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Abstract

Background: Alterations in genetic and epigenetic landscapes are known to contribute to the development of
different types of cancer. However, the mechanistic links between transcription factors and the epigenome which
coordinate the deregulation of gene networks during cell transformation are largely unknown.

Methods: We used an isogenic model of stepwise tumorigenic transformation of human primary cells to monitor
the progressive deregulation of gene networks upon immortalization and oncogene-induced transformation. We
applied a systems biology approach by combining transcriptome and epigenome data for each step during
transformation and integrated transcription factor—target gene associations in order to reconstruct the gene
regulatory networks that are at the basis of the transformation process.

Results: We identified 142 transcription factors and 24 chromatin remodelers/modifiers (CRMs) which are
preferentially associated with specific co-expression pathways that originate from deregulated gene programming
during tumorigenesis. These transcription factors are involved in the regulation of divers processes, including cell
differentiation, the immune response, and the establishment/modification of the epigenome. Unexpectedly, the
analysis of chromatin state dynamics revealed patterns that distinguish groups of genes which are not only co-
regulated but also functionally related. Decortication of transcription factor targets enabled us to define potential
key regulators of cell transformation which are engaged in RNA metabolism and chromatin remodeling.

Conclusions: We reconstructed gene regulatory networks that reveal the alterations occurring during human

cellular tumorigenesis. Using these networks we predicted and validated several transcription factors as key players
for the establishment of tumorigenic traits of transformed cells. Our study suggests a direct implication of CRMs in
oncogene-induced tumorigenesis and identifies new CRMs involved in this process. This is the first comprehensive
view of the gene regulatory network that is altered during the process of stepwise human cellular tumorigenesis in

a virtually isogenic system.

Background

During the past decade great progress has been made in
identifying landscapes of genetic alterations which act at
different gene regulatory levels and lead to the develop-
ment of numerous cancer phenotypes. While much is
known about altered signaling, recent studies have
shown that the epigenomes of cancer cells can also dra-
matically deviate from those of the corresponding
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normal cells. However, little is known about the global
deregulation of the transcriptome and epigenetic land-
scapes, as well as their crosstalk during the multistep
process of cell transformation.

The deregulatory processes that ultimately turn a nor-
mal cell into a tumor cell are conceptually well under-
stood and have been described as “hallmarks of cancer”
[1]. At the same time, the sequencing of cancer genomes
provided an encyclopedia of somatic mutations, reveal-
ing the difficulty of working with primary human cancer
cells that carry a small number of “driver” and a high
number of variable “passenger” mutations [2]. To reduce
this complexity and ensure cell-to-cell comparability, a
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stepwise human cellular transformation model [3] was
chosen for the current study. In this model primary
human cells (BJ) were first immortalized and pre-
transformed into BJEL cells by the introduction of
hTERT (the catalytic subunit of telomerase) and the
large T and small t-antigen of the SV40 early region. The
full transformation into bona fide tumor cells was
achieved by overexpression of the c-MYC oncogene
(Fig. 1a). The experimental advantage of this system is
that normal, immortalized, and tumor cells are near
isogenic, as revealed by single-nucleotide polymorphism
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(SNP) analysis (Additional file 1: Figure S1), such that
data obtained for the pre-transformed and cancer cell can
be accurately compared with the normal counterpart.
Epigenetic modifications comprising both DNA methy-
lation and post-translational histone modifications or his-
tone variants have been shown to affect transcription
regulation. Different methylation patterns of lysine resi-
dues of histone H3 are widely used markers to describe
the active and silenced states of transcription at the corre-
sponding chromatin loci [4]. However, we know very little
about how this regulation is altered during the process of
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tumorigenesis. The current study is among the first to re-
veal the interplay between the epigenome and transcrip-
tome in a stepwise tumorigenesis system; it generates a
working basis for understanding how this interplay is
deregulated in a cellular model of human cancer. Here we
addressed the following questions: (i) how are the global
patterns of gene expression and chromatin organization
changed; (ii) how are these levels coordinated during
tumorigenesis; and (iii) what is the regulatory role of chro-
matin remodelers.

Methods

Cell culture

Primary human diploid BJ foreskin fibroblasts were ob-
tained from the American Type Culture Collection
(ATCC). Genetically defined cells of the BJ stepwise sys-
tem (B] and BJEL) were generously provided by Drs
Hahn and Weinberg. BJELM cells were produced previ-
ously in our laboratory by retroviral transfection of the
BJEL cell with pBabe-MYC-ER [5]. Cells were cultured
in monolayer conditions in Dulbecco’s modified Eagle’s
medium (DMEM)/M199 (4:1) (with 1 g/l glucose) sup-
plemented with 10 % heat inactivated fetal calf serum
(FCS) and gentamicin. The medium for BJEL was sup-
plemented with G-418 (400 pg/ul) and of hygromycin
(100 pg/pl). The medium for BJELM was supplemented
with G-418 (400 pg/pl), hygromycin (100 pg/pl) and
puromycin (0.5 pg/ml) and continuously grown with
10° M 4-hydroxytamoxyfen (4-OHT).

TRAIL-induced apoptosis measurement

Cells were seeded in 24-well plates and incubated until
the subconfluent state and incubated with recombinant
human tumor necrosis factor-related apoptosis-inducing
ligand (TRAIL; 200 ng/ml) for 8 h to monitor and meas-
ure apoptosis. The whole cell content, with floating
(apoptotic) and attached cells, was collected for apop-
tosis measurement. Cell pellets were permeabilized on
ice with 100 pg/ml digitonin and stained with APO2.7
(1:5; Beckman Coulter, USA). Apoptosis was measured
by fluorescence-activated cell sorting (FACS) and quanti-
fied by detection of 7A6 mitochondrial antigen.

Western blotting and antibodies

The whole cell protein extract was prepared using lysis
buffer comprising 0.5 M LSBD (0.5 M NaCl, 50 mM
Tris—-HCl pH 7.9, 20 % glycerol, 1 % NP-40, 1 mM
DTT), 0.3 % NP-40, 1x Protease Inhibitor Cocktail
(Roche), 1 mM NaF, 10 mM NazVO,, 1 mM PMSF,
0.125 pM okadaic acid. The protein concentration of
extracts was measured using a Protein Assay reagent
(Bio-Rad Laboratories). Proteins (50 pg) were separated
by SDS PAGE, transferred to nitrocellulose membranes,
and incubated with indicated antibodies. Antibodies
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used were as follows: c-MYC (N-262, rabbit; Santa Cruz,
sc-764), SV40 T (Pab 108, mouse; Santa Cruz, sc-148),
and B-actin (C-11, goat; Santa Cruz, sc-1615).

Double nickase transfection by CRISPR-Cas9
Transfections were performed using double nickase
plasmids using the manufacturer’s protocol and targeting
the following factors: DHX33 (sc-404530-NIC2), CHD?7
(sc-404017-NIC2), NOLC1 (sc-402907-NIC2), GTF3C4
(sc-411269-NIC2), PRMT3 (sc-406688-NIC2). Lipofecta-
min 2000 was used as the transfection reagent at a final
concentration of 50 nM.

In brief, cells were seeded in six-well plates and grown
for 24 h in antibiotic-free standard growth medium to
achieve 80 % confluence. Transfection was performed
with 1 pg of CRISPR plasmids followed by 24-h incuba-
tion. At the end of the incubation period the medium
was replaced with a standard medium with antibiotics.
Successfully transfected cells were sorted 24 h later by
FACS, using green fluorescent protein as a marker, and
used for other experiments.

Test for anchorage-independent colony formation on

soft agar

First, six-well plates were covered with “bottom agar”
consisting of 4 % FCS, DMEM, and 0.7 % agar. After-
wards, 1000 cells (per one replicate) were mixed with a
“top agarose” preparation consisting of DMEM 1x, 10 %
ECS, and 0.35 % agar. The final mix was put on the top
of the “bottom agar”. Cells were cultured with appropri-
ate controls in soft agar medium for 21 days. Cells were
fed once or twice per week with cell culture medium.
Following this incubation period, formed colonies were
stained with 0.5 ml of 0.005 % Crystal Violet for several
hours and the number of colonies formed per well was
quantified.

Real-time quantitative PCR

Total RNA was extracted from cells using the GenElute™
Mammalian Total RNA Miniprep kit (Sigma). The ex-
tracted RNA (2 pg) was used for reverse transcription
(AMV-RTase, Roche; Oligo(dT) New England Biolabs;
1 h incubation at 42 °C followed by 10 min at 94 °C).
Transcribed ¢cDNA was diluted tenfold and used for
real-time quantitative PCR (RT-qPCR; Roche instrument
LC480). For confirmation of introduced gene and
marker gene expression the following primers were used:
TERT, forward GCCTTCAAGAGCCACGTC, reverse
CCACGAACTGTCGCATGT; MYC, forward CACCAG
CAGCGACTCTG, reverse GATCCAGACTCTGACCT
TTTGC; CCND2, forward GGACATCCAACCCTAC
ATG, reverse CGCACTTCTGTTCCTCACAG; THBSI,
forward CAATGCCACAGTTCCTGATG, reverse TGG
AGACCAGCCATCGTC; CHD7, forward CACCTGAA
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GCATCACTGTAACAA, reverse TCACTTCTTGTCTT
AGGTAGTACAGCA; DHX33, forward TGGTGAAAG
CTGCACAGAAG, reverse CCATCGTAGCTGACATC
ACAA; NOLCI, forward ATAAGTTCGCCAAAGCGA
CA; reverse CTAAGAGGGAAGAGGCATTGG; PRMT3,
forward AGGATGAGGACGATGCAGAT, reverse TTCT
TCAGCAGATGTGAATAACCT; GTF3(C4, forward TTG
CTCCATGACAGCATTG; reverse GGGGCTTTGCAG
TAACCTCT.

To assess relative gene expression, all qPCR measure-
ments were normalized relative to the constitutively
expressed GAPDH mRNA levels assessed with the fol-
lowing primers: GAPDH, forward CGACCACTTTGT
CAAGCTCA,; reverse AGGGGTCTACATGGCAACTG.

Transcriptomics

Transcriptome analysis was performed using an Affyme-
trix Gene 1.0 ST Array in two biological replicates for
each cell line, providing 1 pg of extracted RNA for li-
brary production. For comparing BJ, BJEL, and BJELM
cells’ generated transcriptomes, we normalized all raw
CEL files with the Affymetrix software Expression
Console version 1.3.1 to calculate probe-set signal inten-
sities using RMA algorithms with default settings. High
reproducibility between the corresponding biological
replicates was evaluated by calculating the Pearson cor-
relation coefficient and skewness parameter between
replicates and between BJEL and BJELM relative to BJ
(Additional file 2: Figure S2).

To identify differentially expressed genes (DEGs), we
compared BJEL versus BJ and BJELM versus BJ (in bio-
logical replicates). Thus, to identify confident DEGs, we
used a modified z-test [6] for measurements coming
from independent normal populations with unequal var-
iances; this method aims to specifically address the ques-
tion of differential expression in tests involving two
samples (BJ versus BJEL or BJ versus BJELM) in which
the experiments were performed in repeats. Finally, the
probability of having a t-statistic value by chance was
calculated and a threshold (significance level of 0.05)
was applied.

Inferring transcription factors involved in deregulated
gene expression during cell transformation

For the selection of transcription factors (TFs) associated
with particular co-expression pathways we used the
CellNet database of TF-target gene (TG) associations.
We first selected TFs that are associated with >10 % of
DEGs that constitute a given co-expression pathway.
Then we selected TFs with promoter-associated RNA
polymerase II (RNA Pol II), which gave rise to 142 TFs.
Finally, we assessed the relevance of these TFs in distinct
co-expression pathways using a hypergeometric distribu-
tion test with subsequent hierarchical clustering (Fig. 2).
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Chromatin immunoprecipitation assays

BJ, BJEL, and BJELM cells were fixed with 1 % para-
formaldehyde (Electron Microscopy Sciences) for 10 min
at room temperature. Chromatin immunoprecipitation
(ChIP) assays were performed according to the following
conditions: chromatin sonication and immunoprecipita-
tion in lysis buffer (50 mM Tris—HCl pH 8, 140 mM
NaCl, 1 mM EDTA, 1 % Triton, 0.1 % Na-deoxycholate)
complemented with protease inhibitor cocktail (Roche
11873580001); two washes with lysis buffer; two washes
with lysis buffer containing 500 mM NaCl; two washes
with washing buffer (10 mM Tris—HCI pH 8, 250 mM
LiCl, 0.5 % NP-40, 1 mM EDTA, 0.5 % Na-deoxycholate);
two washes with TE buffer; elution at 65 °C; 15 min
at 65 °C in elution buffer (50 mM Tris—HCl pH 8,
10 mM EDTA, 1 % SDS).

RNA Pol II (Santa Cruz sc-9001 H-224), H3K27me3
(Millipore 07-449), H3K4me3 (Abcam 8580), H3K9ac
(Abcam 4441), and H3K27ac (Abcam 4729) antibodies
were purchased from their corresponding commercial
suppliers. RNA Pol II ChIP assays were performed
with 3 x10° cells, while histone modification marks
were evaluated with 1x10° cells. All ChIP assays
were validated using positive and negative controls.
Specifically, enrichment performance was assessed at
promoter regions of genes SRSF6 and NEKI (for
H3K4me3, H3K9ac, H3K27ac, RNA Pol II), NEUROGI
and MB (for H3K27me3 validation), and DPPI0 as a
cold region, using the following primers: SRSF6, for-
ward CGTTCGACAACCAGCCCTT, reverse GGCCC
GACTCACCCATTTT; NEKI1, forward CGTTACCGC
CTCTCCAACTT, reverse CTTACCCTACCCTGGCC
TCT; NEUROGI, forward ACAGATAGAAAGGCGC
TCAGA, reverse CGCAACTGGCACAGAGTAAC; MB,
forward GGCTCACTGGGTGTCCTG, reverse AAG
GTATAAAAACGCCCTTGG; DPPI0, forward GTTT
CCAATTTCATCCATGTCC, reverse CACATCAAAC
TGGTGGGTGA.

ChIP validation assays were performed by RT-qPCR
(Roche instrument LC480 light cycler) using a QuantiTect
kit (Qiagen).

Massive parallel sequencing

qPCR-qualified ChIP assays were quantified (Qubit
dsDNA HS assay kit, Invitrogen); 3-10 ng of the
ChIP material was used for preparing Illumina se-
quencing libraries following a multiplexing approach
(NEXTflexTM ChIP-seq Bioo Scientific, reference
5143-02). Prepared sequencing libraries were se-
quenced on an Illumina HiSeq2000 instrument. Regu-
lar Illumina pipelines were used for image processing
and base calling. Sequence files were then aligned to
the human genome assembly using default parameters
(hg19; Bowtie).
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Fig. 2 Association of key transcription factors (TFs) with co-expression pathways. Using the CellNet database of TF-TG associations revealed 142
TFs that were associated with more than 10 % of DEGs. a Expression ratios (relative to BJ) of TFs associated with particular co-expression pathways.

b Heat map of hierarchical clustering illustrates the prevalence of corresponding TFs in the regulation of particular co-expression pathways (the color
bar corresponds to the — log10(hypergeometric distribution value); red corresponds to high-confidence TF-TG associations, blue to low-confidence
associations). ¢ Biological process-based Gene Ontology analysis of clustered groups of TFs associated with particular co-expression pathways (p < 0.05)

C
Gene Ontology Prototypic Genes
Regulation of nitrogen SP110
compound metabolic process|| ZNF876P|
STAT1
Immune system process DDX58
Regulation of cell differentiation|| SMAD7
Negative regulation of RNA MYOCD
metabolic processes WNT5A
Tissue development TBX5
System development PRDM1
Telomere maintenance PCNA
RNA metabolic process UHRF1
Chromatin remodeling HELLS
HDAC2

Hypergeometric probability (-log10)
]
0 40

Log10(expression ratio value)

—— |
-0.5 0 0.5

Quality control of sequence data

Sequence-aligned files were then qualified for enrich-
ment performance using the NGS-QC Generator tool
[7] (http://www.ngs-qc.org/). This methodology provides
enrichment quality descriptors in a scale ranging from
triple A (best) to triple D (worst). Based on this quanti-
tative method, all ChIP-seq datasets described in this
study had at least a triple B quality grade to ensure that
only high quality datasets were used for downstream in-
tegrative analyses.

Enrichment pattern detection and normalization of
ChIP-seq intensity profiles

Relevant binding sites in all ChIP-Seq (except the
H3K27me3 dataset, which was analyzed with the SICER
tool [8]) datasets were identified with MeDiChI-Seq [9].
To enable a comparison of ChIP-seq profiles of the same
target between different cell lines, a normalization proced-
ure over profile global amplitudes prior to further analyses
was applied using a Quintile-based approach. Briefly, we
calculate read count intensity for a non-overlapping win-
dow of 100 bp across the genome and then normalize

these intensities using quantile normalization from the
“limma” package. Quantile normalization is a ranking-
based approach where calculated read count intensities
are sorted and ranked for each sample. The corresponding
ranked values between samples are adjusted into a mean
value. The impact of normalization was assessed using
MA plots before and after normalization. First, we
normalize all datasets associated with a given target;
then normalized target datasets are brought to the
same scale via a z-score normalization. A detailed de-
scription of this quantile normalization procedure,
which is applicable for a variety of ChIP-seq and
enrichment-related next-generation sequencing data-
sets and is available as part of Epimetheus, a user-
friendly dedicated tool, is going to be presented in a
further publication (in preparation).

Integration of transcriptome and epigenome data

To integrate transcriptome data with chromatin state
dynamics, we performed unsupervised clustering of
ChIP signals for each target that was assessed in the
current study within a 1-kb window of each transcription
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start site (TSS) for all DEGs, comprising a total of 7616
transcripts. Histone marks or RNA Pol II binding were
tagged as “present” at the TSS of the DEG if it satisfied the
following criteria: (i) the peak was detected—the sum-
mit of the detected peak (by MeDiChlI-Seq [9] or by
SICER [8]) was 500 bp up- or downstream of the TSS
of the DEG; (ii) the peak was of high intensity after nor-
malization—following quantile and Z normalization the
Z-score of a given peak was >1.65 (Pys); (iii) the peak was
robust—the signal had to be robust with less than 15 %
dispersion after the subsampling procedure (NGS-QC
tool, http://www.ngs-qc.org/). Afterwards, unsupervised
clustering of all the possible combinations of histone
marks and RNA Pol II at the TSS of DEGs was performed.
A heatmap of chromatin state dynamics represents
the median enrichment for each cluster of genes
within +1.5 kb of a TSS of a DEG at each stage of
the stepwise transformation model (Fig. 3a, d). At the
next step we assessed whether dynamic patterns of
chromatin states are associated with particular groups
of co-expressed genes (Fig. 3b, d).

Gene regulatory network reconstruction

To provide a comparative view of the signal transduction
events governing the cell transformation in the stepwise
model system, we reconstructed a gene regulatory net-
work (GRN) by combining several layers of information
from three different databases: (i) the MiMI, which con-
tains protein—protein, DNA-protein, and other inter-
action data, querying the interactions only between
DEGs [10]; (ii) CellNet, a collection of directed TF-TG
interactions [11, 12], where the TFs listed in the CellNet
Gene Regulatory Network (GRN) collection were associ-
ated with genes differentially expressed in the BJ/BJEL/
BJELM model system; (iii) several publically available
MYC-targeted ChIP-seq datasets (see “Methods”). The
integration of DEG-related interactions in the Cytoscape
platform (version 2.8.3) resulted in a dense cell type-
specific GRN composed of 1265 nodes and 5327 edges
which were then organized according to the trans-
formation steps and gene co-expression pathways.
Furthermore, a two-step GRN reduction process was
applied by using a double screening system in the
Hubba tool [13] to define the highly connected nodes
(“hubs”). In addition, a second layer of topological
metrics reduction was applied by scoring for “bottle-
neck” nodes since previous reports demonstrated that,
in addition to highly connected nodes (“hubs”), bottleneck
nodes (defined as those interconnecting highly con-
nected nodes or hubs in the system) might represent
highly relevant components in the system [14]. In
particular, bottleneck nodes in signal transduction systems
might correspond to essential entities required for the
flow of the signal transduction driving the phenomenon
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of interest. Definition of hubs and bottlenecks was
performed using topological metrics, such as MNC
(Maximum Neighborhood Component), DMNC (Density
of Maximum Neighborhood Component) and Bottleneck
[13]. This reduction process generated GRNs composed
of 253 nodes and 2657 edges. The organization of the
reduced GRN and its visualization were performed with
the Cytoscape package Cerebral [15]. As part of the
visualization options in Cytoscape, the differential ex-
pression levels in BJEL and BJELM cells per node were
presented in a heat map format such that the transcrip-
tome dynamic changes could be visualized. The changes
of node color for groups ii, iii, iv, and v in Fig. 4a and
4b indicate the change in expression of co-regulated
genes during the transformation process.

Analysis of publically available ChIP-seq datasets used for
targeting MYC enrichment

The following ChIP-seq datasets from the Gene
Expression Omnibus (GEO) were used to identify MYC
enrichment sites: GSM1088663 (HeLa cells), GSM896988
and GSM1000576 (BJ cells), and GSM748557 (NHEK
cells). The raw sequencing files were aligned with Bowtie
using default parameters and processed with MACS for
peak annotation. A threshold of - log10(p value) >300 was
applied to select peaks with high confidence.

Results
Transcriptome dynamics during the cell transformation
process
Following validation of the stepwise tumorigenesis
model, which included the determination of TRAIL
(tumor necrosis factor-related apoptosis-inducing ligand)
sensitivity [16] (Additional file 2: Figure S2), we assessed
the global gene expression in all three cell lines and the
ratio of expression levels of immortalized to normal cells
(BJEL/BJ) and cancer relative to normal cells (BJELM/B]).
Genes exhibiting >2- and <0.5-fold expression changes
with a significance level of p<0.05 (modified t-test,
“Methods”) were considered up- and down-regulated,
respectively, and classified as differentially expressed genes
(DEGs). The resulting 1700 DEGs were subdivided into
seven groups of co-regulated genes according to their ex-
pression characteristics during the subsequent steps of
transformation (Fig. 1; Additional file 2: Figure S2a, b).
Nearly half of the genes (47 %) showed an altered expres-
sion level at the pre-transformation step and 65 % of genes
changed expression level after full transformation by
c-MYC expression. Interestingly, about 12 % of these
genes changed expression after both immortalization
and c-MYC-mediated transformation.

Gene Ontology (GO) analysis revealed that each path-
way of DEGs is enriched for distinct GO terms (Fig. 1b;
Additional file 3: Figure S3a). Notably, those enriched in
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(See figure on previous page.)

and BJELM cells

Fig. 3 Chromatin state transitions in promoters of differentially expressed genes during the cell transformation process and integration of
epigenetic data (chromatin state clusters) with transcriptome dynamics (co-expression pathways). a Hierarchical clustering of transcripts based on
enrichment of histone modifications and RNA Pol Il at the promoter of DEGs. The color represents the median enrichment for each cluster of
genes within £1.5 kb of a TSS of a DEG. b Heat map illustrating the prevalence of chromatin state clusters in particular co-expression paths.
The color represents Pearson residuals. Yellow indicates significant enrichment of transcripts in the corresponding expression pathways with
a corresponding chromatin state cluster. ¢ Biological process-based Gene Ontology analysis of chromatin state clusters, regrouped by hierarchical
clustering (hierarchical tree in a), and associated with the same co-expression pathway. d Three examples of chromatin state clusters illustrating the
evolution of the epigenetic landscape in the stepwise transformation process (black arrows in a). Panel 1 correspond to the changes from the bivalent
chromatin state in BJ cells to the active state in BJEL and BJELM cells. In the same manner, panel 2 corresponds to the changes from the bivalent
chromatin state in BJ and BJEL cells to the active state in BJELM cells. Finally, panel 3 corresponds to the chromatin state cluster that characterizes the
group of downregulated genes in BJEL and BJELM cells; the promoters of these genes are in the active state in BJ cells but lose all marks in the BJEL

the group of genes that are down-regulated in trans-
formed cells (pathway v) are associated with regulation
of cell motion, cell communication, and regulation of
cell differentiation, as well as suppression of angio-
genesis, while genes that are progressively induced
from the normal to the tumorigenic stage (pathway iv)
are significantly enriched for the GO terms ribosome
biogenesis and noncoding RNA and rRNA processing.
Disease-related GO analysis using DAVID [17, 18]
showed significant enrichment of DEGs characteristic
for several types of cancers, among them breast,
bladder, stomach, and lung cancer (Additional file 3:
Figure S3b).

Together these results show that the stepwise trans-
formation model shares multiple similarities with differ-
ent types of human cancers and is a convenient and
reliable cell model for tumorigenesis research. Import-
antly, several of the deregulated gene expression path-
ways affect phenomena that are well-described as
hallmarks of cancer, such as the activation of angiogen-
esis, the activation of invasion and metastasis, and regu-
lation of cell cycling [1].

Multiple chromatin remodelers/modulators are
dysregulated during cell transformation

To monitor changes of the epigenome during the
stepwise BJ transformation process, we assessed first
whether chromatin remodelers/modulators (CRMs)
were deregulated. Indeed, we detected 24 differentially
expressed CRMs, belonging to all three classes of writers,
erasers and readers, and other chromatin remodelers
(Additional file 4: Figure S4; Additional file 5: Table S1).
Fourteen of these changed their expression at the last step
of transformation as a consequence of the overexpression
of c-MYC; interestingly, 12 genes among these were up-
regulated and are members of such functional groups as
methyltransferases, acetyltransferases, demethylases, and
related CRMs, indicating that MYC-induced transform-
ation leads to dramatic changes in the epigenome involv-
ing CRMs.

The majority of CRMs defined in the current study are
deregulated in different types of cancer, such as ovarian,
bladder, lung, and many other types (see Additional
file 5: Table S1 and Additional file 6 for references).
For several CRMs, such as PRMT5 and MINA, the
interaction with MYC was reported to be an essential
step in cancer development (Additional file 5: Table S1,
references 31, 32, 36-39 (listed in Additional file 6)).
These observations suggest that CRMs are involved in
regulation of tumorigenesis and mediate at least some of
the transforming activities of overexpressed ¢-MYC. We
would like to emphasize, moreover, that our present ap-
proach has identified new candidate CRMs, some of
which are putative MYC targets that have not been previ-
ously recognized, two “writers” (GTF3C4 and PRMTS3),
three “readers” (LBR, AKAP1, and MBD5), and the PcG
group member MTF2. LBR and MTF2 are upregulated
during the first step of transformation, while the other
CRMs are deregulated upon c-MYC overexpression.
Inspection of the publically available MYC cistrome
of HeLa cells [19] revealed the presence of high-
confidence (see “Methods”) MYC-binding sites in the
PRMT3 and GTF3C4 promoters. Considering that these
two genes are induced after MYC overexpression,
GTF3C4 and PRMT3 are most probably direct targets of
MYC in the BJ system.

We conclude from these results that: (i) LBR and
MTF2, both involved in transcription repression
(Additional file 5: Table S1), are potential regulators
of the immortalization process and/or cooperate with
the oncogene in the second step; and (ii) PRMTS3,
GTF3C4, AKAP1, MBD5, and GTF3C4 are new
players in the tumorigenesis process which mediate
the MYC-dependent effect on chromatin remodeling.

In silico prediction of key TFs involved in deregulated
gene expression during cell transformation

To reconstruct the alterations in the activity of TFs dur-
ing the steps that lead to cell transformation in the BJ
model, we integrated information on TF-TG associations
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Fig. 4 Gene regulatory network (GRN) of the BJ stepwise transformation system. a GRN of immortalized BJEL cells. b GRN of transformed BJELM
cells. Chromatin remodelers/modulators are represented as diamond-shaped nodes, while other genes, highly connected “hubs”, and “bottlenecks”
are represented as circles. The differential expression levels at immortalization and during the transformation steps were colored per node in a
heat map format such that the dynamic changes could be visualized. Dashed lines separate the GRN into seven segments corresponding to
seven (i to vii) gene co-expression pathways. Functionally related genes are circled under an enriched GO term (DAVID, p < 0.05)

described in the CellNet database [11, 20]. This led to the
identification of 142 TFs (Additional file 7: Table S2), of
which 42 are differentially expressed during stepwise
tumorigenesis (Fig. 2a). Sorting these TFs for their associ-
ation with particular co-expression pathways led to a clus-
tering of groups of TFs that were preferentially associated
with one or more co-expression pathways (Fig. 2b). Ac-
cording to the hierarchical clustering of TF-specific asso-
ciation with co-expression pathways, we could distinguish
at least three subgroups: TFs that are preferentially associ-
ated with pathways i and iv, with pathways ii and iii, or
with pathways v and vii. Importantly, these distinct groups
of co-expression pathway-associated TFs are apparently
involved in regulating specific cell biological functions, as
revealed by the corresponding GO analysis (Fig. 2c). Spe-
cifically, TFs associated with pathways v and vii are
involved in regulation of cell differentiation and tissue de-
velopment, while co-expression pathway i-associated TFs
are primarily involved in telomere maintenance and chro-
matin remodeling.

Notably, co-expression pathway ii comprises genes in-
volved in immune and defense responses; STAT1 is
among the TFs that are specifically associated with these
co-regulated genes. That STATI is upregulated in pre-
transformed cells may reflect the established role of this
factor in cell autonomous anti-tumor immune response
[21] (Fig. 1; Additional file 3: Figure S3; pathway ii). In
addition, STAT1 is known to negatively regulate angio-
genesis, tumorigenicity, and metastasis of tumor cells
[22] and suppresses mouse mammary gland tumorigen-
esis [23]. Downregulation of STAT1 by c-MYC overex-
pression observed in the current study is also detected
in Burkitt’s lymphoma [24], supporting the concept that
immune escape of tumor cells could be promoted by
activation of a cellular oncogene [24].

Several functionally related (GO term 45595: regula-
tion of cell differentiation) TFs, such as MYOCD,
TWIST1, TBX5, and SMAD?7, which are known to be
involved in cancer development and/or sustainment
[25-27], are specifically associated regulators of genes
that are down-regulated along the cell transformation
process in our model system (pathways v, vi, and vii). In
particular, myocardin (MYOCD), a transcriptional co-
factor for smooth muscle cell-specific genes that has
been shown to block human mesenchymal transform-
ation [28], was down-regulated in pre-transformed cells.

Thus, decreased MYOCD expression may contribute to
an increased proliferative potential of pre-transformed
and transformed cells. In addition, it is likely to contrib-
ute to the concomitant loss of fibroblast identity and
gain of stem cell identity as revealed by cell identity ana-
lysis using CellNet [11] (Additional file 8: Figure S5).

Another functionally related group of TFs that are
associated with co-expression pathways i and iv are
involved in chromatin remodeling. Among these are
UHRF1, HELLS, and HDAC?2, all of which are known to
affect the tumorigenesis process [29, 30]. Remarkably,
RUVBL2/TIP49, a member of the same group that is
upregulated in BJELM cells and is known to interact
with ¢-MYC, has been reported to regulate B-catenin-
mediated neoplastic transformation [31].

Altogether, the observed associations reveal that the
stepwise tumorigenesis model recapitulates aberrations
of several regulatory systems, ranging from cell autono-
mous immune responses to chromatin remodeling and
cell (de)differentiation, all of which are features previ-
ously reported to be altered in human cancer.

Cell transformation significantly impacts on chromatin
state dynamics

Given the known deregulation of cancer epigenomes
due to mis-expression or mutation of epigenetic factors
[32, 33], the de-regulation of CRMs in the BJ system,
and the fact that ¢-MYC recruits a variety of epigenetic
factors and chromatin remodelers to its targets [34, 35],
we performed a genome-wide analysis of chromatin state
transitions for all three steps of the cell transformation.
We used chromatin immunoprecipitation (ChIP) coupled
with massive parallel sequencing (ChIP-seq) for several
functionally interpretable histone modifications, including
H3K27me3 (inactive promoters), H3K4me3, H3K%ac
(active promoters), and H3K27ac (active promoters and
enhancers). We also determined the chromatin associ-
ation of RNA Pol II, which is generally enriched at the
transcriptional start sites (TSSs) of active promoters.

In view of the dynamic nature of gene expression ob-
served during the tumorigenesis process, we focused on
elucidating histone modification patterns at TSSs. To
identify gene promoters with a similar pattern, we per-
formed unsupervised clustering of all the possible com-
binations of histone marks and RNA Pol II-normalized
ChIP signals (see “Methods”; Additional file 9: Figure S6)
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within 1.5 kb up- and downstream of each TSS for all
DEGs, comprising a total of 7616 transcripts (Additional
file 10). We detected 26 different combinations of histone
marks at DEG promoters and classified them into seven
chromatin states (Additional file 11: Figure S7): (a) active
(RNA Pol II and at least two histone marks of active tran-
scription are present); (b) weakly active (RNA Pol II and
only one histone mark of active transcription); (c)
transcription-prone (at least two histone marks of active
transcription but no RNA Pol II); (d) bivalent (any of
states a to ¢ but accompanied by repressive H3K27me3
marks); (e) ambiguous (only one histone mark or RNA
Pol II alone); (f) empty (no signal); and (g) repressed (only
H3K27me3). Further, the dynamic changes in chromatin
states at the promoters of DEGs through the stepwise
transformation process and all possible combinations of
chromatin state evolution (chromatin state transitions)
were assessed, giving rise to 135 chromatin state clusters,
and integrated with the transcriptome changes along the
transformation process (Fig. 3).

The majority of clusters revealed highly dynamic chro-
matin patterns, suggesting that chromatin state regula-
tion of DEGs is tightly linked to, and possibly controls
to a significant degree, DEG expression and, thus, the
acquisition of the pre-transformed and transformed cell
states. The differential regulation of CRMs indicates a
tight linkage between, and mutual regulation of, DEGs
(including TFs) and CRMs. Interestingly, genes sharing
the same co-expression pathway could be further subdi-
vided according to their chromatin state transitions into
groups of genes with related functionalities. For ex-
ample, co-expression pathway iv comprises genes
overexpressed at the second step of transformation
associated with chromatin patterns, such as gain in
activating H3K4me3 and H3K9ac marks in the ab-
sence of repressive H3K27me3; this group of genes is
involved in rRNA and noncoding RNA processing and
chromatin organization. In contrast, a second group
sharing the same co-expression pathway, which loses
H3K27me3 with a concomitant gain of H3K4me3 and
H3K9ac marks, is predominantly linked to organic acid
transport (Fig. 3c). Thus, groups of functionally related
genes can be distinguished at the chromatin level despite
their similar expression patterns.

Reconstruction of GRNs

To provide a comprehensive view of the signal transduc-
tion events governing the cell transformation in the
stepwise human cellular tumorigenesis model, we recon-
structed a GRN integrating gene interaction data from
publically available databases with gene expression data
from our experiments (see “Methods” for details). This
integration process resulted in the establishment of a
comprehensive GRN of 1265 nodes and 5327 edges.

Page 11 of 16

To explore the functionally most relevant aspects of
the reconstructed network, we reduced its complexity by
applying topological criteria to identify highly connected
(“hubs”) and key connector nodes (“bottlenecks”) that
are relevant to the investigated signal transduction pro-
cesses [14]. The reduced network of 253 nodes and 2657
edges (Fig. 4a, b) shows the connectivity between the
major nodes, which are possibly functionally involved in
the cell transformation process. The network is divided
into two parts, showing key regulatory nodes differen-
tially expressed on the first step of transformation in the
upper part, while those changing expression levels after
¢-MYC overexpression are depicted in the lower part.
Dashed lines in Fig. 4 split the network landscape into
seven sections to place co-expressed genes in proximity
to each other. The flow of signal goes from the BJEL
state (upper part) through the MYC to other TFs and
TGs in the BJELM state (lower part). In addition, func-
tionally related highly connected nodes are grouped to-
gether in the context of the corresponding enriched GO
terms to reveal subprograms, such as regulation of cell
adhesion, cell communication, or RNA processing, all of
which are hallmarks of cell transformation. In the centre
of the network we placed the bottleneck genes, which
are supposed to direct the flow of signaling information
from the functionally related hubs to the target genes
(not shown in the reduced network). The reconstructed
gene network pointed towards bottleneck genes that are
key factors, like the RNA biogenesis-linked NOLCI,
DHX33, and CHD?7, as potential key regulators of cell
transformation and direct downstream targets of c-MYC,
based on the ChIP-seq analysis of publically available
data sets (“Methods”, Additional file 12). These genes are
pivotal for RNA metabolic processes [36—38]. Interest-
ingly, previous studies have shown a correlation between
the upregulation of these genes and tumor progression
and, indeed, marked increases in rRNA synthesis is a gen-
eral attribute of many types of cancers [39, 40], sug-
gesting that changes in rRNA synthesis may be a
prerequisite alteration in cell transformation. DHX33
has been reported to be an important mediator of
rRNA synthesis and cell growth [41]. Furthermore, fol-
lowing the fact that rDNA transcription is greatly in-
fluenced by the RAS, MYC, and NPM oncogenes,
DHX33 upregulation was shown to be required for en-
hanced transcription during RAS activation and for
RAS-initiated tumor progression [37]. The observa-
tions that DHX33 is overexpressed in our system fol-
lowing ¢MYC overexpression and has a MYC binding
site in its promoter (GSM1088663) suggest that DHX33 is
a mediator of MYC signaling. Other key factors that
became apparent from these GRNs include TSHZ3,
previously reported to correspond to a novel potential
tumor suppressor [42], and LHX9, which is aberrantly
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methylated and downregulated in malignant gliomas
of childhood [43]. Thus, the present reconstructed
GRN is a rich source of (novel) regulators of tumori-
genesis that could be further studied in suitable (in vivo)
systems.

Validation of predicted factors

With the aim of evaluating the biological relevance of
the reconstructed GRNs, we assessed the role of the TFs
DHX33, NOLC1, and CHD7 as well as that of the CRMs
PRMT3 and GTF3C4, all of which act “downstream” of
MYC, in cell transformation. Specifically, we used the
CRISPR-Cas9 technology to inactivate these genes in
BJELM cells and evaluated the consequence of this per-
turbation on the tumorigenic properties that had been
acquired in these cells by the overexpression of c-MYC
relative to the isogenic non-tumorigenic BJEL precursor
cells. For this we used a well-established tumorigenesis
assay, namely the acquisition of anchorage-independent
growth on soft agar; this assay is widely used as a pre-
dictor of tumorigenicity and is considered one of the
most stringent assays for studying the malignant trans-
formation of cells [44]. In fact, as illustrated in Fig. 5a,
normal BJ and immortalized BJEL cells are not able to
grow in an anchorage-independent manner, while the
overexpression of c-MYC conferred onto BJELM cancer
cells the ability to proliferate under these conditions
(Fig. 5a, b). Importantly, CRISPR-Cas9-mediated individ-
ual inactivation of all tested “downstream” factors of
Myc (CHD7, DHX33, GTF3C4, NOLC1, and PRMT3
genes) resulted in a drastic drop in the ability of BJELM
cells to form colonies on soft agar, while BJELM cells, as
well as mock-transfected BJELM cells (“siGLO”), showed
efficient colony formation in soft agar (Fig. 5a). Together
our data reveal that each of these factors plays a critical
role in mediating key oncogenic effects of MYC overex-
pression in this isogenic model system.
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Discussion

Isogenic cellular tumorigenesis models are versatile tools

for systems biology studies

Any comparative analysis of normal and tumor cells
with the aim of identifying the mutational and deregula-
tory events that cause cancer is seriously limited, and
may even be impossible, if using established cell lines or
patent-matched normal and tumor samples. Established
cell lines have acquired extensive genetic alterations to
support continuous growth in culture (“immortalization”)
and to escape senescence and/or other failsafe programs
[45]. In addition, cancer cells are genetically unstable and
carry many genetic abnormalities accumulated due to
various conditions, including infections during tissue cul-
ture. When using normal and tumor tissue sections from
the same patient, the tumor history is generally unknown
and both genome instability and clonal heterogeneity/
selection limit any comparative data analysis. Yet, it is
important to understand the deregulation which oc-
curs at multiple gene regulatory levels when a cell
converts into a tumor cell by a minimal set of genetic
alterations. Moreover, cancer genomics provides us
with sets of “driver” and “passenger” genes, whose
implication, alone and in combination, in the tumori-
genic process is only known for a very small subset.
Thus, there is a need for a model system which can
be engineered and recapitulates the basic features of a
tumor cell. Such a system was originally developed by
Hahn and Weinberg [3] and has been used in this study
to decipher the regulatory levels and gene regulatory net-
works (GRNs) that are altered by “simple” engineered
tumorigenesis of primary human cells.

This system is virtually isogenic, thus granting the pos-
sibility to dissect GRNs reflecting system deregulation
due to the introduction of defined genetic elements. In
the present system the overexpressed catalytic subunit of
hTERT protects BJ cells from telomere erosion [3, 46].
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In addition, large T and small t-antigen expressed from
the SV40 early region inactivate the tumor suppressors
RB and P53, thus allowing the cells to evade antipro-
liferative and apoptotic signals [47]. Finally, overex-
pression of ¢-MYC, often upregulated through either
a stabilization mutation or gene amplification in a wide
variety of human cancers, transforms the cells into bona
fide cancer cells [48]. Though such a system may seem re-
duced and simple compared with tumorigenesis in the
animal, it nevertheless enabled us to decipher the under-
lying deregulated gene networks, including alterations of
TF activities, and to identify transformation-associated de-
regulation of epigenome modifiers. As could be expected,
GO analysis of DEGs yielded GO terms indicative of cell
transformation. Indeed, a marked increase in rRNA syn-
thesis is a general attribute of many cancers [40, 41]
and rRNA transcription was shown to be stimulated
by ¢-MYC [49]. This correlates with our observations
showing MYC-mediated upregulation of genes func-
tionally related to RNA biogenesis, such as DHX33,
HEATRI, NOLCI, and others (Fig. 4a, b, RNA processing
functional group). Notably, disease-oriented functional an-
notation clustering showed that DEGs in the stepwise BJ
transformation system comprise genes that are implicated
in different types of cancer, such as breast or bladder can-
cer. In addition, we used cBioPortal [50, 51] to see if genes
identified in this study can be correlated with publically
available datasets of human cancers (cBioPortal is an ex-
ploratory analysis tool that, among others, hosts TCGA
(The Cancer Genome Atlas) datasets ready for network
analysis). From the cross-cancer alteration analysis under
the simultaneous query of MYC, NOLC1, DHX33, and
CHD?7, a large number of cancers possess alterations in
these genes (Additional file 13: Figure S8). In particular
breast cancer, neuroendocrine prostate cancer, and ovar-
ian serous cystadenocarcinoma have the highest rate of
alteration of these genes in tumor samples (62.1, 53.3, and
45 % of cases, respectively), suggesting that our model re-
capitulates some traits of real tumor samples. This indi-
cates that the B] model can be used to determine key gene
regulatory principles of the transformation process which
can also be observed in “real” human tumors. Moreover,
the availability of CRISPR technologies facilitates the en-
gineering of such isogenic systems from primary human
cells to model the process of tumorigenesis and assess the
contribution of (combinations of) aberrations by introduc-
tion of genetic elements which are found deregulated or
mutated in human tumors.

Deregulation of CRMs and the epigenome landscape in
tumorigenesis: mutual inter-relationship

Increasing evidence suggests that many epigenetic regu-
latory proteins are deregulated in cancer and that
histone mark patterns are globally changed within the
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cancer epigenome [32, 52]. Our observations support this
as a number of CRMs are differentially expressed during
cell transformation, including the classes of “writers” and
“erasers”. Most of them have been reported to play a role
in tumorigenesis and their expression patterns in trans-
formed BJELM cells are similar to those in several types of
cancer (Additional file 4: Figure S4; Additional file 5:
Table S1), indicating that the BJ stepwise transformation
system is capable of recapitulating the deregulation of mo-
lecular pathways seen in “real” cancer and possibly can
identify new regulators of tumorigenesis. In this respect,
we point out several CRMs that have not been previously
associated with tumorigenic cell transformation.

Deregulation of CRMs in the BJ model, which does
not suffer from genome instability, reveals the epigenetic
consequences of hTERT, SV-40 T and t antigen, and
MYC introduction and, thus, the mutual interconnection
between transcription factor deregulation and epigenome
alteration on the pathway towards tumorigenesis. This
would not be possible by comparing non-isogenic normal
and cancer cell lines, as genome instability of cancer cells
leads to merging of effects due to the introduction of
exogenous elements and those coming from genome aber-
rations already existing in the tumor cell line.

GRNs of tumorigenesis

Cellular phenotypes are determined by the temporal
regulation and dynamics of networks of co-regulated
genes. Thus, elucidating GRNSs is crucial for understand-
ing of normal and cancer cell functioning. Until today only
a few studies have addressed this issue—for example, the
elucidation of the P53 regulatory network [53] or the
analysis of locus expression signatures from retroviral
insertion-induced tumorigenesis [54]. To perform a sys-
tematic analysis of GRNs underlying tumorigenesis, we
used a novel combinatorial approach by (i) integrating
transcriptome data during transformation steps with chro-
matin state dynamics, (ii) complementing this with an
analysis of CRMs involved in this process, and (iii) infer-
ring key transformation-related TFs by using a database of
established TF-TG associations from multiple human lin-
eages. The reconstructed GRNs reveal a crosstalk between
the elements perturbing the normal system through TFs
and CRMs as “transformation mediators” to the executor
nodes, thus giving a comprehensive view of the molecular
chain of events. The present approach could be applied to
dissecting other processes, like cell differentiation or cell
fate reprogramming, and the decryption of cause-and-
consequence mechanistic links.

Conclusions

In the current study we reconstructed GRNs that are
altered during the process of stepwise human cellular
tumorigenesis, providing a rich source of (novel) regulators
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of tumorigenesis. Using the reconstructed network, we
predict and validate several transcription factors as being
key players in the establishment of tumorigenic traits of
transformed cells. Our data reveal the importance of CRMs
in oncogene-induced tumorigenesis and identify new
CRMs involved in this process.

Availability of data and materials

SNP arrays, Affymetrix microarrays and Illumina plat-
form ChIP-seq data sets supporting the results of this
article are available in the Gene Expression Omnibus re-
pository under the accession number GSE72533 (http://
www.ncbinlm.nih.gov/geo/query/acc.cgi?acc=GSE72533).

Additional files

Additional file 1: Figure S1. SNP analysis. a Statistics of changes in
single-nucleotide polymorphisms (SNP), loss of heterozygosity (LOH), and
copy number (CN) in the BJ stepwise transformation system in comparison
with a previously used MCF10A-derived breast cancer tumorigenesis system
(MCF10A, non-tumorigenic breast cell line; MCF10AT, premalignant breast
cell line generated by HRAS transformation of MCF10A; MCF10CA1a,
poorly-differentiated malignant breast cell line derived from a MCF10AT
xenograft). Note the nearly isogenic character of the BJ stepwise
transformation system and the high genetic divergence in the
MCF10A system. b Chromosome diagrams illustrating changes in
copy number in immortalized BJEL and transformed BJELM cells relative to
normal BJ cells. Red and blue triangles correspond to loss and gain in copy
number, respectively. (PDF 2.96 mb)

Additional file 2: Figure S2. Description and validation of the BJ
stepwise tumorigenesis system. a The expression pattern of co-regulated
genes based on comparative transcriptomics of primary, immortalized,
and transformed cells. b Statistics of changes in differentially expressed
genes during cell transformation. ¢ RT-gPCR validation of exogenous
(cMYC, TERT) and transformation-relevant (CCND2, THBST) gene expression.
d Western blot analysis of whole cell extracts of BJ, BJEL, and BJELM

cells confirms overexpression of T antigen and MYC-ER during the
immortalization and tumorigenic steps, respectively. e Validation of the
determination of TRAIL sensitivity during the transformation process.
TRAIL-induced apoptosis was observed specifically in BJELM cells, while
BJ and BJEL cells showed resistance to TRAIL treatment. f Reproducibility
between replicates evaluated by calculation of the Pearson correlation
coefficient. g Reproducibility between replicates evaluated by calculation of
the skewness parameter between BJEL and BJELM replicates relative to BJ
replicates. (PDF 2.95 mb)

Additional file 3: Figure S3. Gene Ontology (GO) analysis of differentially
expressed genes in the stepwise tumorigenesis system. a Functional
clustering by biological pathway using DAVID for each set of
co-regulated genes (pathways i to vii). b Disease-related GO (DAVID) of
differentially expressed genes. The x-axis (p value) is given as —log(p value).
lllustrated GO terms have p value <0.05. (PDF 2.96 mb)

Additional file 4: Figure S4. Gene expression levels of chromatin
remodelers/modulators (CRMs) differentially expressed in the stepwise
tumorigenesis system. CRMs are specified on the left together with the
corresponding co-expression pathways. The heatmap shows the ratio of
expression in BJEL or BJELM cells relative to the expression in BJ cells. The
corresponding color code is shown on the right. (PDF 2.95 mb)

Additional file 5: Table S1. Chromatin remodelers/modulators
differentially expressed during cell transformation. The table describes
their reported function and involvement in cancer and provides the
corresponding references (listed in Additional file 6). Abbreviations: BRD
bromodomain, CHD chromodomain, HAT histoneacetyltransferases, HMT
histonemethyltransferase, TDRD Tudor domain. (PDF 563 kb)

Additional file 6. Supplementary data references. (DOCX 21 kb)
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Additional file 7: Table S2. Transcription factors preferentially
associated with specific co-expression pathways and which originate
from deregulated gene programming during tumorigenesis. Some of
these TFs are differentially expressed as well and the co-expression
pathway they belong to is shown in the last column. (PDF 102 kb)

Additional file 8: Figure S5. Classification heatmap model showing the
loss of fibroblast identity by BJ fibroblasts during the transformation,
while gaining traits of embryonic stem cells. The analysis was performed
using the CellNet tool. The color key shows the similarity between the
training system and study samples. Yellow and black indicate high and
low levels of resemblance, respectively. b.r. biological replicate. (PDF 296 mb)

Additional file 9: Figure S6. A two-step normalization procedure
required for proper multiprofile comparison. a To account for technical
aspects like antibody efficiency and sequencing depth, we used Epimetheus,
a two-step normalization procedure in which (i) the raw count intensity in
ChIP-seq datasets produced with antibodies targeting the same factor are
corrected following a quantile normalization procedure; then (i) normalized
ChIP-seq profile read counts corresponding to a variety of factors are
brought to the same scale via a z-score normalization correction. b
The effect of the quantile normalization on H3K9ac datasets assessed
in all three cell lines of the stepwise transformation model. Notice
that BJELM cells display lower intensity levels of the H3K9ac mark in
the LBR promoter (blue arrow) relative to BJ and BJEL cells, while LBR
gene expression is upregulated in BJEL and BJELM cells; after quantile
correction, the levels in the BJELM dataset appears the same as in
the BJEL dataset, both higher than in the BJ dataset. Furthermore,
notice the higher background (region under the red brace) in the
raw profiles of the BJEL dataset (in comparison with BJ and BJELM),
which is brought to the same level in all three datasets after normalization.
(PDF 520 kb)

Additional file 10. Transcriptome data summary provided in Excel
format. (XLS 1293 kb)

Additional file 11: Figure S7. Chromatin state annotation.

a Statistical analysis of chromatin states (initial and combined) at the
TSSs of DEGs. b Chromatin state classification. ¢ Normalized ChIP
signal intensities at the TSSs +500 bp, ordered from first to 26th
chromatin state as in a in BJ cells. (PDF 2.95 mb)

Additional file 12. MYC target genes as determined by the analysis of
publically available ChIP-seq profiles and defined by the association of
the MACS peaks (p value threshold = —30) with the TSS of genes using a
10-kb distance as an association criterion. (XLS 199 kb)

Additional file 13: Figure S8. Cross-cancer alteration summary for
CHD7, DHX33, NOLC1, and MYC among 123 cancer types; 99 cancer types
that have alterations in these genes are displayed in the histogram.
In 49 types of cancer, alterations in these genes occur in more than
10 % of cases. In particular, breast cancer, neuroendocrine prostate
cancer, and ovarian serous cystadenocarcinoma have the highest rate
of amplification of these genes in tumor samples (55.2, 50.5, and

44.1 % of cases, respectively). (PDF 2990 kb)
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