proaches such as hierarchical clustering. In a previous
study [11], we have shown that modeling the dependen-
cies among modules directly improves the biological co-
herence of the modules we learn and their generalizability
across datasets. Finally, by modeling the data as noisy ob-
servations from a much lower dimensional subset of mod-
ules, we are able to overcome the curse of dimensionality

Fig. 1 Overview of the INSPIRE framework. INSPIRE takes as input multiple expression datasets that potentially contain different sets of genes and
learns a network of expression modules (i.e. co-expressed sets of genes) conserved across these datasets. INSPIRE is a general framework that can
take any number of datasets as input; two datasets (X1 and X2) are shown in representation for simplicity. Top left: Two input datasets are represented
by rectangles with black solid lines. Rows represent genes and columns represent samples. The blue region contains the data for the genes that are
contained in both datasets. The pink and green regions contain the data for the genes which are contained by only one of the datasets.
Top right: The features (latent variables), each corresponding to a module, are shown by the orange matrix as learned by INSPIRE. These
are used as an LDR of the expression datasets. Top middle: As an example, five INSPIRE features L1, …, L5 (orange-shaded circles), 12 genes G1, …, G12
associated with those features, and the conditional dependency network among the INSPIRE features are represented. The dependencies among
features are conserved across the datasets. Bottom: Five modules, each corresponding to an INSPIRE feature, and the dependency network among
them are represented as the interpretation of the INSPIRE features and their conditional dependencies
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and have better power to learn both the modules and their
dependencies, even when the number of genes is much
greater than the sample size. Through extensive simulated
and real data analysis (Fig. 2), we demonstrate that our
approach is a great practical trade-off between model

complexity and model parsimony when understanding
biological pathways characterizing the cancer transcrip-
tome across ovarian cancer patients.
Previous approaches to extract LDR from expression

data can be divided into two categories; (1) supervised

a

b

c

Fig. 2 Overview of the evaluation and application of INSPIRE procedure. INSPIRE takes as input K ≥2 datasets, and the method is an iterative
procedure that determines the assignment of the genes to modules, the features each corresponding to a module, and the dependencies
among the features which are conserved across the datasets. a Evaluation of INSPIRE using simulated data. Two simulated datasets in four
settings corresponding to different amount of gene overlap are provided as input to the INSPIRE learning algorithm, and the learned modules
and network are evaluated in terms of three different metrics. b Evaluation of INSPIRE using two ovarian cancer expression datasets. Two
expression datasets from different platforms are provided as input to the learning algorithm and the learned modules and network are evaluated
in terms of three different metrics. c Application of INSPIRE on nine real-world ovarian cancer expression datasets. As an application of INSPIRE,
we first check the association of the learned INSPIRE features with six histological and clinical phenotypes, which is followed by subtyping the
patients into groups based on the learned INSPIRE features. Observing that INSPIRE features have high association with the histological and
clinical phenotypes in cancer and the subtypes learned based on the features can predict copy number variation (CNV) abnormalities well leads
us to do a deeper analysis of two modules (modules 5 and 6), which are good predictors of many phenotypes and good differentiators of
learned ovarian cancer subtypes
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methods that extract an LDR that is discriminative of
different class labels in the training samples; and (2) un-
supervised methods (including INSPIRE) that extract an
LDR purely based on the underlying structure of the
data.
A supervised method aims to extract an LDR that is

discriminative between class labels in a particular predic-
tion problem. Several authors developed methods that
use known pathways or biological networks along with
gene expression data to extract an LDR (“pathway
markers”) whose activity is predictive of a given pheno-
type [13–16]. Chuang et al. [13] propose a greedy search
algorithm to detect subnetworks in a given protein-
protein interaction (PPI) network, such that each sub-
network contains genes whose average expression
level is highly correlated with class labels (metastatic/
non-metastatic) measured by the mutual information.
The authors claim that subnetwork markers outperform
individual genes for predicting breast cancer metastasis.
Lee et al. [14] developed a similar algorithm to select sub-
sets of genes from MSigDB (Molecular Signatures Data-
base) C2 (curated) pathways that give the optimal
discriminative power for the classification of leukemia/
breast cancer phenotypes. Both Chuang et al. [13] and Lee
et al. [14] determine LDR as the average expression levels
of genes in each subnetwork and pathway, respectively.
Taylor et al. [15] propose a similar approach that uses a
PPI network, but instead of computing the LDR by aver-
aging gene expression levels within a subnetwork (or a
pathway), they compute the expression difference between
a hub protein and all of its neighbors in the PPI network.
Ravasi et al. [16] used a similar approach to extract sub-
network features as hub transcription factors (TFs) from
TF PPI networks in human and mouse. Besides the
methods that infer an LDR by averaging (or aggregating)
expression levels of subsets of genes, there have been
methods to select a subset of genes. For example, Hersch-
kowitz et al. [17] used 106 genes selected by the intrinsic
analysis for a classification problem (122 mouse breast tu-
mors/232 human breast tumors). The intrinsic analysis
aims to select genes that are relevant to tumor classifica-
tion by identifying genes whose expression show rela-
tively low within-group variation and high between-
group variation for known groups of tumors in each
of human and mouse datasets [17]. Although super-
vised methods would be useful to infer an LDR rele-
vant to a particular prediction problem, they have
several disadvantages over unsupervised methods.
First, we need to have a particular prediction problem
with class labels, which may not be available. Second,
they usually rely on the assumption that the same
genes are differentially expressed in all samples within
a class, which is unlikely to be true in heterogeneous
diseases such as cancer.

On the other hand, unsupervised LDR learning
methods extract an LDR without knowing about the
class labels, while the learned LDR can be used for clas-
sification purposes later. One of the most commonly
used methods is the principal component analysis (PCA)
[18] which sequentially extracts most of the variance
(variability) of the data. Another is independent compo-
nent analysis (ICA) [10, 19], a statistical technique for
revealing hidden factors that underlie sets of random
variables, measurements, or signals. However, each prin-
cipal component (PC - or eigengene) or IC is a linear
combination of all genes not a small subset of genes,
which makes it difficult to biologically characterize it.
Clustering algorithms [20], on the other hand, generate
explicit gene clusters and they define an LDR as a set of
mean or median expression levels of the genes in each
cluster. In the seminal work by Langfelder and Horvath
(a technique called WGCNA) [8], the adjacencies re-
trieved from Pearson’s correlation of the expression
levels of the gene pairs is transformed into topological
overlap measure (TOM), namely network interconnec-
tivity that takes into account the shared neighbors of
each gene pair, which is then used in a hierarchical clus-
tering to define modules. While WGCNA [8] defines its
similarity measure (i.e. TOM) based on the marginal
correlations between genes, other authors have used
partial correlations (conditional dependencies) to model
gene relationships [11, 21, 22]. Chandrasekaran et al.
[21] incorporated latent variables into a Gaussian graph-
ical model among individual genes, while Celik et al.
[11] divided variables into modules and learned module-
level dependencies (module graphical lasso (MGL)). He
et al. [22] defined an LDR as a set of latent factors and
modeled each latent factor as a linear combination of
genes (structured latent factor analysis (SLFA)). While
similar to Celik et al. [11] in modeling a higher-level de-
pendency structure, He et al. [22] does not form explicit
clusters. Finally, Cheng et al. [7] identified 12 metagenes,
each of which is a weighted average of the genes that are
co-expressed across multiple cancer types. They showed
that the prediction model they derived based on these
metagenes is highly predictive of survival in breast can-
cer within the context of the DREAM7 Challenge, lead-
ing to the top scoring model [6].
There are three major differences between INSPIRE

and previous approaches. First, none of the previous
methods to learn LDR can accommodate multiple data-
sets containing different sets of genes (e.g. different
microarray platforms), while INSPIRE directly addresses
this challenge. One naïve way to run previous methods
on datasets that contain different sets of genes with a
partial overlap is to treat the values on the genes that
are not observed in each dataset as missing data. We
could use missing value imputation techniques to fill in
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missing data and learn a single statistical model from
the imputed data. However, most imputation methods
perform poorly when a large number of values are miss-
ing (Fig. 1). We demonstrate that INSPIRE outperforms
the imputation-based approaches (methods named
“Imp–” in Figs. 3 and 4). Second, INSPIRE uses a novel
probabilistic model that can describe more complex re-
lationships (i.e. conditional dependencies) than pairwise
marginal correlations among genes. We show that
INSPIRE outperforms a correlation-based method,
WGCNA. Finally, INSPIRE uses a novel learning algo-
rithm to make use of all samples in multiple datasets,
which increases the statistical power to detect a statis-
tical robust model (Fig. 1). Our extensive experiments
show that these key properties of INSPIRE lead to bio-
logically more relevant and statistically more robust fea-
tures than alternative methods.
When we apply INSPIRE to nine gene expression

datasets from ovarian cancer studies (Fig. 2c), we iden-
tify a novel tumor-associated stromal marker, HOPX,
which additional analyses suggest may be a molecular
driver for a conserved module in the network that con-
tains known epithelial-mesenchymal transition (EMT)
inducers and is significantly associated with percent
stroma in ovarian tumors from The Cancer Genome
Atlas (TCGA). This module is one of the two modules
that best represent one of the predominant subtypes of
ovarian cancer, “mesenchymal” subtype identified in the
TCGA ovarian cancer study [23]. These multiple lines of
evidence suggest that HOPX may be a great target for
further functional validation to understand the mainten-
ance of tumor-associated stroma along with understand-
ing the clinically relevant “mesenchymal” subtype in
ovarian cancer.
The implementation of INSPIRE, the data used in the

study, and the resulting INSPIRE models are freely avail-
able on our website [24].

Methods
Expression data preprocessing
We downloaded the gene level processed expression
data (level 3) for TCGA ovarian cancer from the
Firehose pipeline as of the March 2014 analysis freeze
(http://gdac.broadinstitute.org/runs/stddata__2014_03_16/
data/OV/20140316/) for all three platforms available for
ovarian cancer (Affymetrix U133A, Agilent g4502,
Human Exon array). We first removed potential plate
level batch effects with ComBat [25] for all expression
datasets. As was done in the TCGA ovarian cancer
study [23], we combined the three separate expression
measurements for each of 11,864 genes to produce a
single estimate of gene expression level by performing
a factor analysis across the three studies. All data are
log transformed. For other datasets, we downloaded

the raw cell intensity files (CEL) for Affymetrix U133
Plus 2.0 and U133A arrays (Affymetrix, Santa Clara,
CA, USA) from the Gene Expression Omnibus [26] for
accessions: GSE14764 [27], GSE26712 [28], GSE6008
[29], GSE18520 [30], GSE19829 [31], GSE20565 [32],
GSE30161 [33], GSE9899 [34]. Expression data were
then processed using MAS5.0 normalization with the
“Affy” Bioconductor package [35] and mapped to Entrez
gene annotations [36] using custom chip definition files
(CDF) [37] which was followed by natural log transform-
ation of MAS5.0 normalized intensities. The expression
data were then Z-transformed so that each gene has zero
mean and unit variance across the samples within each
dataset. As stated in Tibshirani [38], Z-transformation
of expression data is a standard practice for any
method that uses a sparsity tuning parameter so that
the sparsity tuning parameter is invariant to the scale
of the variables, particularly before applying a penal-
ized regression technique such as lasso (L1 penalty)
or ridge (L2 penalty) [38–42]. Since the graphical
model likelihood is indeed equivalent to multiple
coupled regression likelihoods, this is generalized to
the network estimation problem where we optimize a
graphical model likelihood [11, 43–49].

Copy number variation (CNV) data processing
We downloaded the CNV data from 488 ovarian cancer
patients in the TCGA cohort from the cBio Cancer
Genomics Portal web page [50]. We used R package
cgdsr to download the data. The 16,597 CNV levels in the
downloaded data were derived from the copy-number
analysis algorithm GISTIC [51] and indicate the copy-
number level per gene. CNV level “–2” is a deep loss,
possibly a homozygous deletion, “–1” is a shallow loss
(possibly heterozygous deletion), “0” is diploid, “1” indi-
cates a low-level gain, and “2” is a high-level amplification.

INSPIRE learning algorithm
We present the INSPIRE method to extract a compact
description of high-dimensional gene expression data by
learning a set of k modules and their dependencies from
Q gene expression datasets. The technical novelty of the
INSPIRE is that it provides a flexible model that does
not require the Q datasets to have exactly the same set
of genes (e.g. different microarray platforms). INSPIRE
takes Q expression matrices as input and learns how
genes are assigned to modules, the latent (unobserved)
variables each representing a module, and the dependen-
cies among the latent variables, through an iterative pro-
cedure described in detail below. Each latent variable
represents the activity level of a certain biological
process or a regulatory module. In the sections that de-
scribe the probabilistic model and the learning algorithm,
we will refer them to as “latent variables” because that is a
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commonly used term to refer to hidden, unobserved vari-
ables in the statistical domain. Inferring the latent vari-
ables by using the INSPIRE method is an effective way to
obtain low-dimensional features for prediction tasks (e.g.
predicting histopathological phenotypes) or clustering
(e.g. patient stratification) (Fig. 1).
INSPIRE uses a formal probabilistic graphical model,

specifically the Gaussian graphical model (GGM), to
model the relationships between genes and latent
variables, and the conditional dependence relationships
among the latent variables. A GGM is a popular prob-
abilistic graphical model for representing the conditional
dependency network among a set of continuous-valued
random variables. In a GGM, the variables connected by
an edge are conditionally dependent to each other given
all the other variables in the model [52, 53]. For ex-
ample, in a simple latent network shown in Fig. 1,
five latent variables (L1, …, L5) have mutual depend-
encies. So, let L = {L1, …, L5} ~N(0, ΣL), then non-
zero pattern of ΣL

− 1 corresponds to the conditional
dependencies among the latent variables, namely the
topology of the network. That means, since L1 and L2
are connected to each other, for example, knowing L1’s
expression level gives information about L2’s expression
level, even when we know the expression levels of all
the other latent variables, which indicates a direct de-
pendency between L1 and L2. We refer to the observed
variables that stem from the same latent variable as a
module. As an example, genes G1, G2, and G3 in Fig. 1
form a module since they are associated with the same
latent variable L1. Below, we provide a mathematical
formulation of the INSPIRE probabilistic model and the
learning algorithm.
Let X1, …, XQ be a set of Q expression datasets where

the qth dataset Xq ¼ Xq
1; …; Xq

pq

n o
contains the expres-

sion levels of pq genes across nq samples and each of Xi
q

is a row vector of size nq. Let L
1, …, LQ be a set of matri-

ces where each Lq is associated with a dataset and con-
sists of k latent variables. Lq = {L1

q, …, Lk
q} ~N(0, ΣL),

where ΣL is a k × k covariance matrix. These latent
variables can be viewed as a LDR of expression data
and ΣL represents the dependencies among the fea-
tures. We assume that ΣL is conserved across the Q
datasets. Each gene is associated with exactly one of
the k latent variables as represented by the directed

edge between a gene and a latent variable in Fig. 1.
The total number of unique genes across all Q data-
sets is pT; and each data matrix Xq contains samples
from a different subset of pq genes (pq ≤ pT). Let Z be
a pT × k matrix indicating which of the k modules
each of pT genes belongs to, such that ∀ i, j Zij ∈ {0, 1} and

∀ i,
Pc¼k

c¼1Zic ¼ 1. Each observed dataset Xq is generated
by the multivariate Gaussian distribution Xq | ZqLq, σ2 ~
N(ZqLq, σ2), where Zq is a pq × k matrix composed of the
rows of Z corresponding to the pq genes contained by the
dataset Xq. Here, we refer to a set of genes that correspond
to the same latent variable as a module where σ deter-
mines the module tightness. As an example, the jth mod-
ule Mj can be defined as Mj = ∪ {q = 1}

Q {Xi
q | Zij

q = 1}. Thus,
Z defines the module assignment of all unique genes in all
Q datasets into k modules. Each gene belongs to exactly
one module. We choose hard assignment of genes to
modules (∀ i, ∃ ! c : Zic = 1) to reduce the number of pa-
rameters. Soft assignment is a straightforward extension
where we relax the constraint ∀ i, j Zij ∈ {0, 1} to ∀ i, j 0 ≤
Zij ≤ 1.
INSPIRE jointly learns the latent variables L = [L1, …, LQ]

each corresponding to a module; the module assignment
indicator Z; and the feature dependence network ΣL

−1.

Given Q datasets X1,…, XQ, where Xq ∈ℝ pq�nqf g� �
contains

nq observations on pq genes and nT ¼ Pq¼Q
q¼1 nq; INSPIRE

aims to learn the following:

– Lq∈ℝ k�nqf g for each q (∈{1, …, Q}) containing the
values on k features in nq samples in Xq

– Z | ∑Zi = 1, a binary vector for each i(∈{1, …, pT})
specifying the module membership of the ith gene
in one of the k modules; and

– ΘL(∈ℝ{k × k}) denoting the estimate of the inverse
covariance matrix of the features, i.e. ΣL

− 1.

We address our learning problem by finding the joint
maximum a posteriori (MAP) assignment to all of the
optimization variables – L, Z, and ΘL. This means that
we optimize the joint log-likelihood function of the Q
data matrices, with respect to L, Z, and ΘL(≻0). Given
the statistical independence assumption that genes in a
dataset Xq are statistically independent to one another
given the latent variables Lq, the joint log likelihood can
be decomposed as follows:

(See figure on previous page.)
Fig. 3 Illustration of the synthetic data, aligned with four groups of bars in each of (a)–(c). Rows represent genes and columns represent samples.
a Negative test log-likelihood per instance averaged over 20 different instantiations of the synthetic data (lower is better). b Rand index for module
recovery averaged over 20 different instantiations of the synthetic data. c F-measure for feature dependency recovery averaged over 20 different
instantiations of the synthetic data. The Wilcoxon signed rank test p value represented on each bar (except the bars for INSPIRE) measures the statistical
significance of the difference between the method and INSPIRE
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logP X1; …; XQ; L1; …; LQ; Z; ΘL; λ; σ
� �

¼
XQ
q¼1

logP XqjLq;Zqð Þ þ
XQ
q¼1

logP LqjΘLð Þ

þ logP ΘLð Þ þ logP Zð Þ
¼ nT

2
log det ΘL−tr SLΘLð Þf g− λ

X
j ≠j′

ΘLð Þjj′
��� ���

−
1
2

XQ

q¼1

Xq−ZqLqk k22
σ2

þ const;

ð1Þ

where SL ¼ 1
nT

Xq¼Q

q¼1
LqLqT is the empirical estimate

of the covariance matrix ΣL and λ is a positive tuning
parameter that adjusts the sparsity of ΘL. We assume
a uniform prior distribution over Z, which makes log
P (Z) constant.
We use a coordinate ascent procedure over three

sets of optimization variables – L, Z, and ΘL. We it-
eratively estimate each of the optimization variables
until convergence.
Learning L: To estimate L1, …, LQ from Eq. (1) given Z

and ΘL, we solve the following problem:

max
L1;…; LQ

−tr LqLqTΘL
� �

−
Xq−ZqLqk k22

σ2

( )
ð2Þ

Setting the derivative of the objective function in
Eq. (2) to zero with respect to Lqc for q ∈ {1, …, Q}
and c ∈ {1, …, k} leads to:

Lqc ¼
ZqT

cXq−σ2
X

i≠c
ðΘLÞicLqi

∥ZqT
c∥2

2 þ σ2ðΘLÞcc
: ð3Þ

Learning Z: In order to estimate Z given L1, …, LQ, we
solve the following optimization problem:

min
Z1…ZpT

XQ
q¼1

Xq−ZqLqk k22 ð4Þ

In the hard assignment paradigm that we follow
throughout this paper, Eq. (4) assigns gene pi to module
c ∈ {1, …, k} that minimizes the Euclidean distance com-
puted using all samples from the datasets containing the
gene pi.
Learning ΘL: To estimate ΘL given L1, …, LQ, we solve

the following optimization problem:

max
ΘL≻0

logdetΘL−tr SLΘLð Þ−λ
X

j≠j0
ΘLð Þjj0

��� ���n o
; ð5Þ

where the constraint ΘL ≻ 0 restricts the solution to
the space of positive definite matrices of size k × k,

and SL ¼ 1
nT

Xq¼Q

q¼1
LqLqT is the empirical covariance

matrix of L. Based on the estimated value of L, Eq. (5) can
be solved by the graphical lasso [54], a well-known algo-
rithm for learning the structure of a GGM.
We iteratively estimate each of the optimization vari-

ables until convergence. Since our objective is continu-
ous on a compact level set, based on Theorem 4.1 in
Tseng (2001) [55], the solution sequence is defined and
bounded. Every coordinate group reached by the itera-
tions is a stationary point of INSPIRE objective function.
We also observed that the value of the objective likeli-
hood function monotonically increases.

Data imputation
To our knowledge, there are no published methods for
learning modules and their dependencies from multiple
datasets that contain different sets of genes (Fig. 1).
Thus, we adapted the state-of-the-art methods (which
can run on a single dataset) by imputing the missing
values on genes that are not presented in each of the
datasets and applied these methods to the imputed data.
These are the “Imp–” methods in Table 1. We employed
the iterative PCA algorithm to generate the imputed
data for all “Imp–” methods and initializing INSPIRE.
The results were robust to the imputation method;
INSPIRE method consistently outperformed alternative
approaches when other imputation methods were used.

(See figure on previous page.)
Fig. 4 a Illustration of the two OV datasets used for evaluating INSPIRE. Rows represent genes and columns represent samples. b For k = 91 (left)
and k = 82 (right), INSPIRE is compared to WGCNA variants (top) and MGL variants (bottom) in terms of the best cross-validation (CV) negative test
log-likelihood (lower is better) across all tested sparsity tuning parameters (λ). c For k = 91, INSPIRE (y-axis) is compared to each of the six competing
methods (x-axes) in terms of the best− log10p from the functional enrichment of the learned modules. Each dot is a KEGG, Reactome, or BioCarta
GeneSet, and only the GeneSets with a Bonferroni corrected p <0.05 in at least one of the compared two methods are shown on each plot. For MGL
variants and INSPIRE, results from multiple runs are shown. We only considered the GeneSets with sufficiently different significance between the two
methods, i.e. | log10p(INSPIRE) − log10p(ALTERNATIVE_METHOD)|≥ δ. δ = 6 here and the results were consistent for varying δ. d For k = 91, INSPIRE (y-axis)
is compared to each of the six competing methods (x-axes) in terms of the best − log10p from the ChEA enrichment of the learned modules. Each dot
is for a gene set composed of a TF and its targets, and only the sets with a Bonferroni corrected p <0.05 in at least one of the compared two methods
are shown on each plot. For MGL variants and INSPIRE, results from multiple runs are shown. We only considered the TFs with sufficiently different
significance between the two methods, i.e. | log10p(INSPIRE) − log10p(ALTERNATIVE_METHOD)|≥ δ. δ = 3 here and the results were consistent for varying
δ. Each blue dot corresponds to a TF which sits in the INSPIRE module that is significantly enriched for its targets and each red dot corresponds to a TF
which sits in an INSPIRE module different than the one that is significantly enriched for its targets
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We used CRAN R package missMDA [56] to generate
the imputed data.

Initialization of the INSPIRE latent variables
INSPIRE is an iterative learning algorithm that consists
of three update steps, Eqs. (3)–(5), to learn the following
sets of parameters: L, values on the latent variables, Z,
gene-module assignments, and θL, the dependency net-
work among the latent variables. So we need to have
some starting point, i.e. initial values on any of these
three sets of parameters. SLFA and MGL are also itera-
tive learning algorithms that require a starting point.
Therefore, for INSPIRE, SLFA, and MGL, we used the
same initial gene-module assignments obtained by run-
ning the k-means clustering algorithm on the imputed
data (see above) because the imputed data contain all
genes and all samples.
To be more specific, the authors of the MGL algo-

rithm suggested initializing MGL with k-means centroids
and we followed that approach for the MGL variants
(MGL1, ImpMGL, and InterMGL) in our experiments.
Given that INSPIRE is an extension to MGL for multi-
data setting, to directly test whether the INSPIRE out-
performs MGL, we used the output of MGL as a starting
point for INSPIRE. The authors of the SLFA algorithm
did not specify any initialization method; so for a fair

comparison among all these methods, we used the same
initial gene-module assignments for SLFA and MGL—the
centroids obtained by running the k-means clustering al-
gorithm on the imputed data. The result of the k-means
clustering algorithm also depends on the initial clusters
which are randomly determined. So, to rule out the possi-
bility to make a conclusion based on a particular set of ini-
tial parameters, for every experiment on comparison
across methods, we performed 10 runs with different ini-
tial parameters (i.e. different random initial clusters in the
k-means clustering algorithm) and presented the average
results.

Runtime of INSPIRE on gene expression datasets
Running INSPIRE with the module count parameter
k = 90 and the sparsity tuning parameter λ = 0.1 in
our application on nine datasets (Additional file 1:
Table S1) with a total number of p ≅ 20,000 genes
and n ≅ 1500 samples took 13.7 min on a machine
with an Intel(R) Xeon(R) E5645 2.40GHz CPU and
24GB RAM, once the latent variables are initialized.
As mentioned above, for initialization of the latent
variables, we used the module graphical lasso (MGL) [11]
method on the imputed data, which took 10.2 min on the
same machine.

Table 1 Methods we compared with the INSPIRE framework; To our knowledge, there are no published methods for learning
modules and their dependencies that can handle variable discrepancy. We adapted the following five state-of-the-art methods that
can run on a single dataset: GLasso - standard graphical lasso [54], UGL - unknown group L1 regularization [62], SLFA - the structured
latent factor analysis [22], WGCNA - weighted gene co-expression network analysis [8], and MGL - module graphical lasso [11] (see
“Methods” for details). We adapted the input datasets such that we can apply these methods to datasets with variable discrepancy
(Additional file 2: Figure S1B): “—1”, learning a model from only Dataset1 that contains all genes; “Inter—”, learning a model from
the data on the overlapping genes (blue-shaded region in Fig. 1) and assigning the rest of the genes to learned modules by using
the k-nearest neighbor approach (i.e. based on the Euclidean distance between the gene’s expression and the expression of each of
the modules); and “Imp—”, imputing missing values in Dataset2 and learning a model from the imputed data (see “Methods” for
details on imputation) (Additional file 2: Figure S1B). These adaptations lead to 13 competitors: (1) GLasso1; (2) ImpGLasso; (3) UGL1;
(4) ImpUGL; (5) WGCNA1; (6) InterWGCNA; (7) ImpWGCNA; (8) SLFA1; (9) InterSLFA; (10) ImpSLFA; (11) MGL1; (12) InterMGL; and (13)
ImpMGL. In the experiments on synthetic data, we compared to all 13 methods, while in the experiments with two genome-wide
ovarian cancer gene expression datasets which we will discuss in the subsequent sections, we only used the methods that are
scalable (see Additional file 3: Figure S2) These methods are indicated by the purple-shaded region in the table. The “Inter—”
method is not applicable to GLasso and UGL, because GLasso and UGL learn a network of genes, not modules, and it is not obvious
how to connect the genes that are present only in Dataset1 to the learned network. We do not consider an adaptation that applies
the methods to Dataset2 only (“—2”). This is because, other than the genes in the overlap, Dataset2 has no genes (in the synthetic
data experiments) or a very small number of genes (in the experiments with genome-wide expression data), which makes “—2” that
uses only the samples from Dataset2 unlikely to outperform “Inter—” that uses all samples

Method Description Different ways to deal with missing data Scalability
(see Additional file 3: Figure S2)—1 Inter— Imp—

GLasso Standard graphical lasso [54] GLasso1 X ImpGLasso No

UGL Unknown group L1 regularization [62] UGL1 X ImpUGL No

SLFA Structured latent factor analysis [22] SLFA1 InterSLFA ImpSLFA No

WGCNA Weighted gene co-expression network analysis [8] WGCNA1 InterWGCNA ImpWGCNA Yes

MGL Module graphical lasso [11] MGL1 InterMGL ImpMGL Yes
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Synthetic data generation
We synthetically generated data based on the joint distri-
bution in Eq. (1). We first generated the sparse k × k in-
verse covariance matrix λ by creating a k × k matrix G as

∀i; Gii ¼ 0;

Gij i > jð Þ e
0 w: prb: 1−dð Þ

Uniform distribution 0; 0:5ð Þ w: prb:
d
2

;

Uniform distribution 0:5; 1ð Þ w: prb:
d
2

8>>>><>>>>:

and letting ΣL
−1 =G +GT so that ΣL

−1 is symmetric. We
set ∀ i, Gii = afterwards by selecting such that the
resulting matrix ΣL

−1 is positive definite. d ∈ [0, 1] con-
trols the density of ΣL

−1 and the results we reported
from synthetic data experiments were generated using
k = 10 and d = 0.2. The results were consistent for
varying values of k and d.
Then, we generated the latent variables L = {L1, …, Lk}

from L ~N(0, ΣL) and we randomly generated a binary
pT × k matrix Z of module assignments which randomly
assigns each of pT genes to exactly one of the latent vari-
ables. Then we generated a high-dimensional data matrix
X of pT genes from the distribution X | ZL, σ2 ~N(ZL, σ2)
and selected a portion of the samples and genes in X to
form a smaller dataset that we call “Dataset1.” Then we
selected the remaining samples and a portion of the genes
from X to form a second “Dataset2.”
We considered three simulated settings that correspond

to different amount of overlapping genes (Additional
file 2: Figure S1A). Each setting is characterized by
[OL, D1, D2] where OL denotes the number of genes
that are present in both Dataset1 and Dataset2, D1 is
the number of genes that are present only in Dataset1
and D2 means the number of genes that are present
only in Dataset2. The settings we consider are [150,
100, 0], [200, 50, 0] and [250, 0, 0], where the sample
sizes of Dataset1 and Dataset2 are 20 and 30, respect-
ively (Additional file 2: Figure S1A). [250, 0, 0] means
that all genes are shared between the two datasets.
We repeated the generation of data X 20 times in
each of the three settings and presented the mean of
the results for each method in (Fig. 3a–c). We show
the p values on the bars that represent the statistical
significance of the difference between each method
and INSPIRE across 20 different data instantiations.
Additional file 2: Figure S1A illustrates the two data-

sets in each of these three settings. In each rectangle,
each row represents a variable and each column repre-
sents a sample. For simplicity in presentation of the
evaluation results, we set D2 = 0. The results were con-
sistent for varying D2. We note that D2 ≅ 0 assumption

holds in many real-world settings we are interested in,
where the newer technology contains almost all of the
genes in the older technology. We demonstrate this real-
world situation in the second set of experiments on the
ovarian cancer expression data (Fig. 4b).

Comparison of the scalability across all six methods in
simulation experiment
We precisely measured the runtimes of six methods
(GLasso, UGL, SLFA, WGCNA, MGL (Table 1), and
INSPIRE) when running on the synthetic data with vary-
ing numbers of genes (p); p = 300, p = 1500, p = 3000.
We generated the data exactly the same way as in the
simulation experiments. We used 50 as sample size (20
samples in Dataset1 and 30 samples in Dataset2). We
tested these methods on the “Imp—” setting where we
imputed the missing data before applying the algorithms,
because five of these methods (except INSPIRE) cannot
accommodate multiple datasets. We used varying spars-
ity tuning parameters in the interval of (0.5, 0.0001),
exactly the same set of values that we used for choosing
λ (via cross-validation (CV) tests) in our experiments.
The runtimes of these methods are known to grow cu-
bically or at least quadratically depending on the avail-
ability of a special efficient technique for the method
[57] with increasing p (when gene-level dependencies
are learned—GLasso and UGL) or k (when module level
dependencies are learned—SLFA and MGL). Also,
WGCNA grows quadratically with increasing p since it
includes correlation computation and hierarchical clus-
tering. Therefore, we determined that the methods
whose runtime is >10 h for p = 3000 are not scalable
enough to be useful on genome-wide analysis. Since the
runtimes of the methods except MGL, WGCNA, and
INSPIRE already exceeded 10 h at p = 3000 (Additional
file 3: Figure S2A), it is clear that all methods other than
MGL, WGCNA, and INSPIRE are too slow to be used
when p >3000 and >500 h when p is near 20,000 (see
the trend line in Additional file 3: Figure S2B). We note
that we increased the module count (k) with increasing
p such that the average number of genes in a module is
always 30 and SLFA was unable to run for p >1500
where the module count (k) exceeded the sample size
(50). Additional file 3: Figure S2A and B indicate that
GLasso, UGL, and SLFA are not practically useful to be
used on genome-wide expression datasets and further-
more, they do not perform well on smaller synthetic data
on which we ran all six methods (Fig. 3). Thus, we
excluded GLasso, UGL, and SLFA from the evaluation
on the genome-wide expression datasets. The runtime
measurements were done on a very powerful machine
with an Intel(R) Xeon(R) E7-8850 v2 @ 2.30GHz CPU
and 528 GB RAM.
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Computing the cross-validation test log-likelihood
We performed a fivefold CV to choose λ for INSPIRE
and each of the competing methods in our experiments
to evaluate INSPIRE (synthetic data experiments and the
experiments with two gene expression datasets). We
measured the CV test log-likelihood on the test data
portion of the first dataset (Dataset1 or OV1 which con-
tains all or almost all genes) in each fold, which was
common test data across all methods. For each of the
five test folds, we computed the test data log-likelihood
of the p × p gene-level dependency matrix that is com-
puted using the dependencies among the latent variables
(representing modules) inferred by each of the INSPIRE
and its competitors, where p is the total number of
genes in the two datasets. For the methods that optimize
a non-convex objective function, we averaged the CV
test log-likelihoods across multiple runs with different
initial assignment of genes to modules. We tested a
range of sparsity tuning parameter values (λ) and ob-
served the “cup-shaped” underfitting/overfitting pattern
in the λ (x-axis) versus average CV test log-likelihood
(y-axis) curves for all methods, as expected.

Evaluation of learned network in synthetic data
experiments
In the synthetic data experiments, the correspondence
between the modules in a learned model and the mod-
ules in the true model is not clear because each method
can end up having different optimal number of modules,
even if they started with the same number of initial
modules. Therefore, we compared the methods in terms
of the accuracy of the p × p gene-level dependency
matrix that is computed using the dependencies among
the modules inferred by each of the INSPIRE and its
competitors, where p is the total number of genes in the
two datasets.

Measuring the significance of difference between INSPIRE
and 13 competing methods
We repeated the synthetic data generation 20 times in
each of the three settings, and presented the average
results with the Wilcoxon signed rank test p value meas-
uring the significance of differences based on the
Wilcoxon signed rank test. More specifically, it measures
the probability that the corresponding method gave a
better result in terms of mean rank than INSPIRE across
20 different data instantiations.

Comparison of the prediction performance with
alternative methods
We compared INSPIRE with PCA [18] and the subnet-
work analysis method [13] based on how well each method
can predict each of the six phenotypes (resectability as de-
fined by 0 cm of residual tumor versus >0 cm of residual

tumor after surgery, survival time, and four manually cu-
rated histologic phenotypes) from TCGA data. We used
the lasso [58] (L1 regularized linear regression) for predict-
ing the continuous-valued phenotype (percent stroma), L1
regularized logistic regression for predicting binary pheno-
types (stroma type, vessel formation, invasion pattern, and
residual tumor), and L1 regularized Cox regression for
predicting survival. The prediction performance was mea-
sured in left-out data via leave-one-out cross-validation
(LOOCV) tests for histologic phenotypes that have rela-
tively less number of samples (~100) and 50-fold CV for
resectability and survival that have larger number of sam-
ples (~500). To evaluate a survival prediction model in a
CV setting, we used two different methods to summarize
the prediction results across CV tests. This is because un-
like other phenotypes, the prediction performance on sur-
vival time is measured by a ranking-based metric—the
concordance index (CI) that measures the proportion of
pairs of samples whose observed survival are concordant
with the predicted survival in terms of which of the two
samples experienced an event (death) before the other (or
survived shorter) [59]. First, we predicted the survival
(i.e. hazard scores) of all ~500 samples (specifically,
550 samples) when each sample was treated as a test
sample in one of the 50 folds. Then we computed
one CI value based on these predicted survival across
all 550 samples, which leads to Fig. 5b (middle). Second,
we considered computing CIs within test samples in each
fold, which would allow us to have multiple CIs (# of
folds × # of CV rounds) and compute the confidence
interval of the CIs for INSPIRE compared to the CIs for
the alternative methods (Fig. 5b, right). Especially, in this
analysis, we performed 50 rounds of tenfold CV tests, and
reported the average of a total of 500 CIs (i.e. y-axis of
Fig. 5b, right) together with the associated Wilcoxon
signed rank test p value measuring the significance of the
difference between INSPIRE and each of the alternative
methods (PCA-based method [18], subnetwork analysis
[13], and individual genes). All p values are smaller than
0.01 which means that the population mean of CIs from
INSPIRE is statistically significantly higher than the popu-
lation mean of CIs from each of the alternative methods.
For each of the alternative methods, we also report the
95 % confidence interval for the mean of a normal distri-
bution fitted to the difference of the method’s CIs from
INSPIRE’s CIs. Given that all of the three intervals cover
the positive-valued ranges, we can say that INSPIRE pre-
dicts survival better than the alternative methods with
95 % confidence.
The sparsity tuning parameter λ was chosen within

training data by performing LOOCV tests, which is a
standard way of choosing λ [58]. For a fair comparison
with PCA [18] and the subnetwork method [13], we
used the top 90 PCs and 90 subnetworks that are most
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correlated with the phenotype, respectively. The subnet-
work analysis method runs on binary phenotypes, but
“percent stroma” is continuous-valued; so, to make the
subnetwork method work on this phenotype, we binar-
ized the values by making >50 % to be 1 and >50 % be 0.

Learning subtypes based on the INSPIRE latent variables
We used the k-means clustering algorithm on the
INSPIRE latent variables, each of which corresponds to
a module, to cluster patients into four subtypes. We
chose four as the number of subtypes to make it com-
parable to alternative subtyping methods (TCGA study

[23] and the NBS method [60]). Since k-means is non-
deterministic, the resulting subtypes could depend on
the starting point of the subtype assignments. In order
to get the most coherent groups of patients, we ran
k-means ten times with different random initial as-
signments of the patients into subtypes and chose the
clustering which gives the lowest within cluster sum
of squares.

Supervised model to predict tumor resectability
We trained supervised models of tumor resectability
using different combinations of the POSTN expression

b

a

d

c

Fig. 5 a For each of 90 INSPIRE modules (x-axis), the − log10p from the Pearson’s correlation is shown (y-axis) for six different histological and
clinical phenotypes. The p value threshold (shown by red dotted horizontal lines) is 5 × 10–3 for histological phenotypes and 5 × 10–2 for clinical
phenotypes, which are harder to predict. We highlight modules 5, 6, 53, 54, 60, 78, and 81 that are significantly correlated with at least three of
the six phenotypes in red. We also highlight module 30 in red since it is the only module that has a significant correlation with the vessel
formation phenotype. Modules 5 and 6 achieve the first or second rank in terms of the significance of correlation with five of the six phenotypes.
b For four different methods (the subnetwork markers, PCs, all genes, and INSPIRE latent variables), the prediction performance is compared for
six prediction tasks in CV setting. In all bar charts except for the last one, a single accuracy (or concordance index for survival) is reported based
on the predicted phenotype vector formed by pulling together the predictions for all folds. For the survival phenotype, an additional analysis is
presented where the mean concordance index is reported across all 500 folds in 50 rounds of tenfold CV tests. For this bar chart (right), the p
value from the Wilcoxon signed rank test and the 95 % confidence interval for the mean of a standard normal distribution fitted to the difference
are reported to show the significance of the difference between INSPIRE and each of the alternative three methods (individual genes, PCs, and
subnetworks). c For three different Pearson’s correlation p value thresholds (10–2, 10–4, and 10–6, respectively from left to right), the number of
CNV levels that are significantly associated with the learned subtypes are shown for two published methods and INSPIRE. d The modules that
differentiate the subtypes that are learned using INSPIRE features and the interactions among those modules as learned by INSPIRE. The modules
are grouped and colored according to the subtypes they differentiate. Next to each one of the four module groups, there is the heat map of the
features corresponding to the modules in this module group
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and the latent variables corresponding to module 5 and
module 6 in TCGA ovarian cancer data for 489 patients
to predict 0 cm of residual tumor versus >0 cm of residual
tumor. The proportion of the sub-optimally debulked pa-
tients was 62 % (=139/223) in Tothill [34] and was 77 %
(=378/489) in TCGA [23]. Logistic regression was used to
train the models. Five distinct models were constructed:
(1) a model with only the POSTN expression; (2) a model
with only the latent variable corresponding to module 5;
(3) a model with only the latent variable corresponding to
module 6; (4) a model with POSTN expression and the la-
tent variable corresponding to module 5; and (5) a model
with the latent variables corresponding to module 5 and
module 6. We trained each of those models along with
(Fig. 6) and without (Additional file 4: Figure S3) the clin-
ical covariates of age and stage. Performance was deter-
mined based on the results of each fitted model in the
Tothill [34] data in terms of the area under the curve
(AUC) measure from a receiver operator characteristic
(ROC) curve (Fig. 6 and Additional file 4: Figure S3).

Extraction of tumor histologic phenotypes from TCGA
images
We manually curated multiple tumor histopathology fea-
tures from image data on H&E staining of ovarian tumor

section from TCGA. We primarily used 98 randomly
sampled patients to test the association between tumor
histopathology features and the latent variables learned
by INSPIRE. Features were curated in a blinded fashion.
Five histopathological features were evaluated including
percent stroma, percent tumor, vessel formation, stroma
type, and pattern of invasion. Percent tumor was defined
as the percent area involved by viable neoplastic cells
across the entire slide while percent stroma was the per-
cent area of fibrous tissue (fibroblasts and collagen).
Vessel formation was scored as minimal, moderate, or
abundant based on the number of formed vessels identi-
fied at 100X magnification. Stroma type was defined as
fibrous (dense collagen with relatively fewer fibroblasts)
or desmoplastic (many fibroblasts embedded in a loose,
myeloid extracellular matrix). Pattern of invasion related
to how the neoplastic cells interacted with the surround-
ing stroma and was scored as expansile, infiltrative, pap-
illary, or mixed. Expansile invasion was characterized by
cohesive tumor cells growing in a cluster with relatively
well-circumscribed borders with the surrounding stroma
while infiltrative invasion included tumor cells which
grew in small nests or tentacles with abundant stroma
surrounding the individual tumor cells. Tumors classi-
fied as having papillary invasion had abundant fibro-

Fig. 6 ROC curve of the supervised models for resectability prediction trained in TCGA and tested in Tothill data. Different combinations of POSTN
and the INSPIRE features corresponding to modules 5 and 6 are used for training each model. The clinical covariates age and stage are also
included in all models. AUC of each model is shown in the legend
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vascular cores upon which the neoplastic cells grew in
arborizing branches. Mixed invasion patterns were iden-
tified and classified as such.

Immunohistochemistry
Ten patients were sampled for staining based on either
having good tumor resection and survival (>3-year
survival, optimal debulking with residual tumor <1 cm)
versus poor tumor resection and survival (<3-year
survival, >1 cm residual tumor). Tissue and clinical in-
formation were collected with patient consent by the
University of Washington Gynecologic Oncology Tissue
Bank under approval from the human subjects division
(IRB 27077). Tumor tissue was collected at the time of
primary surgery and flash frozen in liquid nitrogen, trans-
ported to the lab and stored at –80 °C. The 17 frozen
block was cryo-sectioned and one 8 mm section placed on
a charged slide for IHC testing and H&E staining.
Frozen tissue slices fixed to glass slides were allowed

to thaw at room temp for 10 min. Slides were fixed in a
Coplin jar in cold acetone for 10 min at –20 °C. Slides
were removed from acetone and placed tissue side up on
a shaker. Phosphate buffered saline (PBS) was added to
the slide (1 mL, enough to cover tissue slice) for 5 min
shaking. PBS wash was repeated for a total of two 5 min
washes. After the final wash, PBS was poured off the
slide and tissues were blocked with 2 % milk/PBS
(Carnation Instant Nonfat Dry Milk dissolved in PBS)
for 1 h at room temperature, while shaking. Blocking so-
lution was removed and primary antibody added, diluted
in 1 % milk. Antibody dilutions were per manufacturer’s
recommendations. Slides were allowed to incubate over-
night at 4 °C while shaking with the primary antibody. If
the primary antibody was conjugated to fluorescent mol-
ecule, slides were also incubated in the dark overnight.
Slides were washed three times with PBS at room
temperature. The secondary antibody was diluted in 1 %
milk/PBS and incubated at room temperature for
30 min, shaking. Slides were then washed with PBS for
10 min, three times. Nuclear stain diluted in PBS was
added to tissues. Either Dapi (300 ng/mL, Sigma-
Aldrich, catalog # D9542) or Sytox Green Nuclear Stain
(Life Technologies, catalog # S7020) was used depending
on the secondary antibodies used for staining. The last
PBS wash was done at room temperature for 5 min.
Coverslips were mounted to slides using Fluoroshield
(Sigma-Aldrich, catalog # F6182) and sealed with clear
nail polish. Images were taken on a Nikon TiE
Inverted Widefield Fluorescence High Resolution
Microscope.
Primary antibodies used were: Anti-E Cadherin anti-

body conjugated to Allophycocyanin (Abcam, catalog
no. ab99885); Hop Antibody (Santa Cruz, catalog no.
sc-30216); Anti-CD73 antibody (Abcam, catalog no.

ab54217); and GCS-a-1 Antibody (Santa Cruz, catalog
no. sc-23801)
Secondary antibodies used were: CD73 antibody was

detected with Goat anti-mouse IgG-FITC (Santa Cruz,
catalog no. sc-2010); when co-stained with CD73, HOPX
was detected with Donkey anti-rabbit IgG-CFL 647
(Santa Cruz, catalog no. sc-362291); when co-stained
with E Cadherin, HOPX antibody was detected with
Chicken anti-rabbit IgG H&L FITC (Abcam, catalog no.
ab6825).

Analysis of immunohistochemistry
Fluorescence images were analyzed using ImageJ [61]
and the plugin JACoP was used for co-localization
analysis.

Results
Overview of the INSPIRE framework
INSPIRE extracts a LDR from multiple gene expression
datasets by inferring k latent (unobserved) variables and
the dependencies among the latent variables captured by
a probabilistic graphical model (Fig. 1). INSPIRE uses a
standard iterative learning algorithm to optimize the
joint log-likelihood objective function, Eq. (1), by itera-
tively updating its model parameters until convergence
(see “Methods” for details). INSPIRE iterates the follow-
ing three steps until convergence: (1) inferring the values
of latent variables with all the other parameters held
fixed, as described in Eq. (3); (2) assigning genes into la-
tent variables as described in Eq. (4); and (3) learning a
network of latent variables as described in Eq. (5). In
each iteration, latent variables are computed based on
the current assignment of genes into modules and the
estimated dependency network among the latent vari-
ables, as described in Eq. (3). If there are no dependen-
cies among latent variables, each latent variable would
be an average expression level of the genes in the mod-
ule. Thus, latent variables can be viewed as module cen-
ters adjusted for the estimated dependency network
among latent variables.
A set of genes assigned to the same latent variable is

referred to as a module (Fig. 1). To focus on identifying
a parsimonious, independent set of modules from high-
dimensional gene expression data, we design our model
such that each gene is assigned to only one module, al-
though it would be a simple extension to assign each
gene to multiple modules. However, when we imple-
mented an extension of INSPIRE which allows each gene
to be assigned to more than one module, the functional
coherence of modules significantly decreased (Additional
file 5: Figure S4). This could be because the model with
genes assigned to multiple modules has a significantly
increased number of parameters.
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The number of modules k is determined based on the
standard Bayesian Information Criterion (BIC), although
users can determine k in a different way depending on
the problem. INSPIRE framework simultaneously infers
the assignment of genes into k latent variables and the
dependency network among k latent variables by fitting
the probabilistic model across multiple gene expression
datasets that can potentially have different sets of genes
(e.g. different platforms) (see “Methods”). The INSPIRE
model provides a biologically intuitive LDR model for
gene expression data where many biological networks
are modular and genes involved in similar functions are
likely to be connected more densely with each other.
How genes are organized into modules and how these
modules are connected with each other would provide
improved insights into the underlying disease process, as
discussed below.
After evaluating INSPIRE by comparing with alterna-

tive methods on simulated data and a small set of
genome-wide expression datasets (Fig. 2a, b), we applied
INSPIRE to many ovarian cancer expression datasets,
which lead to a novel marker and potential driver of
tumor-associated stroma (Fig. 2c).

INSPIRE learns underlying modules and their
dependencies from simulated data more accurately than
13 other methods
We first evaluate INSPIRE on data simulated using a
probabilistic model of (unobserved) latent variables,
gene expression levels, and the dependencies among the
latent variables captured by a probabilistic graphical
model (Fig. 1). To simulate the situation in which we are
given expression datasets that contain different sets of
genes (e.g. different microarray platforms), we generated
two datasets (Dataset1 and Dataset2) with the same
genes and included all genes in Dataset1 and varying
percentages of the genes in Dataset2 such that varying
numbers of genes are present in the overlapping portion
of the datasets. This leads to three settings (Additional
file 2: Figure S1A, Fig. 3a (ii)–(iv) left): (ii) 60 % of the
genes are present in Dataset2, (iii) 80 % of the genes are
present in Dataset2; and (iv) all genes are present in
Dataset2. The total number of genes in each of these set-
tings is 250, and the number of modules is 10, with an
average of 25 genes in a module (see “Methods” for de-
tails of synthetic data generation).
We compare INSPIRE with the following five state-of-

the-art methods: (1) GLasso, standard graphical lasso
[54] that learns a gene-level conditional dependence net-
work with no LDR or module assumption; (2) UGL, un-
known group L1 regularization [62] that learn sparse
block-structured inverse covariance matrices with un-
known block structure; (3) SLFA, structured latent factor
analysis [22] that learn an LDR of the data as well as the

relationship between the latent factors; (4) WGCNA,
weighted gene co-expression network analysis [8] that
allows to define modules based on a special metric
derived from the correlations of the gene pairs; and (5)
MGL, module graphical lasso [11] which simultaneously
learns a LDR and the conditional dependencies among
the latent variables (Table 1). Since all those methods
work on a single dataset, to enable the application of
these methods to multiple datasets with variable discrep-
ancy, we adapt the input data to those five methods in
three ways (Additional file 2: Figure S1B): (1) using only
Dataset1 that contains all genes; (2) using data on the
genes that are present in both datasets (blue-shaded re-
gion in Fig. 1), and assigning the rest of the genes to the
learned modules based on the Euclidean distance be-
tween the gene’s expression and the expression of each
of the modules; and (3) imputing missing values in
Dataset2 and using both datasets as if they were a single
dataset. This leads to 13 methods (Table 1). InterMGL,
ImpMGL, and INSPIRE represent different ways of
handling missing data: INSPIRE uses a novel learning al-
gorithm that does not require the missing portion when
learning; ImpMGL imputes missing variables in the
datasets before learning; and InterMGL ignores missing
variables in the datasets. We run each method on 20 dif-
ferent instantiations of the synthetic data and present
the average results with p values of significance of the
difference with INSPIRE (see “Methods”; Fig. 3). We
evaluated INSPIRE and 13 competitors in terms of how
well they explain unseen data measured by the test-set
log-likelihood, gene-module assignment accuracy, and
the module dependency network accuracy. In order to
make comparisons with WGCNA variant methods pos-
sible, we applied a standard graphical lasso algorithm to
the modules learned by a WGCNA variant method.
INSPIRE, SLFA, and MGL are iterative algorithms with
non-convex objective functions, so their results may de-
pend on the initialization of the parameters. To rule out
the possibility of making a conclusion based on a par-
ticular set of initial parameters, we performed the
variants of those algorithms multiple times with dif-
ferent starting points (see “Methods” for details on
initialization).

Test log-likelihood
The test log-likelihood that measures how well the
learned models fit unseen data is a widely used evalu-
ation metric on probabilistic models [11, 62, 63]. We
generated test data Y containing 100 samples, which was
created in the same way as the training data X (see
“Methods”). The 13 learned models are tested based on
the same unseen data Y. Each method selects its own
regularization parameter using the standard CV test [64]
selecting λ with the best average CV test log-likelihood
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measured on Dataset1 in X (see “Methods”). We used
the test set of Dataset1 to compute the test log-
likelihoods for all methods since Dataset1 contains all
genes. Figure 3a shows the average negative test log-
likelihood per sample (lower the better) in (i)–(iv): (i)
shows the methods that use only Dataset1 and (ii)–iv)
show Imp—, Inter— and INSPIRE methods that use
Dataset2 as well with varying numbers of genes in
Dataset2 (Additional file 2: Figure S1A). Each bar
(except INSPIRE) displays a p value from the Wilcoxon
signed rank test that measures how significantly INSPIRE
is better than the corresponding method across 20
instantiations of the data (see “Methods”). The bars
for the methods that use only Dataset1 display three
p values, each for comparison to INSPIRE in (ii)–(iv).
INSPIRE has significantly better test log-likelihoods
than the methods that utilize one dataset (p ≤2.4 × 10–5)
and all the other eight methods that can utilize mul-
tiple datasets (p ≤4.3 × 10–4). This indicates that mak-
ing use of multiple datasets by using INSPIRE has
great potential to increase the chance to infer the
true underlying model. In (iv), ImpMGL, InterMGL,
and INSPIRE perform similarly as expected, and they
are better than the other methods that utilize mul-
tiple datasets. The methods that utilize only Dataset1
(i) achieve worse average test log-likelihood than
their multiple-dataset counterparts (ii)–(iv); and the
test log-likelihood of most methods increase with the
increasing number of overlapping variables, from (i)
to (iv).

Module recovery
We then evaluated how well important aspects of the
true underlying model are recovered by each method.
We first checked whether pairs of genes that are
assigned to the same module in the true model are in
the same modules in the learned model. We used the
rand index [65] that measures how well pairs of genes
agree on being in the same or different modules between
two models—the true model and a learned model. A
rand index of 0 means that none of the genes agree on
being in the same/different groups, while 1 means a per-
fect recovery of the modules. The evaluation based on
module recovery is not applicable for GLasso1 and
ImpGLasso, since they do not learn modules. As shown
in Fig. 3b, the module recovery performance of INSPIRE
is significantly better than its 13 competitors. INSPIRE
has a significantly higher rand index than (i), the methods
that utilize a single dataset (p ≤4.9 × 10− 2), and (ii)–(iv),
the methods that use multiple datasets (p ≤6.6 × 10−2).

Module dependencies
Then, we evaluated how well the inferred module de-
pendencies by each method are consistent with those in

the true model. Since it is not clear how to map a
module in the true model to the corresponding
module in the learned model, we converted each
module-based network model into the equivalent
gene-based probabilistic model using a well-
established method [11]. It is not enough to get only

high precision or recall, so we used the F−measure

¼ 2 ðprec�recÞ
ðprecþrecÞ as an evaluation metric. As shown in

Fig. 3c, INSPIRE has the highest average F-measure
that measures the accuracy of the dependencies
learned by each method in (i)–(iv). INSPIRE is signifi-
cantly better than methods that utilize a single data-
set (p ≤2.4 × 10–4) and other methods that use
multiple datasets (p ≤2.7 × 10–2).
The methods that use only one dataset tend to have a

lower average rand index (for modules) and F-measure
(for module dependencies) than their multiple-dataset
counterparts; and as the number of genes shared across
datasets increases, the overall performance of the
methods that utilize multiple datasets increases. This in-
dicates that combining multiple datasets reveals under-
lying modules and their dependencies better; INSPIRE is
better than 13 alternative approaches in revealing the
underlying model.

Evaluation on two genome-wide ovarian cancer
expression datasets
Next, we evaluated INSPIRE based on the statistical ro-
bustness and biological relevance of the learned modules
on two publicly available ovarian cancer gene expression
datasets [31] (Fig. 4a): (1) OV1 that contains 18,113
genes and 28 patients (Affy U133 Plus 2.0 platform); and
(2) OV2 that contains 8331 genes in a total of 42 patients
(Affy U95Av2 platform) (see “Methods”; Additional file 6:
Table S2).
We compared INSPIRE with six alternative methods

that are scalable to genome-wide data (Table 1; Additional
file 3: Figure S2). The runtime of all the other
methods when p = 3000 is >10 h, which means that
running these methods on genome-wide data would
be too slow to be used. A total of 8234 genes are
presented in both datasets (rows in the blue-shared
region in Fig. 4a). As a preprocessing step, we stan-
dardized each dataset so that each gene has zero
mean and unit variance across the samples within
each dataset (See “Methods”). We used k = 91, where
k is the number of modules, as selected by BIC on
the k-means clustering applied to the imputed data
matrix. We also present the results when k = 182
based on the biological plausibility of having on aver-
age 100 genes per module, in order to show that the
outperformance of INSPIRE does not depend on one
specific k value (Additional file 7: Figure S5).
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In the next three subsections, we show the results of
the following evaluations (Fig. 2b): (1) how well the
INSPIRE model fits unseen data measured by test log-
likelihood; (2) the statistical significance of the overlap
between the learned modules (i.e. gene-module assign-
ment) and known functional gene sets; and (3) how well
the learned modules reflect putative regulatory relation-
ships between TFs and targets based on the ChEA
database [66].

INSPIRE learns a statistically more robust LDR model than
alternative approaches
We first evaluated the learned LDR model based on the
test-set log-likelihoods that measure how well the
learned model can explain left-out test data in OV1
through the standard fivefold CV tests (see “Methods”).
We used the test set of OV1 for computing the test log-
likelihoods for all compared methods since OV1 con-
tains almost all of the genes contained by either of the
datasets. In Fig. 4b, the best average test log-likelihood
per sample across the tested λ values is plotted for
each method. As can be seen in Fig. 4b, INSPIRE
achieves better test log-likelihood than six alternative
methods, WGCNA1, InterWGCNA, ImpWGCNA, MGL1,
InterMGL, and ImpMGL (Table 1) for both k = 91 chosen
by the BIC score (left panel) and k = 182, an alterna-
tive k value that results in modules with average size
of 100 (right panel). Since MGL and INSPIRE may
depend on the initialization of the model, the stand-
ard deviation across ten runs of those methods with
different initializations are represented by the error
bars on the bottom panel in Fig. 4b.

INSPIRE modules are more significantly enriched for
functional gene sets than alternative methods
INSPIRE uses a biologically intuitive LDR model for
expression data, in which genes are assigned to k
modules, and each module can be interpreted as bio-
logical processes performed by the genes in that mod-
ule. Thus, whether each module is enriched for the
genes that are known to be in the same functional
categories can be a way to evaluate the biological
relevance of the LDR inferred by INSPIRE. Here, we
evaluated INSPIRE based on whether the learned
modules are significantly enriched for known path-
ways from MSigDB [67]. We compared INSPIRE with
six alternative methods, WGCNA1, InterWGCNA,
ImpWGCNA, MGL1, InterMGL, and ImpMGL (Table 1),
using k = 91 chosen by the BIC score and k = 182, an alter-
native k value that results in modules with average size of
100. For each method, we chose λ that achieves the best
CV test log-likelihood, a standard technique [64].
We considered 1077 GeneSets (pathways) from the C2

collection (curated gene sets from online pathway

databases) of the current version of the MSigDB [67]
based on Reactome [68], BioCarta, and KEGG [69]. We
excluded the pathways based on computational predic-
tions from this collection. We computed the significance
of the overlap between each GeneSet and each module
measured by the Fisher’s exact test p value, followed by
the Bonferroni multiple hypothesis correction. Figure 4c
and Additional file 7: Figure S5A show the results of the
functional enrichment analysis for k = 91 (chosen based
on BIC) and k = 182, respectively. In each scatter plot, a
larger portion of the dots lie above the diagonal, which
implies that the INSPIRE modules are more significantly
enriched for known pathways than those inferred by the
alternative approaches. This indicates that INSPIRE is
better at identifying biologically coherent modules based
on prior knowledge more accurately than the alternative
methods.

INSPIRE modules are more significantly enriched for
putative targets of the same TF than alternative
approaches
As an alternative way to evaluate the biological coher-
ence of the learned modules, we checked how signifi-
cantly the modules are enriched for the genes that have
been shown to be bound by the same TFs. The ChEA
database [66] provides a large collection of TF-target in-
teractions captured in previously published ChIP-chip,
ChIP-seq, ChIP-PET, and DamID (referred herein as
ChIP-X) data. For each of 107 TFs in the ChEA database
[66], we computed the significance of the overlap be-
tween each module and each TF’s putative targets from
ChEA database measured by the Fisher’s exact test p value
followed by the Bonferroni correction. Figure 4d and Add-
itional file 7: Figure S5B show the results of our ChEA en-
richment analysis for k = 91 (chosen based on BIC) and k
= 182, respectively. In each scatter plot, a much larger por-
tion of the dots lie above the diagonal, which indicates
that INSIRE modules are biologically more coherent, i.e.
more significantly enriched for putative targets of the
same TF. In Fig. 4d and Additional file 7: Figure S5B, we
indicate with a blue dot a TF that resides in the same
module as the module that is enriched for the TF’s puta-
tive targets. We do not expect all dots to be blue (i.e. all
TFs being in the same modules as their putative targets),
because the protein level of TF may not be correlated with
its messenger RNA (mRNA) expression level. It is still in-
teresting to see that INSPIRE modules are more signifi-
cantly enriched for the genes that have been shown to be
bound by the same TFs in ChIP-X data.

Application to nine genome-wide ovarian cancer
expression datasets
Encouraged by the in-depth evaluation described above,
we applied INSPIRE to nine expression datasets
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comprising 1498 ovarian cancer patient samples
downloaded from the TCGA project website and the
Gene Expression Omnibus (GEO) [26] (Fig. 2c). This
corpus of data consists of publically available tran-
scriptomic characterizations of ovarian cancer across
nine distinct studies where gene expression data col-
lected in different studies come from distinct plat-
forms. These data are therefore a perfect corpus to
apply the INSPIRE method for a variety of reasons.
First, there is a sufficient sample size across studies
to resolve distinct modules that are robust across data-
sets. Second, our method will outperform more naïve ap-
proaches by imputing missing genes through
leveraging shared structure across the data and will
therefore increase the resolution to detect robust
modules. Finally, there are known subtypes in ovarian
cancer as identified by the TCGA ovarian cancer
study [23] and we anticipate that our approach will
not only re-identify these subtypes based on the ex-
pression of our inferred modules, but will also further
resolve potential molecular drivers of these subtypes
through ancillary analyses of the INSPIRE inferred
modules. These ancillary analyses are described below.
We repeated our analyses for this application using
varying module counts that correspond to the average
number of 200, 140, and 100 genes, respectively, in
each module and for varying sparsity tuning parameters
λ = {0.01, 0.03, 0.1}; and we observed that all results were
highly robust for the varying values of k and λ. We re-
ported results from our biological analysis for k = 90, as
selected by BIC for the k-means clustering applied to the
imputed data matrix, and λ = 0.1 which leads to the spars-
est network of modules, given that sparsity is of key im-
portance in learning and the interpretation of a high-
dimensional conditional dependence network.
We evaluated the learned LDR consisting of 90 mod-

ules and the corresponding latent variables based using
three evaluation metrics:

(1)We performed gene set enrichment analysis to
characterize each module based on its associated
genes (see Additional file 8: Table S3 for the gene
set enrichment analysis results together with the
significance).

(2)We analyzed the associations between the learned
latent variables, each representing a module, and
six important phenotypes in cancer, including
resectability, which was defined by the residual
tumor size after surgery, survival, and four
histopathological phenotypes manually curated
based on the histopathology in the TCGA ovarian
cancer data (see Additional file 8: Table S3), and
we used inferred INSPIRE latent variables as
features for predicting those phenotypes. Figure 5a

shows the association between the learned latent
variables with the six important phenotypes and
Fig. 5b compares INSPIRE to the following based on
the prediction of those phenotypes: (1) PCA [18], an
unsupervised LDR method; (2) subnetwork analysis
[13], a supervised LDR method; and (3) all genes
when no LDR is learned. The histopathological
phenotypes are provided as a resource for this paper
(Additional file 9: Table S4) and residual tumor size
and survival are available on the TCGA web site.

(3)We used the inferred latent variables to identify new
subtype definitions in ovarian cancer. We compared
INSPIRE subtypes to: (1) the subtypes recently
described by the TCGA ovarian cancer study [23];
and (2) the subtypes learned by a method that uses
mutation profiles for the network-based stratification
of cancer patients (NBS) [60], based on how relevant
they are to genomic abnormalities in ovarian
cancer. Detailed information concerning expression
datasets used in the INSPIRE analysis is presented in
Additional file 1: Table S1 and the processing of the
expression data is described in “Methods”.

(4)We perform both statistical and biological
experiments to show that HOPX is a potential
molecular driver from tumor-associated stroma in
a module that differentiates the patients with
increased percent stroma, infiltrative stroma, and
desmoplastic stroma.

Negatively correlated modules show distinct pathways
and potential regulatory TFs enrichment
We emphasize that the key goal of INSPIRE is to reduce
the dimensionality of expression data in a biologically in-
tuitive way and in such a way as to capture important
dependencies. Given that the gene regulatory network is
known to be highly modular [49] and dimensionality re-
duction is the key goal, we chose to focus on module-
level dependencies rather than gene-level dependencies.
The ability to capture the high-level abstraction of the
dependencies among gene expression levels is a key goal
and advantage of INSPIRE. As a result of the INSPIRE
model assumptions, expression of genes in the same
INSPIRE module would tend to be positively correlated
and positive correlation in expression levels across pa-
tients is an important property—expression activated or
deactivated within similar sets of patients. Genes with
strong negative correlations are likely to be highly re-
lated functionally, however they would have completely
different regulatory mechanisms (e.g. different TF
binding) and biological interpretation. In Additional
file 10: Figure S6, we show scatter plots in which
each dot corresponds to a GeneSet (from the pathway
databases or TF binding information) and we plot the
maximum –log10(p) obtained by each model (axis).
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Additional file 10: Figure S6A (top) demonstrates
that the modules that are strongly negatively corre-
lated with each other show very distinct pathway
(left) enrichment as well as TF binding enrichment
(right). In Additional file 11: Table S5, the significance
of enrichment from five negatively correlated module
pairs with the biggest absolute correlation listed for
five pathways or TFs for which the highest enrich-
ment difference between the negatively correlated
modules is observed.
We also compared between following two models in

terms of functional enrichment of the modules: (1) two
negatively correlated modules are defined as two separ-
ate modules as in the original work; and (2) instead of
the two negatively correlated module, there is one hypo-
thetical module that contains all genes in the two nega-
tively correlated modules. Additional file 10: Figure S6A
(bottom) compares between model I (y-axis) and model
II (x-axis) in terms of functional coherence based on the
pathway database (left) and putative TF binding targets
(right). Model I reveals more functionally coherent
modules than model II, which justifies our modeling as-
sumption that negatively correlated genes need to be in
separate modules.

INSPIRE latent variables are significantly associated with
clinical and histologic phenotypes in cancer
To gain relevant biological insight from ovarian cancer
(OV) transcriptome data, we used the 90 inferred latent
variables from the INSPIRE model as a LDR of tran-
scriptomic profiles across patients (Fig. 2c) that captures
robust cross-dataset patterns of gene expression. We
evaluated the clinical relevance of these latent variables
by measuring the statistical association between these la-
tent variables and histopathological phenotypes of
tumor. The morphological interpretation of histologic
sections of tumor forms the basis of diagnosis, aggres-
siveness assessment, and prognosis prediction. Patholo-
gists examine the tumor diagnostic images based on
semi-quantitative histologic phenotypes of the tumor
such as invasion pattern and percent stroma to predict
the aggressiveness of cancer. Identifying the molecular
basis for these histologic phenotypes will advance the
understanding of the molecular biology of ovarian can-
cer. We manually examined five histologic phenotypes
for 98 randomly selected patient images from TCGA:
percent stroma, percent tumor, vessel formation, stroma
type, and invasion pattern (details in “Methods”;
Additional file 9: Table S4). For each pair of a histologic
phenotype and a latent variable from the INSPIRE
model, we performed the Pearson’s correlation test that
produces a correlation coefficient and a p value.
Additional file 8: Table S3 lists the p values from these
association tests of INSPIRE latent variables, with each

of the five histologic phenotypes. Figure 5a shows the
correlation of each latent variable with each of the
histologic phenotypes. Since percent stroma and per-
cent tumor phenotypes are almost perfectly (anti-)
correlated, we only included percent stroma in Fig. 5a.
We used p values from a likelihood ratio test for a Cox
proportional hazards model to determine the signifi-
cance of association of a gene with patient survival and
we used p values from the Pearson’s correlation test for
tumor resectability.
Modules 5 and 6 show high correlations with the

histopathological phenotypes, such as percent stroma,
stroma type, and invasion pattern. As shown in
Fig. 5a, those modules are also associated with patient
survival and tumor resectability. We observed that
the quantity of residual tumor after surgery is posi-
tively correlated with the amount of tumor-associated
stroma, where increased residual tumor, i.e. low re-
sectability, is an important and a previously known
indicator of poor patient prognosis. Although the
latent variables of modules 5 and 6 show high expres-
sion correlation (the correlation coefficient between
the module 5 latent variable and the module 6 latent
variable is 0.84), these two modules are functionally
fairly different. Additional file 10: Figure S6B com-
pares modules 5 and 6 in terms of the pathways and
putative TF targets that are enriched in these mod-
ules. There are handful of dots that are distant from
the diagonal line implying that modules 5 and 6 exhibit
several unique biological properties. In Additional file 12:
Table S6, the significance of enrichment from modules
5 and 6 are listed for five pathways or TFs for which
the highest enrichment difference between the modules
is observed.
To examine the difference between modules 5 and 6

in terms of phenotypes associated with them, we com-
pared the following two models in an experiment where
the latent variables are used as features in predicting six
different phenotypes (percent stroma, stroma type, vessel
formation, invasion pattern, resectability, and survival):
(1) modules 5 and 6 exist as two separate modules as in
the original work; and (2) instead of modules 5 and 6,
there is one hypothetical module that contains all genes
in modules 5 and 6. As shown in Additional file 13:
Table S7, we observed that modules 5 and 6 are signifi-
cantly predictive of distinct sets of phenotypes, and
interestingly, either module 5 or module 6 is always bet-
ter in terms of predictability of phenotypes than the
hypothetical module containing all genes in modules 5
and 6, which means model 1 is a better predictor of all
six phenotypes than model 2. Thus, even if modules 5
and 6 are highly correlated with each other, the genes in
these modules need to be separated into the two
modules.
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INSPIRE latent variables are more predictive of clinical
and histologic phenotypes in cancer than other kinds of
LDRs and all genes
Many biological processes are performed by a group of
genes rather than individual genes and, as a result, many
complex phenotypes and clinical outcomes can be ex-
plained based on module activity levels rather than indi-
vidual genes. Moreover, expression level of an individual
gene is often noisy and even if it was not, it still may not
be perfectly correlated with a protein level of a true
regulator for a phenotype.
To test this hypothesis and further demonstrate the ef-

fectiveness of INSPIRE as an LDR of gene expression
data, we used the INSPIRE latent variables as features in
prediction tasks and we compared INSPIRE with the fol-
lowing methods: (1) PCA [18], the most widely used un-
supervised LDR method; (2) subnetwork analysis [13], a
powerful supervised LDR method that extracts network
markers; and (3) all genes when no LDR is learned. The
subnetwork analysis method [13] learns small subnet-
works of genes in a given large PPI network, based
on expression data and a particular prediction task.
For example, for a stroma type prediction (fibroblast/
desmoplastic), it learns subnetworks of genes in a
given PPI network such that the average expression
level of each subnetwork significantly differentiates the
two patient groups based on the classes of stroma type.
This method is a supervised method in that the subnet-
works are learned such that they can explain a particular
phenotype well. On the other hand, INSPIRE is an un-
supervised method in that the result does not depend on a
particular prediction task. Each of INSPIRE latent vari-
ables, subnetworks, PCs, and all genes is considered as a
set of features in predicting six different phenotypes:
percent stroma, stroma type, vessel formation, invasion
pattern, resectability, and survival (see “Methods” for
details). The result of the comparison shows that the
features learned by INSPIRE show the best prediction
performance measured among all methods considered
(Fig. 5b). This result strengthens our claim that the
INSPIRE latent variables provide informative lower-
dimensional features for prediction tasks.
Because INSPIRE groups genes in multiple datasets

into a set of modules, most modules may include a sig-
nificant number of genes whose expression is not corre-
lated with the predicted phenotype. In order to examine
the effect of those genes in phenotype prediction tasks,
we generated four hypothetical module sets by excluding
20 %, 40 %, 60 %, and 80 % of the genes whose expres-
sion levels in training samples are least significantly as-
sociated with the respective phenotype from each of 90
modules and repeated the phenotype prediction ex-
periments for those four hypothetical module sets.
Additional file 14: Table S8 shows that the original

INSPIRE latent variables which correspond to the module
set including non-discriminative genes perform the best
and in most cases, the performance even decreases when
top 20 % of the most discriminative genes are left. This
result indicates that latent variables resulting from the
contribution of all genes make robust features informative
of the phenotypes.

Subtypes inferred based on INSPIRE latent variables are
highly relevant to genomic abnormalities in ovarian
cancer
Cancer is a heterogeneous disease with multiple distinct
genetic drivers, where identifying subtypes of cancer
relevant to potential genetic drivers is a primary goal of
the field of cancer biology. Here, we cluster ovarian can-
cer patients from the TCGA study [23] (560 samples)
into four subtypes by using the latent variables learned
by the INSPIRE method as features for clustering pa-
tients (details in “Methods”). Additional file 15: Table S9
lists the assignment of the patients in the TCGA ovarian
cancer data to the four INSPIRE subtypes.
To examine the relevance of the INSPIRE-based sub-

types to the potential drivers of ovarian tumor, we
checked the significance of the association between the
subtypes with CNV of genes, an important genomic ab-
normality that can drive cancer (Fig. 5c and Additional
file 16: Figure S7A). We focused on CNV for this test in-
stead of mutation since ovarian cancer has been charac-
terized as a c-class cancer (as opposed to m-class, where
“m” represents mutation) in which CNV is more preva-
lent than mutations [70]. For each CNV (as quantified
by the CNV level), we performed a multivariate linear
regression using the INSPIRE subtypes, where we com-
puted a p value (from the regression f-statistic) to ascer-
tain how well the INSPIRE subtype regression model fits
a given CNV. We then compared the number of CNVs
with significant INSPIRE p values (determined by vary-
ing thresholds; see Fig. 5c) to the number of CNVs with
significant p values from the following two approaches:
(1) the subtypes learned by using a method that uses
mutation profiles for the network-based stratification
(NBS) of cancer patients [60]; and (2) the subtypes in-
ferred from a recent TCGA ovarian cancer study [23].
Figure 5c shows that INSPIRE results in subtypes that
are more associated with CNV-based genomic abnor-
malities than alternative approaches. In Additional file 16:
Figure S7A, we show the comparison for varying
numbers of modules (k), for varying sparsity tuning
parameters (λ), and for varying p value thresholds,
which shows that the results are robust to varying
hyper-parameters. Figure 5c and Additional file 16:
Figure S7A indicate that INSPIRE further resolves
subtypes as defined by the potential genomic drivers
of ovarian cancer when compared to alternative
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approaches. In Additional file 17: Supplementary Note 1,
we list the CNV levels that are significantly correlated
with each of the four subtypes. The enrichments of those
CNV levels with the MSigDB [67] C2 (curated gene sets)
categories and the corresponding − log10p are also listed
for each subtype.

Subtypes revealed by INSPIRE and their relationships with
the TCGA subtypes
Figure 5d reveals a subnetwork learned by modules from
an INSPIRE model using parameters λ = 0.1 and k = 90
(chosen based on BIC). This subnetwork contains mod-
ules that are differentially expressed in one of the four
subtypes, as represented by the heatmaps in Fig. 5d. The
differentially expressed modules, termed marker mod-
ules, are determined for each subtype by comparing the
subtype versus the other three subtypes, using the
Significance Analysis of Microarrays (SAM) algorithm
[71] implemented in the R package siggenes. Additional
file 18: Table S10 lists the enrichment of the marker
modules with the MSigDB [67] C5 (GO gene sets) and
the corresponding − log10p. We observed that the set of
marker modules (Additional file 18: Table S10) have a
significant overlap (p = 2.4 × 10−3) with the set of mod-
ules that have significant associations with at least three
of the six phenotypes (the modules colored in red in
Fig. 5a and Additional file 8: Table S3 except module
30). Not surprisingly, the INSPIRE subtypes show di-
verse histologic features across subtypes, and we accord-
ingly termed the INSPIRE subtypes “vascular,” “stromal,”
“immunoresponsive,” and “fibrous.” See Fig. 5d and
Additional file 18: Table S10, where the marker modules
for the vascular, stromal, immunoresponsive, and fibrous
subtypes are colored in green, blue, red, and orange,
respectively.
Additional file 19: Table S11 shows a confusion matrix

that describes the overlap between the INSPIRE subtype
assignments and the TCGA subtype assignments [23] to-
gether with the p values for the significance of the over-
lap for the highly-overlapping subtypes. There is a more
significant overlap for the vascular-proliferative pairs
and stromal-mesenchymal pairs, which implies that the
proliferative-like and mesenchymal-like subtypes are
highly conserved across different OV datasets, which is
consistent with the findings of Way et al. [72]. Although
the INSPIRE subtypes have a statistically significant
overlap with the TCGA subtypes, the INSPIRE subtypes
show much stronger association with genomic abnor-
malities, as mentioned above (see Fig. 5c). We further
include the description of the stromal subtype here since
it is characterized by the high expression of modules 5
and 6, which are strongly associated with the six im-
portant phenotypes in cancer (Fig. 5a). See Additional
file 17: Supplementary Note 2 for the characterization

of the other three (“vascular,” “immunoresponsive,”
and “fibrous”) subtypes.
The stromal subtype is characterized by high expres-

sion of modules 5, 6, and 86 (Fig. 5d) and associated in-
creased percent stroma, infiltrative growth pattern, and
desmoplastic stroma (Additional file 16: Figure S7B (i),
(ii), (iii)). Modules 5 and 6 are significantly enriched for
proteinaceous extracellular matrix gene sets (Additional
file 18: Table S10), which is likely due to increased
percent stroma. In Fig. 5d, there are quite a few
edges between modules associated with the vascular
subtype and those associated with stromal subtype,
which suggests a strong association between the in-
creased stromal components and neovascularization
of the tumor. This likely reflects the known tumor
neovascular niche in cancer that involves proangio-
genic factors release from tumor stroma along with
the vasculature itself [73]. This is supported by multi-
potent mesenchymal stromal cells having unique im-
munoregulatory and regenerative properties [74]. A
substantial amount of the tumor stroma is composed
of immune cells and the net effect of the interactions
between these various immune cell types and the
stroma participates in determining anti-tumor im-
munity and neovascularization potential [75]. We note
that the immune system modules 78 and 81 that are
connected to extracellular matrix modules 5 and 6
are also upregulated in the stromal subtype (Fig. 5d).
Stromal subtype is a significant predictor of poor pa-
tient survival (Cox proportional hazards model log-
rank (p = 8.8 × 10−2) with a median survival of 914 days.
Cancers associated with a reactive stroma is typically diag-
nostic of poor prognosis [76] and we observed that me-
dian survival of the stromal subtype is the smallest among
all subtypes. Stromal subtype has a significant overlap
(p = 1.03 × 10−35) with the mesenchymal subtype dis-
covered by TCGA [23] (Additional file 19: Table S11).

INSPIRE provides novel insights into molecular basis for
ovarian tumor resectability
Riester et al. identified POSTN as a candidate marker for
tumor resectability in ovarian cancer [77], where the re-
sectability phenotype was defined by the residual tumor
size after surgery. The authors showed that high POSTN
expression is strongly associated with poor tumor resect-
ability, even more so than a multi-gene model chosen by
LOOCV across 1061 samples in eight datasets including
the TCGA [23] and Tothill [34] datasets. POSTN is a
member of module 6 that shows the most significant as-
sociation with resectability among all 90 modules
(Fig. 5a). We therefore compared our supervised predic-
tion model using the INSPIRE latent variables corre-
sponding to modules 5 and/or 6 to a model that
contains just POSTN to determine whether the genes in
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module 5 and the genes in module 6 other than POSTN
provide any information to the prediction of resectability
in addition to the information provided by the POSTN
expression. We observed that when training on TCGA
data [23], including the clinical covariates, the models
trained using (1) modules 5 and 6 together; (2) module 6
only; (3) module 5 and POSTN together; and (4) module
5 only, outperformed the model with the known marker
for resectability, POSTN, when tested in the Tothill [34]
dataset (see AUC values in Fig. 6). TCGA data [23] were
used for training because of its large sample size. Tothill
[34] was used for testing, because it has the largest sam-
ple size except TCGA data (Additional file 1: Table S1) and
contains the most fine-grained information on the residual
tumor size. Additionally, the proportion of optimally and
sub-optimally debulked patients was similar between
TCGA and Tothill data. We used a stringent definition of
resectability (0 cm versus >0 cm) (see “Methods”).
Since module 6 contains POSTN, outperformance of

(1)–(3) means that the modules 5 and 6 representing the
expression of genes in module 5 and/or module 6, which
are significantly predictive of stromal histology features
and resectability, add information to the prediction of
resectability by POSTN in a cross-dataset analysis. Out-
performance of (4) means that module 5 representing
the gene expression levels in module 5, which does not
contain POSTN, is a better predictor of resectability than
POSTN. When we repeated this experiment with no
clinical covariates (age and stage) in the training, the
models including module 6 outperformed the model that
includes only POSTN, which means the genes in module
6 other than POSTN add information to the prediction
of resectability by POSTN (see AUC values in Additional
file 4: Figure S3). Modules 5 and 6, with strong stromal
and mesenchymal properties (see below), provide poten-
tial novel molecular basis for tumor resectability.

INSPIRE modules and the conditional dependence
network among them
Here, we discuss the modules that show significant corre-
lations with many of the histological and clinical pheno-
types in the TCGA ovarian cancer data or that achieve the
only significant correlation with a phenotype among all
modules (see Fig. 5a and Additional file 8: Table S3).
Module 5 contains known EMT inducers ZEB1,

SNAI2, and TCF4 (E2.2) [78], as well as multiple other
genes known to be important in focal adhesion [79],
extracellular matrix interaction [80], extracellular matrix
organization [81], and markers of cancer-associated
fibroblasts (PDGFRB, PDGFRA) [82] (see Additional file 8:
Table S3). Similarly, module 6 contains EMT inducer
TWIST1 [78], many extracellular matrix genes, as well as
genes associated with senescence and autophagy, collagen
genes, and the well validated predictor of tumor

resectability, POSTN [77] (see Additional file 8: Table S3).
These two modules are prime candidates for genes driving
EMT associated tumor aggression. Although modules 5
and 6 have many shared GO categories and pathways,
they are likely to represent fairly different biological pro-
cesses (Additional file 10: Figure S6B). When we com-
bined these two modules and used one latent variable that
represents the two modules, the overall prediction results
became worse (Additional file 13: Table S7).
While modules 5 and 6 contain known drivers of

EMT and extracellular matrix genes and these mod-
ules are also associated with tumor-associated stroma/
mesenchymal phenotypes, we found other modules with
significant correlations with most histological and clinical
phenotypes. Additionally, an active area of research in
cancer biology is to identify pathways and genes driving
tumor aggression. This includes genes associated with
cancer stem cells (i.e. tumor-initiating cells) [83–86].
Module 78 contains genes indicative of hematopoietic cell
lineages likely because it includes many innate immune
response genes, as well as multiple innate immune re-
sponse signaling pathways including cytokine cytokine re-
ceptors, toll like receptors, and TCR signaling. Module 78
also contains a known EMT inducer ZEB2 [78]. This indi-
cates that module 78 may capture aspects of tumor associ-
ated inflammation, a known contributing factor to EMT
[87]. Module 81 includes genes that regulate the MAPK
and ERK cascades, signal transduction pathways that are
known to be upstream of multiple oncogenic process [88].
Module 54 represents genes involved in pro-apoptotic and
cell cycle regulation. GADD45 genes, known to be up-
stream of JNK signaling [89], are present along with JUN
and FOS. In addition, this module contains KLF4 and
KLF6, which like GADD45, are known to repress cell cycle
arrest and associated cyclin-dependent kinase inhibitors
[90]. Modules 30 and 54 are indicative of the likely meta-
bolic shift that cancers cells undergo as these modules are
enriched in metabolic and biosynthesis pathways. When
considering these modules jointly, we get a picture of mul-
tiple processes (Additional file 20: Figure S8) and potential
tumor cell subpopulations that populate the tumor micro-
environment and perpetuate aggressive tumor states in
subpopulations of patients.
One of the advantages of the INSPIRE framework over

naïve clustering algorithms is that it suggests potentially
biologically relevant interactions or couplings between
the modules. These interactions can be used to motivate
higher-level hypotheses about the coupling of disease
specific processes.

INSPIRE reveals a previously unknown stroma-associated
marker HOPX
Given the association of the genes in modules 5 and 6
with aggressive stroma and patient prognosis and the
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significance of modules 5 and 6 in differentiating the
stromal subtype, we were interested in understanding if
modules 5 and 6 capture a prognostic signature that
generalizes across other cancers. Prognostic genes are
more likely to be shared by distinct tumor types than
would be expected by random chance likely because of
prognostic mechanisms that generalize across cancers
(e.g. metastatic potential or immune system evasion)
and, conversely, cancer-specific prognostic genes are less
frequent than would be expected by random chance
[91]. Therefore, to further annotate modules 5 and 6, we
performed a pan-cancer analysis to check whether the
genes contained in those modules are significantly
associated with survival in six publicly available datasets
[6, 34, 86, 92–94] from five cancer types: ovarian cancer,
breast cancer, acute myeloid leukemia, glioblastoma, and
lung cancer (see Additional file 21: Table S12 for the
details of these datasets). We used p values from the
likelihood ratio test for a Cox proportional hazards
model to determine the significance of association of
a gene with patient survival and we considered a p
value ≤0.05 to be significant. We observed that the
genes in modules 5 and 6 are significantly associated
with survival in at least three of the six datasets
(Fisher’s test statistic p value = 1.68 × 10– for module
5 and = 4.44 × 10–8 for module 6). For breast cancer,
we used the Osloval (the test data) but not Metabric
(the training data with 1981 samples from the same study
[6] with Osloval) for breast cancer because we need the
sample sizes to be similar across datasets such that the
meta-analysis is not dominated by a single cancer type.
To further investigate the specific genes that are asso-

ciated with patient survival across cancer types in these
modules, we computed a combined p value statistic
using Fisher’s combined probability test for the associ-
ation of each gene with patient survival in a meta-
analysis of the six datasets from these five cancer types.
HOPX, which is in module 5, achieved the lowest
combined p value among all genes in module 5 or
module 6 and the third lowest combined p value
genome-wide (p = 1.32 × 10−10). The top two genes
that yield smaller p values than HOPX genome-wide are
CD109 (p = 2.49 × 10−11) and SKAP2 (p = 3.55 × 10−11),
neither of which is in module 5 or module 6 (Fig. 7a). As
shown in the previous sections, module 5 (containing 183
genes) is highly associated with percent stroma (Fig. 5a),
and is significantly enriched (p = 8 × 10−5) for the known
drivers of EMT that has been shown to contribute to poor
patient survival. Not all 183 genes in module 5 would play
a key role in the formation of tumor-associated stroma or
EMT and, in fact, many of the genes in module 5 would
simply have correlated expression pattern with key genes
in these processes. We hypothesize that such genes have
robust association with survival enough to be conserved

across different cancer types, given the previously known
association between tumor-associated stroma and patient
survival. We note that known EMT drivers ZEB1, SNAI2,
and TCF4 in module 5 have significant associations with
survival in our pan-cancer analysis (p values 8.5 × 10–6,
5.3 × 10–4, 1.3 × 10–3 and rankings 153, 749, and 1098, re-
spectively, out of 11,119 total genes). Thus, our pan-
cancer analysis that highlights HOPX in module 5 led to
us to consider HOPX as a potential molecular marker
strongly associated with percent stroma and tumor ag-
gression. Additionally, HOPX is one of the 15 genes in
module 5 (out of 183 genes) that have been classified as
“candidate regulators” [95]. Gentles et al. have defined a
list of about 3000 genes as candidate regulators, those that
have a potential regulatory role in the broad sense (not
specific to cancer): TFs, signaling proteins, and transla-
tional initiation factors that may have transcriptional im-
pact [95]. This implies that HOPX could be a regulator in
the stroma-associated processes.

HOPX is a putative driver for the tumor-associated
stroma/mesenchymal module (module 5)
HOPX is an unusual HOX protein that does not contain
a DNA-binding domain and has been implicated in mul-
tiple aspects of cardiac and skeletal muscle development
through recruitment of histone deacetylases [96–98]. It
has been suggested to have tumor suppressive function
in other cancer types [99–101], which confounds how its
expression in OV is associated with several poor out-
comes. This may also reflect different roles for HOPX in
ovarian tumor-associated stromal tissue.
Previous studies characterize Hopx as a mediator of

canonical Wnt and Bmp signaling and may play key
roles in maintaining a stem cell like state [102]. In our
further analysis of HOPX, we observed that HOPX is one
of the top candidate expression regulators for ovarian
cancer [95, 103]. To understand how HOPX is associ-
ated with the genes in the tumor-associated stroma/
mesenchymal module (module 5), we compared these
genes with those downregulated in Hopx−/− mice
compared to Hopx+/− control mice [102] and found a
significant enrichment based on Fisher’s exact test (p
= 1.5 × 10−3). Those two results together suggest
HOPX is a good candidate driver for the tumor-asso-
ciated stroma/mesenchymal module, as many of the other
genes in module are putative downstream targets of
HOPX, either directly or indirectly. Additional file 22:
Figure S9C shows the enrichment p value and the fold en-
richment of the genes in the tumor-associated stroma/
mesenchymal module with the downregulated genes in
Hopx−/− mice for varying fold change of expression of the
downregulated genes (x-axis).
Furthermore, genes downregulated in Hopx−/− mice

after addition of XAV939, a potent inhibitor of Wnt
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signaling to Hopx−/− mice [102], are even more signifi-
cantly enriched (p = 1 × 10−8) for genes in the tumor-
associated stroma/mesenchymal module. The HOPX
protein is a potent Wnt inhibitor [102], therefore in the
Hopx−/− mice Wnt is activated and genes inhibited by
Wnt are also turned off. When the Wnt inhibitor is
applied to the Hopx−/− mice the genes inhibited by Wnt
are no longer turned off and the downregulated genes
are more specific to genes specifically activated by
HOPX, instead of being a mixture of genes activated by
HOPX and inhibited by Wnt. In addition, it is not sur-
prising to see a higher enrichment upon Wnt inhibition,
because canonical Wnt signaling has been implicated
in the regulation of the stromal activity of mesenchy-
mal stem cells (MSCs) [104, 105]. Additional file 22:
Figure S9D shows the enrichment p value and the

fold enrichment of the stroma/mesenchymal module
genes that are downregulated in Wnt-inhibited Hopx−/−

mice for varying fold change of expression of the down-
regulated genes (x-axis).
These results suggest that the genes in the tumor-

associated stroma/mesenchymal module which are down-
regulated in both Hopx−/− mice and Wnt-inhibited Hopx
−/− mice are good candidates as downstream targets of
HOPX. Figure 7d shows those 32 potential targets of
HOPX. The purple-colored genes are the potential targets
that are downregulated in Hopx−/−mice and their expres-
sion does not change significantly (|FC change| ≤0.55)
upon Wnt inhibition. On the other hand, the red-colored
genes are the potential targets of HOPX which are down-
regulated in Hopx−/−mice and they are downregulated fur-
ther upon Wnt inhibition (|FC change| ≤ 0.93). It is highly

a

b

c

d

Fig. 7 a Fisher’s combined p values for survival (y-axis) are shown for the top 300 genes (x-axis) which achieve the most significant survival
association in the pan-cancer survival analysis. Module 5 genes are shown in red and module 6 genes are shown in blue. b Fluorescent staining
of ovarian tumors from sub-optimally debulked and optimally debulked patients. Each row is a single patient. HOPX is localized to the stroma
and does not overlap with E Cadherin positive cancer cells. HOPX does however overlap with CD73, a mesenchymal stem cell marker (c) Left: Ex-
pansile growth pattern of high-grade serous carcinoma associated with optimal resectability and low HOPX expression from the TCGA ovarian cancer
study. Note high percentage of carcinoma (red arrow) and low percentage of stroma (black arrow). Hematoxylin and Eosin (H&E), 100X. Right: Infiltrative
growth pattern of high-grade serous carcinoma associated with low resectability and high HOPX expression from the TCGA ovarian cancer study. Note
high percentage of stroma (black arrows) compared with carcinoma (red arrows). H&E, 100X. d A total of 32 genes that are potential targets of HOPX
are shown. The purple-colored genes are the potential targets whose expression does not depend on Wnt signaling and the red-colored genes are the
potential targets which are downregulated in Hopx−/− mice and further down upon Wnt inhibition in Hopx−/− mice. It is highly likely that the expres-
sion of the red-colored genes is driven by both HOPX and Wnt signaling pathway
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likely that the expression of the red-colored genes in
Fig. 7d are driven by both HOPX and Wnt signaling path-
way. We note that HOPX is, therefore, a potential driver
for SNAI2, which is involved in EMT [106] and AEBP1,
which is a stromal adipocyte enhancer-binding protein.

HOPX is a molecular marker of aggressive tumor stroma
To further disentangle the molecular underpinnings of
the tumor-associated stroma/mesenchymal module, we
stained tumor sections with antibodies against HOPX.
We co-stained with E cadherin, a tumor epithelial cell
marker. Patient samples were selected based on patient
survival and optimal debulking (see “Methods” for de-
tails). As shown in Fig. 7b, there is no overlap between
HOPX and E cadherin. Given localization outside of epi-
thelial regions, we tested if there was overlap with stro-
mal tissue. To do so, we co-stained with CD73, a known
MSC marker, as MSCs play an important role in the
generation of cancer-associated fibroblasts and stroma
[107]. Combining these results with corresponding
tumor sections with H&E staining indicate that HOPX
and CD73 are uniquely localized to the tumor stroma.
Representative images depicting HOPX, CD73 and
HOPX, E cadherin staining for additional samples are
shown in Additional file 22: Figures S9A and S9B.
It is not surprising that HOPX potentially marks

MSCs. Several recent studies have shown HOPX to be
associated with other stem cell populations and to play a
role in their hierarchy and, more importantly, mainten-
ance of a stem-cell like state through integration of
canonical Wnt and Bmp signaling [102, 108, 109]. None-
theless, these results indicate HOPX as a putative novel
marker for tumor-associated MSCs. In the patients with
poor tumor resectability and prognosis, CD73 and
HOPX expression is riddled throughout the tumor tissue
(Fig. 7b). A typical patient with optimal resectability and
low HOPX expression is shown on the left in Fig. 7c,
whereas a patient with low resectability and high HOPX
expression is shown on the right. As can be seen, the tu-
mors with strong evidence of HOPX have very distinct
histopathology from those without. This aggressive stro-
mal tumor phenotype provides evidence that patients
with poorly resectable tumors have higher levels of
stroma that cannot be disentangled from the tumor tis-
sue itself. This suggests one histopathological mechan-
ism for why some tumors are harder to remove from the
surrounding stromal tissue. Additionally, the HOPX-
CD73 staining indicates that the presence of tumor-
associated MSC populations are highly informative of
the development of an aggressive stromal phenotype.

Discussion
We propose the INSPIRE framework for learning a LDR
of multiple gene expression datasets. INSPIRE infers a

conserved set of modules and their dependencies across
multiple molecular datasets (e.g. gene expression data-
sets) that contain different sets of genes with a small
overlap. We show that INSPIRE outperforms alternative
approaches in both synthetically generated datasets and
gene expression datasets from ovarian cancer patients.
When we applied INSPIRE to nine expression datasets
from ovarian cancer studies, comprising 1498 patient
samples, we identified the stroma/mesenchymal module
highly associated with percent stroma and patient sur-
vival in the TCGA samples. Our follow-up analysis on
this module identifies the HOPX gene, which we experi-
mentally validated to be expressed in MSCs. HOPX is an
unusual HOX protein that does not contain a DNA-
binding domain and has been implicated in multiple
aspects of cardiac and skeletal muscle development
through recruitment of histone deacetylases [96–98].
HOPX has recently emerged as a marker of numerous
stem cell types [102, 108, 109]. Our results indicate that
MSCs are yet another stem cell population marked by
HOPX. It has been shown that in response to inflamma-
tory cytokines, MSCs release a myriad of growth factors
including FGF, EGF, PDGF, and VEGF, which promote
fibroblasts and endothelial cell differentiation and
growth [110]. The tumor MSCs are known contributors
to tumor-associated stroma via differentiation to cancer-
associated fibroblasts (CAFs) [107] and may also pro-
mote metastasis [111]. HOPX could play an important
role in this process by acting as a driver, given that ex-
pression data from Hopx knockout mice reveals that
many genes in the tumor-associated stroma/mesenchymal
module are downstream of HOPX. Given the importance
of HOPX in maintaining a stem cell like state [102], it is
suggestive that HOPX expression in the cancer-associated
stroma may be maintaining the cancer-associated stroma
niche and could be an attractive target for further func-
tional validation and therapeutic intervention, e.g. if loss
of HOPX expression in the tumor stroma leads to differ-
entiation of the cancer-associated MSCs.
INSPIRE is a general computational framework and

can be applied to various diseases and different types of
molecular data. For example, such as we applied it to in-
tegrate mRNA expression datasets from different stud-
ies, we can apply it to integrate proteomic data from
multiple studies. A future work is to extend INSPIRE
such that it can integrate different types of molecular
data such as transcriptomic, proteomic, epigenomic, and
metabolomics data in the same model. In this manu-
script, we apply INSPIRE to integrate microarray data.
Since RNA-sequencing (RNA-seq) has been emerging as
an important platform for gene expression data profiling,
one may want to combine microarray data and RNA-seq
data using INSPIRE. We recommend applying the voom
normalization method [112] to read counts when RNA-
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seq data are used as input. The voom method estimates
the mean-variance relationship of the log-counts, gener-
ates a precision weight for each observation, and enters
these into the limma (Linear Models for Microarray and
RNA-Seq Data) empirical Bayes analysis pipeline. This
makes the distributions of the read count data more like
a normal distribution and will make it possible to com-
bine array data with RNA-seq data using INSPIRE. The
authors have shown that the voom normalization
method has improved statistical properties when apply-
ing correlation or linear modeling, which are assump-
tions in most of the methods being applied to the
processed microarray data [112].
INSPIRE provides a great, effective starting point to

learn complex dependencies between genes, because we
can learn a gene-level conditional dependence network
by using for example the graphical lasso [54] algorithm
within each module. There are several other potential
next steps to improve technically on the proposed
INSPIRE framework. One of those is to extend INSPIRE
to the case where the latent network is not perfectly
conserved across the datasets. We could allow for struc-
tured differences characterized by a small subset of
modules while we encourage the latent network esti-
mates to be quite similar to each other across datasets.
This could be appropriate in many problems where dif-
ferent datasets involve biologically meaningful differ-
ences. Another technical improvement is to extend
INSPIRE to the setting in which there are no overlap-
ping genes across datasets. For example, one dataset
measures the mRNA expression levels of genes and the
other dataset measures the protein levels. In this case,
we will need to develop a novel method for discovering
the correspondences between variables/modules across
datasets. Finally, we could exploit the INSPIRE module
network information inferred by INSPIRE for imputing
the missing variable values in the datasets.

Conclusions
In this work, we demonstrate thorough multiple analyses
that modules identified by INSPIRE are more biologic-
ally coherent across a wide battery of tests of biological
significance, including MSigDB pathway enrichment,
ChEA TF regulatory networks, and enrichment for
known OV CNV tumor drivers. Importantly, the INSPIRE
latent variables can be used to predict disease phenotypes
or clinical outcome, identify patient subtypes, and when
integrated with multiple data modalities, resolve the im-
portance of a specific gene expression module for under-
standing the mesenchymal subtype in ovarian cancer.
Furthermore, when integrated with functional studies of
Hopx in mice along with immunohistochemistry on mul-
tiple patient samples, our analysis suggests an important
role for the HOPX-associated module in maintaining a

population of tumor associated MSCs in patients with
aggressive stromal components to their tumors.
The effective joint learning strategy of the INSPIRE

algorithm makes it possible to integrate datasets con-
taining different sets of genes into a single network
framework, which was impossible in the existing net-
work inference approaches. This component of INSPIRE
should greatly increase the applicability of LDR learning
algorithms to genomics problems where the sample size
provided by a single dataset is not large enough to learn
a robust set of modules and module dependencies. In
addition, inferring a network structure among pathways
from high-dimensional molecular data is an important
and open problem in biology, but is hampered by the
need for very large sample sizes. INSPIRE would in-
crease the applicability of network analysis by leveraging
existing data and eliminate the cost of regenerating data
from the same samples using different platforms.

Additional files

Additional file 1: Table S1. The nine ovarian cancer gene expression
datasets we used in the third set of experiments (biological application).
(DOC 32 kb)

Additional file 2: Figure S1. A The synthetic data for the three
generated simulation settings are illustrated. Rows represent genes and
columns represent samples. In each setting, different amount of genes
overlap between datasets (60 %, 80 %, and 100 %, respectively, from top
to bottom). B Adapted learning ways for the alternative methods as
explained in Table 1 are illustrated (“—1,” “Inter—,” and “Imp—,”
respectively, from top to bottom). The first illustration corresponds to “–1”
which performs standard learning from a single dataset. The second
illustration corresponds to “Inter–” which learns the features using the
overlapping genes and map data-specific genes to the learned features.
The third illustration corresponds to “Imp–” which imputes the missing
values and learns the features using the imputed data matrix. (PDF 292 kb)

Additional file 3: Figure S2. A Runtimes (in hours on the y-axis) of
INSPIRE and five state-of-the-art methods that learn a network of
modules or genes from a single dataset is compared for varying
gene counts (p = 300, p = 1500, and p = 3000 as shown on the x-axis)
where the imputed data are used for the methods that are unable make
use of multiple datasets (all except INSPIRE). p = 3000 cannot be shown for
ImpSLFA since it is unable to run for the cases where the module count (k)
exceeds the sample size. B The trend lines from a quadratic fit are added to
show the estimated runtimes (in hours on the y-axis) for bigger p and
genome-wide data (on the x-axis). (PDF 50 kb)

Additional file 4: Figure S3. ROC curve of the supervised models for
resectability prediction trained in TCGA and tested in Tothill data.
Different combinations of POSTN and the INSPIRE features corresponding
to modules 5 and 6 are used for training each model. The clinical
covariates age and stage are not included in the models. AUC of each
model is shown in the legend. (PDF 139 kb)

Additional file 5: Figure S4. A For k = 91 (left) and k = 182 (right), the
best − log10p from the functional enrichment of the modules learned by
an INSPIRE extension that assigns each gene to more than one modules
(on the x-axis) are compared to the best − log10p from the functional
enrichment of the modules learned by the proposed INSPIRE approach
(on the y-axis). Each dot corresponds to a KEGG, Reactome, or BioCarta
GeneSet and only the GeneSets with a Bonferroni corrected Fisher’s exact
test p <0.05 in at least one of the compared two methods are shown on
each plot. Two different versions of the INSPIRE extension was used in
comparison; the one which assigns each gene to top three modules with
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highest potential to contain that gene (top) and the one which assigns
each gene to top five modules (bottom). For both INSPIRE and alternative
approach, the results from multiple runs are shown on each plot. B For
k = 91 (left) and k = 182 (right), the best− log10p from the ChEA enrichment
of the modules learned by the INSPIRE extension (on the x-axis) are
compared to the best− log10p from the ChEA enrichment of the modules
learned by INSPIRE (on the y-axis). Each dot is for a group of genes
composed of a TF and its targets, and only the TFs with a Bonferroni
corrected Fisher’s exact test p <0.05 in at least one of the compared two
methods are shown on each plot. Two different versions of the INSPIRE
extension was used in comparison; the one which assigns each gene to top
three modules with highest potential to contain that gene (top) and the
one which assigns each gene to top five modules (bottom). For both
INSPIRE and alternative approach, the results from multiple runs are shown
on each plot. (PDF 467 kb)

Additional file 6: Table S2. The two ovarian cancer gene expression
datasets we used in the second set of experiments. (DOC 27 kb)

Additional file 7: Figure S5. A For k = 182, the best − log10p from the
functional enrichment of the modules learned by each of the six
competing methods (on the x-axis) are compared to the best − log10p
from the functional enrichment of the modules learned by INSPIRE
(on the y-axis). Each dot corresponds to a KEGG, Reactome, or BioCarta
GeneSet and only the GeneSets with a Bonferroni corrected Fisher’s exact
test p <0.05 in at least one of the compared two methods are shown on
each plot. For MGL variants and INSPIRE, the results from multiple runs
are shown on each plot. We only considered the GeneSets that show
sufficiently different levels of significance, i.e. | log10p(i) − log10p(m)| ≥ δ,
where “i” means INSPIRE and “m” means the alternative method. δ = 6
here and the results were consistent for varying δ. B For k = 182, the
best − log10p from the ChEA enrichment of the modules learned by each
of the six competing methods (on the x-axis) are compared to the
best − log10p from the ChEA enrichment of the modules learned by
INSPIRE (on the y-axis). Each dot is for a group of genes composed
of a TF and its targets and only the TFs with a Bonferroni corrected
Fisher’s exact test p <0.05 in at least one of the compared two methods are
shown on each plot. For MGL variants and INSPIRE, the results from multiple
runs are shown on each plot. We only considered the TFs that show
sufficiently different levels of significance, i.e. | log10p(i) − log10p(m)|≥ δ,
where “i” means INSPIRE and “m” means the alternative method. We set δ
= 3 here and the results were consistent for varying δ. Blue dots represent
the TFs which are contained by the INSPIRE module which was significantly
enriched for the target genes of that TF; red dots represent the TFs which
are contained by an INSPIRE module different than the INSPIRE module that
was significantly enriched for the target genes of that TF. (PDF 738 kb)

Additional file 8: Table S3. The properties of the modules learned by
INSPIRE. Column A: ID of the module. Column B: The number of the
neighbor modules in the learned module network. Column C: IDs of the
neighbor modules. Column D: The number of genes the module contains.
Column E: The names of the genes the module contains. Column F: The
number of MSigDB C2 categories for which the module is significantly
enriched (Bonferroni-corrected p <0.05) based on a Fisher’s exact test.
Column G: The MSigDB C2 categories for which the module is significantly
enriched and the corresponding Bonferroni-corrected − log10p values. The
enriched categories are ordered from most significant to least significant.
Columns H–L: The p value from the Pearson’s correlation of the feature
corresponding to the module with six phenotypes: percent stroma
(column H), percent tumor (column I), vessel formation and abundance
(column J), stroma type (column K), invasion pattern (column L), residual
tumor (column M), and survival (column N). As in Fig. 5a, we highlight
modules 5, 6, 53, 54, 60, 78, and 81 that are significantly correlated with
at least three of the six phenotypes in red. We also highlight module 30
since it is the only module that has a significant correlation with the
vessel formation phenotype. (XLSX 258 kb)

Additional file 9: Table S4. The manually examined five histologic
phenotypes for randomly selected 98 TCGA ovarian cancer patients with
their TCGA patient IDs listed in Column A. The histologic phenotypes
considered include percent stroma (Column B), percent tumor (Column C),
vessel formation and abundance (Column D), stroma type (Column E), and
invasion pattern (Column F). (XLSX 12 kb)

Additional file 10: Figure S6. A − log10p from the KEGG, Reactome, or
BioCarta GeneSet enrichment (left) and from the TF binding enrichment
(right) is compared for five negatively correlated module pairs with the
biggest absolute correlation in the nine-dataset experiment. Each one of
the two negatively correlated modules is shown on one of the x-axis or
y-axis, and each dot corresponds to a KEGG, Reactome, or BioCarta
GeneSet (left) or a group of genes composed of a TF and its targets
(right). B − log10p from the KEGG, Reactome, or BioCarta GeneSet
enrichment (top) and from the TF binding enrichment (bottom) is
compared for module 5 (on the x-axis) and 6 (on the y-axis). Each
dot corresponds to a KEGG, Reactome, or BioCarta GeneSet (left) or a
group of genes composed of a TF and its targets (right). (PDF 194 kb)

Additional file 11: Table S5. For five the most negatively correlated
modules, the values of − log10p from the pathway enrichment test
(KEGG, Reactome, and BioCarta) (top) and from the TF binding
enrichment test (bottom) are compared. For each of the five
negatively correlated module pairs, we show five pathways and TFs
that have the largest difference in the value of − log10p between the
two modules. (XLSX 10 kb)

Additional file 12: Table S6. The − log10p from the pathway (KEGG,
Reactome, and BioCarta) enrichment test (top) and from the TF binding
enrichment test (bottom) are compared between modules 5 and 6. We
show the five pathways or TFs that have the largest difference in the
value of − log10p between the two modules. (DOC 48 kb)

Additional file 13: Table S7. For module 5, module 6, and a hypothetical
module containing all genes in modules 5 and 6, the prediction accuracy is
compared in six prediction tasks via CV tests. The best performance for each
prediction task is highlighted in green. (DOC 31 kb)

Additional file 14: Table S8. We remove 20 %, 40 %, 60 %, and 80 %
of the genes in each module whose expression levels are least
significantly associated with the respective phenotype and regenerate
latent variables from the rest of the genes in the modules. For each of
those settings, the prediction performance is compared in six prediction
tasks via CV tests. The best performance(s) for each prediction task is
highlighted in green. (DOC 33 kb)

Additional file 15: Table S9. The assignment of the patients from
TCGA ovarian cancer study [2] into four subtypes based on the INSPIRE
latent variables. (XLSX 16 kb)

Additional file 16: Figure S7. A For three different Pearson’s
correlation p value thresholds (10–2,10–4, 10–6, respectively, from top
to bottom), the number of genes whose CNV levels are significantly
associated with the learned ovarian cancer subtypes are shown for
three methods: (1) the subtypes learned by a method that uses mutation
profiles for the network-based stratification (NBS) [60] method (green); (2)
the subtypes inferred from TCGA study [23] (blue); and (3) INSPIRE with vary-
ing sparsity tuning parameters (orange or red). Each bar for INSPIRE repre-
sents a setting with a different module count (k) and module network
sparsity parameter (λ). The red bar for INSPIRE corresponds to the set-
ting on which our biological analysis is based. B (1) For each of the
INSPIRE subtypes, the percent stroma (blue bar) and the percent tumor
(red bar) averaged over the patients in the subtype are shown; (2) for
each of the INSPIRE subtypes, the percentage of the patients in the
subtype with fibrous stroma (blue bar) and desmoplastic stroma (red
bar) are shown; (3) for each of the INSPIRE subtypes, the percentage
of the
patients in the subtype with infiltrative invasion pattern (blue bar) and
expansile invasion pattern (red bar) are shown; (4) for each of the
INSPIRE subtypes, the percentage of the patients in the subtype with
minimal vessels (blue bar) and moderate or abundant vessels (red bar)
are shown. (PDF 379 kb)

Additional file 17: INSPIRE-SupplementaryInformation. Supplementary
notes. (DOC 94 kb)

Additional file 18: Table S10. The enrichment of the marker modules
that were selected by the Significance Analysis of Microarrays (SAM)
procedure to be significantly differentially expressed in one of the four
INSPIRE subtypes with MSigDB C5 categories of genes. Column A: ID of
the module. Column B: The enriched MSigDB C5 category and − log10p
of the enrichment based on Fisher’s exact test. (XLSX 21 kb)
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Additional file 19: Table S11. The confusion matrix representing the
overlap between the INSPIRE subtypes and the subtypes revealed by the
TCGA ovarian cancer study [23]. (DOC 99 kb)

Additional file 20: Figure S8. The interactions among the modules
that show significant correlations with the important phenotypes in the
TCGA ovarian cancer data, as shown by red bars in Fig. 5a. The edges
are shown by black lines. Also, as a recap of Fig. 5a for those specific
modules, the significant associations of each module with six important
phenotypes in ovarian cancer are shown by dotted blue lines and the
associations that are the most significant among all modules are shown
by solid blue lines. The details for modules 5 and 6, which achieve top
hits for a total of four phenotypes, are given as well. (PDF 248 kb)

Additional file 21: Table S12. The six gene expression datasets we
used in our pan-cancer survival analysis. (DOC 30 kb)

Additional file 22: Figure S9. A, B Additional fluorescent images of
ovarian tumors from sub-optimally debulked and optimally debulked pa-
tients. Each row is a patient. As in Fig. 6b, HOPX is localized to the stroma
and does not overlap with E Cadherin positive cancer cells. HOPX does
however overlap with CD73, a MSC marker. C The functional enrichment
p value (i) and the fold enrichment (ii) of module 5 genes for the
genes downregulated in Hopx-null mice for different thresholds of
fold-change in expression. The corresponding fold-change threshold
is displayed next to each dot on the curves. The x-axes represent the
number of downregulated genes in Hopx-null mice whose expression
fold-change passes the fold-change threshold displayed next to the
corresponding value on the curve. D The functional enrichment p
value (i) and the fold enrichment (ii) of module 5 genes for the genes
downregulated in Hopx-null mice upon inhibition of Wnt signaling for
different thresholds of fold-change in expression. The corresponding
fold-change threshold is displayed next to each dot on the curves. The
x-axes represent the number of downregulated genes in Hopx-null mice
upon Wnt inhibition whose expression fold-change passes the fold-
change threshold displayed next to the corresponding value on the
curve. (PDF 1484 kb)
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