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Abstract

Mass spectrometry- and nuclear magnetic resonance-based metabolomic studies comparing diseased versus
healthy individuals have shown that microbial metabolites are often the compounds most markedly altered in the
disease state. Recent studies suggest that several of these metabolites that derive from microbial transformation of
dietary components have significant effects on physiological processes such as gut and immune homeostasis,
energy metabolism, vascular function, and neurological behavior. Here, we review several of the most intriguing
diet-dependent metabolites that may impact host physiology and may therefore be appropriate targets for
therapeutic interventions, such as short-chain fatty acids, trimethylamine N-oxide, tryptophan and tyrosine
derivatives, and oxidized fatty acids. Such interventions will require modulating either bacterial species or the
bacterial biosynthetic enzymes required to produce these metabolites, so we briefly describe the current
understanding of the bacterial and enzymatic pathways involved in their biosynthesis and summarize their
molecular mechanisms of action. We then discuss in more detail the impact of these metabolites on health and
disease, and review current strategies to modulate levels of these metabolites to promote human health. We also
suggest future studies that are needed to realize the full therapeutic potential of targeting the gut microbiota.

Alterations in microbial transformation of dietary

components associate with disease

The symbiotic relationship between mammals and the
trillions of microbial cells that reside in their gastrointes-
tinal tracts relies on a complex molecular dialogue, with
microbial metabolites acting as major mediators of this
dialogue. Essential roles for several microbial metabolic
pathways in host physiology have been long established,
including in the production of vitamin K, the production
of water-soluble B vitamins including biotin, folates,
nicotinic acid, pyridoxine, riboflavin, cobalamin and
panthotenic acid, the degradation of dietary oxalates,
and modification of bile salts (reviewed in [1, 2]).
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However, intense interest in the gut microbiota over the
past decade has led to the discovery of many new areas
where bacterial transformation of dietary components
may play critical roles in host health and disease. This
increased understanding of diet—microbiota—host inter-
actions suggests significant opportunities to create new
therapeutic approaches, including selectively altering the
microbial production of molecules to promote human
health and prevent disease [3].

Elucidating target microbial metabolites that modulate
host physiology requires identifying the major metab-
olites (and their downstream co-metabolites formed
by the phase I/II xenobiotic metabolizing enzymes of
their host) that differ between healthy and diseased
individuals, and assessing the biological activities of
these metabolites. A series of landmark metabolomics
studies over the past decade have significantly advanced
our understanding by using mass spectrometry (MS) or
nuclear magnetic resonance (NMR) analysis to identify
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potentially important microbial metabolites that derive
from the gut microbes [4—10], that are enriched or
depleted in diseased individuals [11-30], or that can
be used to predict physiological response to foods or
other interventions [31, 32] (Table 1). These studies
have identified a number of metabolites that may play
important roles in human health and disease, including
short-chain fatty acids (SCFAs) and long-chain fatty acid
metabolites such as conjugated linoleic acid (CLA) and
10-hydroxy-cis-12-octadecenoate (HYA); trimethyla-
mine (TMA) and trimethylamine N-oxide (TMAO);
tryptophan metabolites such as indole, indole-3-
propionate (IPA) and indoxyl-sulfate (IndsS); and
tyrosine and phenylalanine metabolites such as hip-
puric acid, phenylacetylglycine, phenyl sulfate, para-
cresyl sulfate (PCS), phenylpropionylglycine, cinna-
moylglycine and equol sulfate. Many of the metabolites
identified by these studies result from the transformation
of specific dietary components by select species of
microbes that express the necessary enzymes to act
on these components. Thus, the variable presence of
microbes utilizing these diet-dependent metabolic
pathways may be key to understanding the variable
host response to specific dietary components and sus-
ceptibility to disease [32].

This review will focus on several key metabolites
formed by the gut microbiota from dietary components
that have been revealed recently to produce remarkable
effects on host physiology and that are currently being
targeted or have high potential to be targeted as treat-
ments for human disease. We will describe briefly the
microbial origin of these metabolites and the biological
actions of these metabolites on their host. We will then
discuss in more detail current and potential therapeutic
approaches to manipulate these metabolite levels and
broader areas of research that are needed to understand
the potential value of gut microbial metabolites.

Short-chain fatty acids

Biosynthesis and molecular mechanisms of action

SCFAs constitute the most abundant microbial metabol-
ite, reaching concentrations of 50-130 mM in the prox-
imal colon [33]. The biochemical pathways leading to
the formation of these SCFAs by saccharolytic microbes
are reviewed in [34]. Acetate, the most abundant SCFA,
is produced by many microbial species as acetyl coen-
zyme A (acetyl-CoA) and is central to many metabolic
pathways [35]. Propionate is synthesized predominantly
through the succinate pathway [36], while butyrate is
synthesized predominantly via butyryl-CoA:acetate CoA
transferase [37]. Because the production of SCFAs de-
pends on complex cross-feeding of substrates and dis-
posal of waste products such as hydrogen and carbon
dioxide gas among various species of the microbial
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community [34], there is not a simple linear relationship
between gut SCFA levels and individual dietary compo-
nents or bacterial strains. This is a key point when
considering therapeutic attempts to increase SCFAs, par-
ticularly because these other waste products produce
significant gastrointestinal distress for the host. Thus,
simply administering a single dietary component or
strain of bacteria may not have the intended effect on
SCFAs, and careful confirmation of alterations in SCFA
levels and other products are needed to interpret the re-
sults of such studies.

A number of molecular mechanisms of action have
been ascribed to acetate, propionate and butyrate that
may be relevant to their therapeutic potential to pro-
mote intestinal health, reduce inflammation, and inhibit
cancer (Table 2). All three SCFAs are ligands for G-
protein-coupled receptor 43 (GPR43; also known as
FFA2) and GPR41 (also known as FFA3), although they
range in potency [38, 39]. Butyrate is also a low-affinity
ligand for GPR109A (also known as hydroxycarboxylic
acid receptor) [40]. These three receptors are present
throughout the gastrointestinal tract, as well as on
immune cells and adipose tissues, and have been im-
plicated in the regulation of inflammation and cancer.
Additionally, both propionate and butyrate inhibit histone
deacetylase (HDAC) activity and thereby alter gene ex-
pression, which appears to suppress tumor formation and
inflammatory pathways in many tissues. In hepatocytes
and adipocytes, all three SCFAs appear to modulate per-
oxisome proliferator-activated receptor-y (PPAR-y) ex-
pression (by an unknown, indirect mechanism), which
leads to increased expression of uncoupling protein-2, re-
duced ATP levels, and activation of AMP kinase (AMPK)
[41]. Similarly, propionate modulates PPAR-y activity in
intestinal cells, one effect of which is to increase expres-
sion of epithelial Kruppel-like factor 4 [42], a tumor sup-
pressor transcription factor that may be important in
preventing colorectal cancer. Butyrate also inhibits the
NE-«B pathway (a prototypical proinflammatory signaling
pathway that expresses genes for cytokines, chemokines
and adhesion molecules) [43-47]. All three SCFAs are
used as energy substrates, with propionate serving as a
substrate for gluconeogenesis while acetate and butyrate
serve as substrates for fatty acid synthesis. These various
actions of SCFAs allow them to exert pluripotent ef-
fects that generally promote intestinal health, reduce
inflammation and inhibit cancer, and, as will be dis-
cussed below, a number of studies have investigated
the therapeutic potential of SCFAs or fermentable fi-
bers. The results of these studies have often been
equivocal, suggesting that a far better understanding of
the appropriate doses and the precise mechanisms by
which SCFAs act in various disease states is needed to
design more appropriate interventions.
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Table 1 Key microbial metabolomic studies of the past decade
Studies identifying major gut microbial metabolites
Aim of study Population Results Reference
Identify metabolites Conventional versus -Higher bile acid levels in gut of germ-free mice. [4]
modulated by gut germ-free C3H/He)J -Higher phosphocholine and glycine in liver of
microbiota in various mice germ-free mice.
tissue and fluids -Hippurate and 5-aminovalerate reduced in germ-free

animals.

-Higher levels of betaine, choline and myo-inositol

in kidney of germ-free mice.
Determine effect of Normal versus Vancomycin reduced urinary levels of hippurate, [5]
antibiotic treatment vancomycin-treated phenylacetylglycine, taurine, TMA and TMAO, and
on metabolome female NMRI mice increased urinary levels of a-ketoisovalerate, n-butyrate,

creatinine, guanidoacetic acid and glycine.

‘Vancomycin reduced fecal levels of uracil, amino acids,

SCFAs and urinary phenylacetylglycine and hippurate.
Identify metabolites Conventional versus -Metabolites highly enriched or only present in [6]

derived from the
gut microbiota

Identify serum
metabolites derived
from gut microbiota

Determine effect of

antibiotics on metabolite

production

Identify fecal and urinary
metabolites derived from

the gut microbiota

Compare metabolomes

of human versus
humanized and
conventionally
raised mice.

germ-free Swiss
Webster mice

Conventional versus
germ-free Swiss
Webster mice

Normal versus penicillin-
and streptomycin-treated
Han-Wistar rats

Normal versus imipenem
/cilastatin Wistar rats

Germ-free versus
humanized versus
conventional Swiss
Webstermice

conventional mice include indole derivatives
(such as indoxyl sulfate and IPA), phenyl/benzoate
derivatives. (hippurate, p-cresol), and conjugated fatty acids.

«Increased serum metabolites related to energy [7]
metabolism (pyruvic acid, citric acid, fumaric acid,
malic acid) in conventional compared to germ-free mice.

-Antibiotics reduced urinary excretions of hippurate, [8]
phenylpropionic acid, phenylacetylglycine and

indoxyl-sulfate, and elevated urinary excretions of

taurine, glycine, citrate, 2-oxoglutarate and fumarate.

-Antibiotics reduced fecal SCFA.

-Antibiotic treatment altered 202 urinary and 223 [9]
fecal metabolites.

‘Major classes reduced by antibiotics include SCFAs,
phenyl/benzoates (for example, p-hydroxyphenylacetate,
m-hydroxyphenylacetate, hydroxycinnamic acid,

phynylvalerate, p-aminobenzoate and hippurate), and
indole-containing substances (indoxy! sulfate, indole-acetate,
indole-carboxylate and indole-acetaldehyde), and urobilin.
Antibiotic treatment increased tryptophan and tryptamine

in feces.

-Metabolome of humanized mice was more similar to
metabolome of human donors than to metabolome of
conventional mice, with more differences in feces than
urine.

‘Humanized mice had higher fecal levels of tryptamine
and indoxyl glucuronide, and lower levels of trisaccharide,
creatine and creatinine than conventional mice.

Studies examining microbial metabolites enriched or depleted in disease states

Disease

Metabolic
disorders
and CVD

Aim of study

Identify metabolites
associated with fatty
liver disease

Identify metabolites
associated with obesity

|dentify urinary metabolites

associated with obesity

Identify metabolites
associated with obesity

Population

Disease-susceptible
(129S6) versus disease-
resistant (BALBc) mice

Fecal transplantation
from ob/ob, ob/+,
+/+ C57BL/J mice
to germ-free mice

Lean versus obese
Zucker rat

Healthy versus obese
insulin-resistant male
humans

Results

«Increased urinary dimethylamine, TMA, TMAQO, formate
and hippurate in 12956 mice on HFD.

-Decreased plasma phosphatidylcholine seen in 12956
mice likely due to microbial conversion to TMA.

-Recipients of fecal transplant reciprocate phenotype of
donor. Cecal levels of acetate and butyrate increased in
obese mice.

‘Obese mice have higher urinary creatinine,
TMAO, hippurate and acetate.

-Increased microbiota-derived hippurate acid,
trigonelline, 2-hydroxyisobutyrate and xanthine
was seen in the obese microbiota

Reference
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Table 1 Key microbial metabolomic studies of the past decade (Continued)

Page 4 of 18

Inflammatory
bowel disorders

CKD

|dentify metabolites
that predict CVD

Identify metabolites
elevated in mice
highly susceptible
to diet-induced
obesity.

|dentify urinary
metabolite associated
with human adiposity

Determine effects of
bariatric surgery on
metabolome

Determine effect of
prebiotics in maternal
diet on offspring
adiposity

Identify metabolites
associated with
Crohn's disease

Identify metabolites
associated with IBS

|dentify metabolites
specific to Crohn's
disease, ulcerative
colitis or pouchitis

Develop simplified

Human subjects with
CvD

C57J versus C57N
mice

Human subjects from
INTERMAP study
(n =2324)

Severely obese human
subjects undergoing
bariatric surgery

Female Sprague Dawley
rats fed high-fat/sucrose

diet with and without
10% oligofructose

Human twin pairs

Human subjects with
IBS versus healthy

Diseased versus healthy
human subjects

Human

metabolomics approach
to discriminate ulcerative
colitis from Crohn's disease

Determine effect of
resistant starch on the
gut metabolome in CKD

adenine-induced CKD
fed high-fiber versus
no additional fiber

Sprague Dawley rat with

‘Three metabolites of dietary phosphatidylcholine
(choline, TMAO, betaine) predict risk for CVD.
-Studies in mice confirmed critical role for

dietary choline and gut flora in TMAO
production and CVD.

-C57N more susceptible to diet-induced
obesity than C57).

«In cecum, C57N have decreased
taurine-conjugated bile acids, bile acid
sulfates, enterolactone and enterodiol;
altered arachidonate metabolites and
increased urobilins.

-In liver, C57N have increased
taurine-conjugated bile acids, fatty
acids and urobilins.

-Urinary metabolites associated with
increased BMI included N-acetyl
neuraminate, TMA, PCS, succinate,
citrate ethanolamine.

-Bariatric surgery reversed most
metabolites associated with obesity

such as increased aromatic and
branched-chain amino acids, pyruvate,
citrate, formate, methanol and isopropanol.

-Addition of 10% oligofructose to diet
normalizes body weight in diet-induced
obese dams and inhibited adiposity in offspring.

-Microbiota composition of offspring similar to dams.

-Diet-induced obese dams have increased SCFAs,
glycine, betaine, 2- and 3-hydroxybutyrate, cytidine,
o-phosphocholine, formate, acetone and reduced

levels or carnitine, methanol, amino acid, lactate and

O-phosphorylcholine-Subsequent addition of 10%

oligofructose reduced O-phosphorylcholine, acetone,

cytidine and 3-hydroxybutyrate, and increased
propionate, urea, myo-inositol, isobutyrate, alanine,
methionine, ornithine and proline.

«In feces, twins with Crohn’s disease have

increased fecal levels of hydroxyphenylacetylglycine,
tyrosine, tryptophan, glycocholate, fatty acids

and phenylalanine metabolites

-In feces, individuals with IBS have increased bile
acid and decreased branched-chain fatty acids.
Trends of increased taurine and cadaverine

in ulcerative colitis.

‘No change detected in SCFAs and amino acids.

‘Medium-chain fatty acids and some protein
fermentation metabolites decreased in Crohn’s
disease, ulcerative colitis and pouchitis.
Hexanoate inversely correlated with

Crohn's disease.

-Styrene positively correlated with ulcerative colitis.

-A single analytical platform based on reverse
phase UHPLG-Orbitrap HRMS provided sufficient
coverage to discriminate between ulcerative
colitis and Crohn's disease in fecal samples.

-High-fiber-resistant starch diet improved
kidney function and ameliorated CKD.
-High-fiber-resistant starch decreased urinary
indoxyl sulfate and p-cresol.
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Table 1 Key microbial metabolomic studies of the past decade (Continued)
C. difficile To determine effect C57BL/6 mice infected -Antibiotics decrease secondary bile acids, [24]
infections of antibiotics on C. with C. difficile given glucose, free fatty acids and dipeptides while
difficile infection antibiotics versus no primary bile acids and sugars increase.
antibiotics -Concluded that C. difficile exploits metabolites
such as taurocholate or carbon sources for
germination and growth.
To determine how C57BL/6 mice infected -Susceptibility to C. difficile occurred only after [25]
bile acids impact with C. difficile given antibiotic treatment, and was accompanied by
C. difficile antibiotics versus no a loss of secondary bile acids.
dynamics antibiotics -Physiological concentrations of secondary
bile acids inhibited C. difficile spore
germination and growth.
To analyze fecal Human subjects with +In feces, subjects with C. difficile have [26]
metabolome in C. difficile versus healthy  decreased fecal cholesterol and increased
C. difficile infection given antibiotics fecal coprostanol.
+63 microbes associated with increased coprostanol
levels identified.
Neurological or To identify a pattern Children with ASD -82 metabolites were altered between ASD [27]
behavior disorders  of metabolic versus healthy and controls.
perturbance in ASD controls «In ASD children, levels of amino acids (glycine,
serine, threonine, alanine, histidine, taurine) and
antioxidants such as carnosine were lower.
Determine if microbiota Maternal immune ‘Maternal immune activation treatment [28]
play a role in activation model altered 8 % of all serum metabolites detected,
development of ASD of ASD with EPS most increased.
-Administration of B. fragilis normalized
behavior and EPS levels.
Determine effects of C57BL/6N mice -Antibiotic treatment impaired novel object [29]
antibiotics on cognition given antibiotics recognition, but not spatial learning and memory.
versus no antibiotics -Antibiotic treatment reduced colon levels of
SCFAs, TMA, adenine and uracil.
-Antibiotic treatment increased plasma levels
of corticosterone and phospholipids, and
reduced plasma levels of lysophospholipid
and p-cresy! sulfate, TMAO, deoxycholate and
chenodeoxycholate.
-Antibiotic treatment altered brain-derived
neurotrophic factor, NMDA receptor subunit
2B, serotonin transporter and neuropeptide Y system.
Studies using metabolites as predictive biomarkers of physiological response to intervention
Aim of study Population Results Reference
To create a computational Obese human ‘The CASINO (community and systems-level [31]
platform that predicts subjects interactive optimization) toolbox was able
response to dietary to predict and quantitatively describe altered
intervention fecal and serum SFCA and amino acid levels
in response to diet intervention.
To develop a machine-learning Healthy human -High interpersonal variability in postprandial [32]

algorithm that predicts
postprandial glycemic

response

subjects

glycemic response-Microbial metabolites key
variables in algorithm that accurately predicts
personalized responses to real life meals

ASD autism spectrum disorder, BMI body mass index, CKD chronic kidney disease, CVD cardiovascular disease, EPS 4-ethylphenylsulfate, HFD high-fat diet, IBS
irritable bowel syndrome, IPA indole-3-propionate, PCS para-cresyl sulfate, SCFAs short-chain fatty acids, TMA trimethylamine, TMAO trimethylamine N-oxide

Effects on intestinal inflammation and colorectal cancer

A decrease in luminal SCFAs is associated with ulcera-
tive colitis and intestinal inflammation, which can be
ameliorated with dietary fiber or administration of
SCFAs [48-50]. Reduced barrier function promotes in-
testinal inflammation, and butyrate promotes barrier
function by inducing “physiological hypoxia” in intestinal
cells via HDAC inhibition [51], which thereby stabilizes

hypoxia inducible factor-la to regulate a number of
genes that improve epithelial barrier function [52]. Bu-
tyrate inhibition of HDAC also promotes intestinal im-
mune tolerance through regulating the function of
intestinal macrophages [53] and development of regula-
tory T cells through mechanisms that involve acetylation
of forkhead box P3 (FOXP3) [54, 55] and activation of
GPR43 [56]. Deletion of GPR43 exacerbates intestinal
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Table 2 Microbial metabolites: their synthesis, mechanisms of action, and effects on health and disease

(Co-) Metabolites

Microbial phyla/species

Molecular targets

Effects on health & disease

Butyrate
@)
Synthesized predominantly via

butyryl-CoA:acetate CoA
transferase pathway [37]

Propionate

(0]
\)j\OH
Synthesized predominantly via
succinate pathway [36]

Acetate

O

OH
Synthesized directly from acetyl-CoA
or from CO, via the Wood-Ljungdahl
pathway [34]

/ N \
Cleavage from choline via CutC &

CutD [108] and from L-carnitine via
YeaW & YeaX or CntA & CntB [111]

TMAO

Oxidized from TMA by FMO3 in liver [120]

Bacteriodes
Ruminococcaceae
Lachnospiraceae

Propionibacterium
Bacteroides
Negativicutes,
Selenomonas ruminantium,
Roseburia inulinivorans
Escherichia coli

Most anaerobic gut bacteria
studied produce acetate

Desulfovibrio
Proteus mirabilis
Ruminococcus
Akkermansia muciniphilia

Energy source for colonocytes
Inhibits HDAC [43, 53, 54, 102]
Activates GPR41 and GPR43 38, 39]
Activates GPRT109A [40]

Suppresses nuclear NF-kB activation
[40, 46, 47]

Modulates PPAR-y [59, 102]

Activates GPR41 [89] and
GPR43 [38, 39]

Upregulates GLP-1, PYY,
leptin [34]

Increases oxidative stress,
alters phospholipid
composition, induces
inflammation in the brain [179]

Energy substrate

Activates GPR43 [57, 58] and
GPR41 [38, 39]

Activates AMPK pathway [34]

TAARS [118]
Potentially others

Osmolyte [116]
Mechanisms remains unknown

Increased intestinal barrier
function [52, 59]

Anti-inflammatory [44, 46, 62, 103]
Anti-lipogenic [41]

Improves insulin sensitivity
[41, 102, 103]

Increases energy
expenditure [41, 102]

Anti-cancer [51, 61]

Anti-inflammatory [56]
Anti-cancer
Anti-lipogenic [41]
Improves insulin sensitivity [41]
Increases energy expenditure [41]
Increases satiety [104]

Associated with autistic spectrum
disorder [179]

Anti-inflammatory [57, 58]
Anti-lipogenic [41]
Improves insulin sensitivity [41]
Increases energy expenditure [41]

Reduces glycemia in diabetic
rodent models [34]

Protects against asthma [90]

Excessive levels lead to fish
malodor syndrome

Accelerates atherosclerosis
[15,112,115]

Contributes to kidney dysfunction
and chronic kidney disease [116]
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Table 2 Microbial metabolites: their synthesis, mechanisms of action, and effects on health and disease (Continued)

Indole

Iz /i

Synthesized from tryptophan via
tryptophanase

Indole sulfate
e o
\_o

0]
\\O

Iz /f\

Hepatic sulfonation from indole

Indole-3-aldehyde

OH

1

HN

Synthesized from tryptophan via
unidentified enzymes

PA

; O
o
T

HN
Synthesized from tryptophan

PCS

0
O\s//

/o
g

g

Hepatic sulfination of p-cresol, which is

synthesized from tyrosine by

hydroxyphenylacete decarboxylase [144]

EPS

0
oL/
/0
8

G

Hepatic sulfination of 4-ethylphenol,
potentially from paracoumaric acid via
decarboxylase and vinyl phenol
reductase or from genistein

Lactobacillus
Bifidobacterium longum
Bacteroides fragilis,
Parabacteroides distasonis
Clostridium bartlettii
E. hallii

Lactobacillus

Clostridium sporogenes

Clostridium difficile

Produced by unknown
commensal bacteria

Activates AhR [125]
Modulates GLP-1 secretion [131]

Cytotoxic
Produces free radicals [142]

Stimulates endothelial release
of microparticles [140]

Enhances monocyte adhesion
to vascular endothelium [141]

Activates AhR resulting in IL-22
production [125]

Activates PXR [132]
Scavenges hydroxy! radicals [134]

Reduces DNA damage and lipid
peroxidation in neurons [135]

Inhibits beta-amyloid fibril
formation [134]

Damages cell membranes [154]
Induces apoptosis [155]
Activates NADPH oxidase [156]
Activates JNK and p38-MAPK [157]
Activates Rho-K [158]
Activate EGF receptor [159]

No specific molecular targets
identified but assumed to be
similar to para-cresol sulfate

Maintains host-microbe
homeostasis at mucosal
surface [125-127]

Signals with intestinal L cells to
influence host metabolism [131]

Induces renal and vascular
dysfunction [139-141]

Associated with chronic kidney
disease [138]

Associated with cardiovascular
disease [141]

Maintains host-microbe
homeostasis at mucosal
surface [125]

Maintains intestinal barrier function
and mucosal homeostasis [132]

Anti-oxidant [134, 135, 137]

Protects against ischemia-induced
neuronal damage [134]

Potential therapy for Alzheimer's
disease [134]

Accumulates in and predicts
chronic kidney disease [146-149]

Associated with autistic spectrum
disorder [28]

Potential uremic toxin [153]
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Table 2 Microbial metabolites: their synthesis, mechanisms of action, and effects on health and disease (Continued)

HYA Lactobacillus plantarum

HOOC

OH

Derived from linoleic acid via linoleate
isomerase activity [169]

CLA Lachnospiraceae
Lactobacillus
HOOC Bifidobacteria
Faecalibacterium prausnitzii
P Propionibacterium
CLnA
HOOC
— =

Derived from linoleic acid via linoleate
isomerase activity [169]

Activates GPR40 [176] Maintains intestinal barrier [176]

Activates Nrf2 [175] Anti-inflammatory [175]

Modulates PPARy [171]
Activates PPARa [172]

Reduces adiposity [170]
Improves insulin sensitivity [170]

Inhibits cyclooxygenase and Anti-cancer [170]

lipoxygenase [173, 174] Reduces atherosclerosis [170]

Modulates cytokine production

and T-cell responses [180] Anti-inflammatory [170]

AhR aryl hydrocarbon receptor, AMPK AMP kinase, CLA conjugated linoleic acid, CLnA conjugated linolenic acid, CoA coenzyme A, EGF epidermal growth factor,
EPS 4-ethylphenylsulfate, GLP glucagon-like peptide, GPR G-protein coupled receptor, HDAC histone deacetylase, HYA 10-hydroxy-cis-12- octadecenoate,

IL interleukin, IPA indole-3-propionate, JNK c-Jun N-terminal protein kinase, MAPK mitogen-activated protein kinase, Nrf2 nuclear factor (erythroid-derived 2)-like 2,
PCS para-cresyl sulfate, PPAR peroxisome proliferator-activated receptor, PXR pregnane X receptor, PYY Peptide YY, Rho-K rho-kinase, TMA trimethylamine,

TMAO trimethylamine N-oxide

inflammation in mice [57], while GPR43 activation by
acetate can also protect against colonic epithelial injury
[58]. Butyrate can also modulate the expression of intes-
tinal tight junction proteins, enhance epithelial cell pro-
liferation, and inhibit apoptosis [59], possibly through its
effects on glucagon-like peptide (GLP)-2 secretion,
which is known to have a trophic effect on the epithe-
lium [60].

Intestinal inflammation contributes to the development
of colorectal cancer, and the contribution of SCFA-
producing bacteria to the inhibition of colon carcinogen-
esis remains unresolved. Besides its anti-inflammatory
effects, butyrate also exerts anti-proliferative and anti-
cancer effects when tumor cell lines are exposed to it
in vitro [61-63], primarily through HDAC inhibition
[64, 65]. Epidemiological studies, although inconclu-
sive, show an inverse relationship between the intake
of dietary fiber and incidence of colon cancer [66-71],
suggesting that increased colonic SCFAs as a result of
fiber fermentation may be responsible for the protective
effect. However, large randomized multicenter clinical tri-
als, such as The Polyp Prevention Trial (n=2079) [72]
and the Wheat Bran Study (n = 1429), [73] showed no im-
pact of a high-fiber diet on recurring polyp formation.
However, other studies have shown inconsistent relation-
ships between SCFAs and colon cancer development in

humans [74-77] as well as in animals (for a critical evalu-
ation of studies, see [78]). Butyrate has been shown to
stimulate cell proliferation in a number of studies under
conditions of energy deprivation [79, 80], which is likely
due to butyrate being an energy source for colonic epithe-
lial cells. Yet, under states of hyperproliferation, such as
that induced by secondary bile acids [81] or in cancer cells
maintained under high glucose [80], butyrate suppresses
proliferation. These discrepancies can be partially ex-
plained by the fact that cancer cells predominantly use
glucose rather than fatty acids such as butyrate as an en-
ergy source (the Warburg effect) [82], resulting in intracel-
lular accumulation of butyrate that sufficiently inhibits
HDAC and consequently cell growth [83]. Critical review
of these conflicting and sometimes paradoxical results
reached the conclusion that butyrate exerts anti-
proliferative effects only at specific sensitive stages of the
carcinogenesis, that these effects are dependent on deliv-
ery of butyrate to the colon, that the extent of butyrate
production in the colon varies widely based on type of
fiber, and that very high colonic concentrations of butyrate
are required and may be difficult to reproducibly achieve
in humans [78, 84]. More recent studies using mice to
carefully control cancer phenotype have not resolved these
issues. For instance, a mouse study used gnotobiotic mice
treated with azoxymethane followed by dextran sodium
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sulfate (DSS) to induce colon cancer and then colonized
these mice with butyrate-producing bacterium, and found
that dietary fiber had a butyrate-dependent tumor-
suppressive effect that required microbiota [83]. In this
model, butyrate was metabolized less in tumors and func-
tioned as a HDAC inhibitor. In contrast, another recent
study showed that gut microbial production of butyrate
stimulated polyp formation in a genetic mouse model of
colorectal cancer (Apc™™*Msh2”") [85]. Importantly,
more than 10 % of colon cancers in humans carry lesions
in adenomatous polyposis coli (APC) and DNA mismatch
repair gene MutS homolog 2 (MSH2) [86]. Thus, whether
consumption of dietary fiber to generate butyrate can be
used therapeutically to prevent or treat colorectal cancer
remains very much unresolved. Given the need for very
high butyrate levels to be effective and the aversion most
humans have for high amounts of fiber in their diets, alter-
native strategies such as fibers engineered to increase bu-
tyrate production with reduced hydrogen and carbon
dioxide gas production may be required.

Peripheral inflammation

The anti-inflammatory effects of SCFAs extend beyond
the gut, such as inhibiting vascular smooth muscle cell
proliferation and migration [87], improving kidney func-
tion [88], conferring anti-inflammatory effects in the
lung [89, 90], and protecting against inflammatory arth-
ritis [91]. The mechanisms underlying these effects ap-
pear to center largely on HDAC inhibition and GPR43
activation, and thereby act via modulating immune cell
activation. For example, mice fed a high-fiber diet have
increased circulating SCFAs, which protected against al-
lergic inflammation in the lungs by a mechanism that in-
volved impairing the capacity of dendritic cells to
instigate a Ty2-cell-mediated allergic inflammation [89].
High fiber or acetate feeding was found to suppress al-
lergic airway disease by HDAC inhibition and increased
FOXP3 acetylation in adult mice, and this effect was
conferrable to fetal mice, in which a high-fiber or acetate
maternal diet was able to suppress the expression of cer-
tain genes related to asthma [90]. The Canadian Healthy
Infant Longitudinal Development study found that in-
fants at risk for asthma showed transient alterations in
the composition of their gut microbiota compared to
low-risk infants during the first 100 days of life [92].
These at-risk infants had reduced levels of microbial taxa
involved in SCFA formation (specifically Lachnospira,
Veillonella, Faecalibacterium and Rothia) and reduced
fecal acetate. Inoculating germ-free mice with these four
microbial taxa ameliorated airway inflammation in their
offspring, demonstrating a causal role in suppressing in-
flammation [92]. Together, these results suggest the po-
tential for introducing bacteria (or combinations of
bacteria) that increase SCFA production as a measure to
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prevent the development of asthma and other related
inflammatory diseases in both adults and children.
Realization of this potential will require optimization of
appropriate microbiota for supplementation and subse-
quent clinical trials.

Effects on regulation of appetite and energy
homeostasis

The landmark study by Turnbaugh and colleagues show-
ing that transfer of microbiota from obese mice into
germ-free mice increased adiposity and cecal levels of
SCFAs relative to the transfer of microbiota from lean
mice [12] has led to intense interest in the role of the
microbial production of SCFAs in the regulation of
appetite and energy homeostasis. Turnbaugh and col-
leagues attributed the obesegenic potential of transferred
microbiota to its increased capacity to ferment dietary
components to SCFAs, resulting in increased energy har-
vest. Subsequent studies showed obese humans have
higher fecal SCFA levels than lean individuals [93] and
that that roux-en-Y gastric bypass surgery, a highly ef-
fective treatment for obesity and type 2 diabetes, causes
a significant change in fecal microbial profiles in humans
and rodents and results in reduced levels of SCFAs
[94-97]. While these results suggest that elevated mi-
crobial production of SCFAs promote obesity, a num-
ber of studies support an opposite conclusion. For
instance, microbiota transfer experiments into germ-
free mice from human twin donors where one was
obese and one lean showed that, as with obese mice,
phenotypes transferred with the microbiota; however,
in this case transfer from lean donors resulted in
higher cecal propionate and butyrate levels. Further-
more, diets enriched in inulin or other non-digestible
fibers that increase formation of SCFAs consistently
inhibit obesity in humans [98, 99]. Finally, direct ad-
ministration of SCFAs, particularly butyrate, inhibits
weight gain, adiposity, and insulin resistance in mice
fed a high-fat diet (HFD) [41, 100-103].

A recent meta-analysis of various studies in this field
by Byrne and colleagues led them to conclude that in-
creasing SCFA levels had an overall net benefit on obes-
ity due to their effects on satiety and reduced food
intake, increased energy expenditure and thermogenesis,
and inhibition of lipogenesis and cholesterol synthesis
[104]. One molecular mechanism underlying the anti-
obesity effect of SCFAs is improved barrier function,
which prevents the passage of bacterial toxins into the
circulation, inducing metabolic endotoxemia, obesity,
and insulin resistance [105-107]. Additionally, SCFA
activation of AMPK and GPR43 induces multiple re-
sponses that can reduce adiposity, including increasing
fatty oxidation, decreasing glucose levels, and increasing
secretion of satiety-inducing peptides such as GLP-1,
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peptide YY (PYY), and gastric inhibitory polypeptide
(GIP) (reviewed in [34]).

Since, on the whole, increasing the microbial produc-
tion of SCFAs appears to be a reasonable therapeutic
intervention for the treatment of obesity, future studies
are needed to determine how to effectively carry out
such long-term interventions in humans. For a signifi-
cant fraction of the human population, consumption of
large amounts of non-digestible dietary fibers such as
inulin is significantly hampered by undesirable gastro-
intestinal effects such as bloating, abdominal cramping,
flatulence and diarrhea. These adverse effects result in
part from the simultaneous formation of hydrogen gas
and carbon dioxide during fermentation. Therefore,
optimization of the microbiota or substrates to enhance
SCFA production and to minimize released hydrogen
and carbon dioxide gas will be critical for the wide-
spread application of this treatment in the general
population.

Trimethylamine and trimethylamine N-oxide

TMA and its co-metabolite TMAO were identified by
screening metabolites associated with cardiovascular
disease (CVD), and TMA was shown to require gut
bacteria for its formation [15]. Cleavage of choline to
TMA and acetaldehyde by two enzymes originally iden-
tified in Desulfovibrio desulfuricans, CutC and CutD,
allow choline to be used as an energy source [108]. Re-
cent studies found homologous genes in a variety of
Proteobacteria and Firmicutes, and to a much lesser ex-
tent Actinobacteria, suggesting spread via horizontal
gene transfer [109]. TMA was also recently shown to
form from L-carnitine and choline via an analogous
reaction catalyzed by the YeaW and YeaX enzymes ori-
ginally characterized in Escherichia coli [110], and by
CntA and CntB, originally characterized in Acinetobacter
baumannii [111]. After formation and absorption in the
colon, TMA passes into the portal circulation, which di-
rects blood into the liver, where it is oxidized to TMAO
by flavin-containing mono-oxygenase 3 (FMO3) [112].
Analysis of genetic variation among inbred strains of
mice indicates that plasma TMAO levels significantly
correlate with FMO3 activity [112]. Oral antibiotics
block the increase in TMAO that normally occurs after
dietary challenge with either choline or carnitine, dem-
onstrating that the generation of TMAO requires micro-
bial bacteria [15, 113, 114].

TMAO levels predict risk for atherosclerosis [15, 112,
115], and are elevated in patients with chronic kidney
disease (CKD) [116] and obesity [17, 98], and decreased
in ulcerative colitis [117]. TMAO directly induces CVD,
as administration of TMAO itself or of sufficient choline
or L-carnitine to raise TMAO levels can all increase
atherosclerosis in Apoe™~ mice [15, 114]. The specific
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molecular mechanisms by which TMAO exerts its
pathological effects are currently unknown. Accumula-
tion of TMAO in the kidney may alter osmotic balance
and elevated TMAO levels associate in animal models
with markers of renal damage such fibrosis and dysfunc-
tion [116]. Thus far, no receptor for TMAO has been
identified. TMA, but not TMAO, acts as a ligand for
trace amine-associated receptor 5 (TAAR5) [118], but
TAAR5 appears to be exclusively expressed in the
olfactory sensory neurons. Administration of TMAO to
Apoe”'~ mice inhibits reverse cholesterol transport from
macrophages in vivo [114], but treating macrophages
directly with TMAO in cell culture does not increase
their ability to take up cholesterol or inhibit their ability
to efflux cholesterol to ApoA1l or HDL [119]. Reduction
of FMO3 activity (which increases TMA levels and de-
creases TMAOQO levels) decreases intestinal cholesterol
absorption, reduces hepatic biliary secretion and LXR
signaling, and increases cholesterol disposal via transin-
testinal cholesterol efflux (active secretion of cholesterol
from the small intestine) [120]. Administering antibiotics
blocks these effects, while TMAO supplementation does
not, suggesting that the effects of reducing FMO3 activ-
ity resulted from increased TMA or another microbial
substrate of FMO3 [120]. Thus, studies elucidating the
molecular targets of TMAO and the potential roles of
TMA are greatly needed.

Without identified TMAO molecular targets, interven-
tions to reduce CVD must focus on reducing TMAO
levels. Reducing dietary choline or L-carnitine would
lower TMAO levels, but may have undesirable effects.
In particular, supplementation with lower levels of L-
carnitine than needed for TMAO formation may im-
prove cardiovascular function [121]. A meta-analysis
of 13 controlled trials (7 = 3629) showed that L-carnitine
supplementation reduces all-cause mortality by 27 %
[122]. While potentially beneficial for cardiovascular
health, choline deficiency markedly increases risk for non-
alcoholic liver disease. Inhibiting FMO3 to reduce TMAO
levels is also undesirable, as accumulation of TMA results
in fish malodor disorder. Because of these limitations,
current pharmaceutical development is focusing on a
revolutionary approach: non-lethal targeting of microbes
by selectively inhibiting pathways detrimental to their
host, such as microbial CutC/D, CntA/B and YeaW/X.
A structural analog of choline, 3,3-dimethyl-1-butanol
(DMB), non-lethally inhibits microbial CutC/D and
reduces TMAO levels in mice fed a high-choline or
L-carnitine diet [123]. Importantly, DMB inhibits
macrophage foam cell formation and atherosclerotic le-
sion development in Apoe™~ mice [123]. Future clinical
trials are needed to determine the safety and efficacy of
CutC/D inhibitors in reducing TMAO levels and disease
in humans, as well as whether resistance to their effects
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will occur with long-term treatment strategies. Nevertheless,
this revolutionary strategy of selective, non-lethal inhibition
of microbial function likely represents an important new
front in the pharmacological treatment of human diseases.

Tryptophan metabolites: indole and indole
derivatives

Tryptophan is an essential amino acid found in a variety of
foods such as red meat, fish and eggs. Commensal bacteria
expressing tryptophanase catabolize tryptophan to indole, a
quorum-sensing compound for bacteria [124] (Fig. 1). Lacto-
bacillus spp. convert tryptophan to indole-3-aldehyde (I3A)
through unidentified enzymes [125]. Clostridium sporogenes
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convert tryptophan to IPA [6], likely via a tryptophan deami-
nase. After absorption from the intestinal tract into portal
circulation, the liver converts indole to IndS.

Indole and its metabolites affect host physiology via a
number of molecular mechanisms (Fig. 1). Indole and
I3A are agonists for the aryl hydrocarbon receptor (AhR),
a transcription factor that regulates interleukin (IL)-22 ex-
pression, increases T;17-cell activity, and helps maintain
intraepithelial lymphocytes [125]. Indole upregulates the
expression of tight junction proteins and modulates the
expressions of pro- and anti-inflammatory genes in intes-
tinal epithelial cells [126, 127]. These activities of AhR
help ensure that commensal bacteria outcompete
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/ OH
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/ OH
HN
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bacteria (See Table 1)
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}TNFa
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Fig. 1 Molecular mechanisms of action of indole and its metabolites on host physiology and disease. Tryptophan in the colonic lumen is
catabolized by bacteria to yield indole and indole derivatives. Indole-3-propionate (/PA) acts on intestinal cells via pregnane X receptors (PXR) to
maintain mucosal homeostasis and barrier function. IPA can also act on other organs such as the brain, where it confers neuroprotective effects
against ischemia-induced neuronal damage or against Alzheimer’s disease. Indole-3-aldehyde (I3A) acts on the aryl hydrocarbon receptor (AhR)
found on intestinal immune cells and increases interleukin-22 (/L-22) production. Activation of AhR plays a crucial role in gut immunity, such as in
maintaining the epithelial barrier function and promoting immune tolerance to promote microbial commensalism while protecting against
pathogenic infections. Indole has a number of roles, such as a signaling molecule to intestinal L cells to produce glucagon-like protein 1 (GLP-1)
or as a ligand for AhR. Indole is also metabolized by the liver to indoxyl sulfate, where an excess is detrimental to human health. Accumulation of
indoxyl sulfate in physiologic fluid is toxic and associated with vascular disease and renal dysfunction. AST-120, an orally administered intestinal
sorbent, adsorbs indole and decreases serum concentrations of indoxyl sulfate, and is a potential treatment for managing chronic kidney disease
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pathogenic bacteria in the gut microbiota [128], and the
absence of AhR increases the severity of DSS-induced col-
itis [129] and response to Citrobacter rodentium infection
[130] (a model of human enteropathogenic E. coli infec-
tions). In addition to these effects, recent studies show
that indole also modulates GLP-1 release from L cells
[131], so that indole formation may contribute to sati-
ety and inhibition of obesity. Other recent studies
demonstrate that IPA is a pregnane X receptor (PXR)
agonist, particularly in the presence of indole [132]. A
wide-range of PXR agonists inhibit NF-kB [133], and
downregulation of intestinal tumor necrosis factor
(TNF)-a and upregulation of junction proteins by IPA
requires PXR [132]. IPA also potently scavenges hy-
droxyl radicals [134], thereby protecting against oxi-
dative injury in various animal models [134-137].
Thus, future studies are needed to determine if en-
hancing IPA formation by bacteria or directly admin-
istering IPA is beneficial in inflammatory conditions
such as inflammatory bowel disease and colorectal
cancer.

While indole appears to be primarily beneficial, its
metabolite IndS is a uremic toxin that accumulates in
patients with CKD [138]. IndS is also associated with ac-
celerated glomerular sclerosis [139], enhanced endothe-
lial dysfunction [140], enhanced monocyte adhesion to
the vascular endothelium [141], and increased oxidative
stress [141, 142]. The oral charcoal adsorbent AST-120
binds indoles in the gut lumen and reduces plasma IndS
levels, thereby reducing kidney damage and atheroscler-
osis associated with kidney injury [143]. Future studies
are needed to determine if diverting tryptophan metab-
olism away from IndS towards IPA will be beneficial in
renal disease or other conditions.

Tyrosine metabolites: para-cresyl sulfate and
4-ethylphenylsulfate

PCS and 4-ethylphenyl sulfate (EPS) are structurally
similar uremic toxins formed by hepatic sulfation of the
microbial metabolites para-cresol and 4-ethylphenol, re-
spectively. The lack of PCS or EPS in the plasma and
urine of germ-free mice demonstrates their microbial
origins. Inactivating mutants of the hydroxyphenylace-
tate decarboxylase operon genes (hpdB/C/A) from Clos-
tridium difficile prevent fermentation of tyrosine or its
metabolite hydroxyphenylacetate to para-cresol [144].
Few other gut bacteria encode HpdB/C/A [144]. Bacter-
ial pathways for formation of 4-ethylphenol have not yet
been characterized, but the wine spoilage yeast Brettano-
myces generates 4-ethylphenol from the tyrosine metab-
olite para-coumaric acid that is present in many foods
via cinnamate decarboxylase and vinyl phenol reductase.
4-Ethylphenol also forms from orally administered
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genistein, a phytoestrogen found in soy, by uncharacter-
ized but presumably microbial pathways [145].

Both PCS and EPS accumulate in patients with severe
CKD undergoing hemodialysis [146]. PCS levels predict
clinical outcomes in patients with CKD [147] and
correlate with cardiovascular mortality in CKD patients
[148, 149]. While conventional dialysis fails to remove
PCS, treatment with the oral adsorbent AST-120 [150]
or with the prebiotic arabino-xylo-oligosaccharide [151]
lowers plasma PCS levels. Vegetarians have lower levels
of PCS than omnivores [152]. There are very few studies
of EPS. EPS levels are elevated in a rat model of chronic
renal failure and AST-120 treatment lowers these levels
[153]. EPS levels increase 46-fold in a mouse model of
autism and treatment with Bacteroides fragilis blocks
this increase [28]. Administration of EPS to mice results
in anxiety-like behaviors [28].

Molecular mechanisms of action ascribed to PCS in-
clude direct damage of cell membranes [154], induction
of apoptotic pathways [155], activation of NADPH oxi-
dase 4 (NOX4) resulting in reactive oxygen species
(ROS) formation [156], activation of JNK and p38-
MAPK [157], activation of Rho-kinase (ROCK) leading
to endothelial damage [158], activation of epidermal
growth factor (EGF) receptor leading to expression of
matrix metalloproteinases 2 and 9 [159], and inhibition
of a variety of drug-metabolizing enzymes including
CYP2E1, CYP3A4, UGT1Al, UGT1A9, and UGT2B7
[160]. Given its chemical similarity to PCS, EPS is ex-
pected to exert similar effects, but no specific molecular
targets have been demonstrated to date. Future studies
are needed to identify pharmaceutical inhibitors of the
PCS and EPS biosynthetic pathways and whether such
inhibitors have beneficial effects in disease.

Essential fatty acid-derived metabolites

The microbiota of ruminants have long been known to
transform the essential fatty acids linoleic acid (LA) and
linolenic acid to CLAs such as cis-9 and trans-11 CLA,
and conjugate linolenic acids (CLnAs) such as cis-9,
trans-11 and cis-15 CLnA, respectively [161-163], via
the action of isomerases. However, recent studies found
that the microbiota of mice and humans, particularly
Lachnospiraceae, Lactobacillus spp. and Bifidobacteria,
possess the capacity to generate both CLAs and CLnAs
[164-166]. In Lactobacillus, intermediates for the forma-
tion of conjugated fatty acids include the oxygenated
metabolites HYA and 10-hydroxyoctadecanoate (HYB)
[167, 168]. The enzymes involved in the transformation
of LA to CLAs by Lactobacillus were recently character-
ized and include myosin-cross-reactive antigen, short-
chain dehydrogenase/oxidoreductase, and acetoacetate
decarboxylase [169].
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Conjugated fatty acids exert many highly beneficial ef-
fects, including reduction of adiposity, improved insulin
sensitivity, reduced carcinogenesis, and reduced athero-
sclerosis (reviewed in [170]). CLAs and CLnAs act via
PPAR-y (reviewed in [171]), PPAR-a [172], and inhib-
ition of cyclooxygenases and lipoxygenases [173, 174].
Whether typical intestinal microbiota generate sufficient
CLA/CLnA to exert the extraintestinal effects seen with
CLA/CLnA supplementation is unclear, as feeding es-
sential fatty acids increases gut but not circulating levels
of CLAs and CLnAs [164]. Like CLAs and CLnAs, HYA
also exerts anti-inflammatory activities, including down-
regulating lipopolysaccharide (LPS)-induced maturation
of dendritic cells, blocking TNF-induced barrier impair-
ment, and protecting against DSS-induced intestinal in-
jury [175, 176]. HYA acts via the GPR40-MEK-ERK
pathway [176]. Future studies are needed to determine if
increasing microbial HYA production can be used
therapeutically.

Translation to future diagnostics and therapeutics
In previous sections, we have touched briefly on po-
tential future studies for individual metabolites, but
there are additional developments needed in broad
areas of research and understanding to fully realize
the potential of gut microbial metabolites for disease
treatment. We will conclude by highlighting four of
these needed developments.

First, the development of minimal sets of biomarker mi-
crobial metabolites that identify particular disease states
or that distinguish between closely related disease condi-
tions. The analysis carried out by de Preter and colleagues
for inflammatory bowel disease is proof of principal for
this strategy [22], and similar approaches for highly het-
erogeneous conditions such as autism spectrum disorder,
in which the microbiota has also been implicated [177],
might be even more valuable. This also applies to the
identification of individuals who might be at risk for dis-
ease, such as was found for individuals who carried high
levels of bacterial strains that converted cholesterol to
coprostanol that made them more vulnerable to C. difficile
infections. For translation to actual treatment, measure-
ments will need to be carried out in clinical laboratories in
which immunoassay arrays, rather than the more sophisti-
cated MS or NMR methods available in research settings,
will likely continue to be the primary methods available.
Thus, identifying the minimal number of biomarker me-
tabolites needed to selectively assess a condition is critical.
Similar strategies can be used to determine the efficacy
and safety of interventions.

Second, the development of algorithms to predict per-
sonalized responses to dietary and pharmaceutical inter-
ventions based on microbial metabolites. An exciting
example of this approach was recently reported by Zeevi
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and colleagues, who demonstrated that the highly vari-
able glycemic response of different individuals to the
same foods could be predicted using their gut micro-
biota and other data [32]. Similarly, being able to predict
the responses of specific metabolites such as SCFAs to
individual foods using tools such as CASINO [31] may
be critical for allowing individuals with intolerance for
particular dietary components to successfully use func-
tional foods to increase colonic levels of SCFAs.
Algorithm-based personalization seems essential for any
nutrition-based approaches, given the variability of mi-
crobial composition among individuals.

Third, the development of readily generalizable
methods to increase gut microbial production of benefi-
cial metabolites, either by selectively increasing the
abundance of native species that produce that metabolite
or by engineering endogenous gut microbiota to produce
it in high levels. An example of this latter approach is
our study using heterologous expression of the satiety
factor N-acylphosphatidylethanolamine in commensal
E. coli (strain Nissle 1917), leading to inhibition of
obesity in mice fed a HFD [178]. Such strategies
might be helpful to produce sufficient IPA, CLA or
HYA to block inflammatory diseases, but could also
be utilized to test novel metabolites as they are identified.
One advantage of engineered bacteria may be the ability
to produce beneficial metabolites in bacterial strains that
colonize well in the gut of a diseased individual in the
place of native bacteria that produce these same beneficial
metabolites but poorly colonize in the diseased gut.

Fourth, the development of non-lethal specific inhibi-
tors for various microbial pathways that produce harmful
metabolites, similar to work done with CutC/D. In
particular, inhibition of the formation of para-creysl and
4-ethylphenol appear amendable to this strategy. This
revolutionary approach to controlling harmful bacterial
metabolites seems unlikely to result in the rapid evolution
of resistance that occurs with standard antibiotics, since
there is a much more limited fitness advantage of carrying
resistance. If this is the case, then long-term use of such
metabolic pathway inhibitors will have great potential
benefit in chronic diseases.

Conclusions and future perspectives

The past decade has seen remarkable progress in our
understanding of the significant role that gut microbial
metabolites play in modulating the health of their hosts.
MS and NMR studies have identified a significant num-
ber of microbial metabolites that differ in disease condi-
tions, and these same methods are now being exploited
to better identify subtle differences in closely related dis-
eases. Some of these identified metabolites, such as
TMAO, IndS and PCS, appear to directly increase sus-
ceptibility to disease, while others, such as SCFA, IPA,
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CLA and HYA, appear to exert protective effects. Much
work remains to fully characterize the physiological ef-
fects of these and the many other microbial metabolites
that may be important in human health. It seems highly
likely that future studies will identify many other disease
states in which gut microbial metabolites are signifi-
cantly enriched or depleted. It is important to keep in
mind that by themselves such studies do not demon-
strate causality. Thus, it seems there is a considerable
need for carefully controlled studies to determine the
physiological effects of each identified microbial metab-
olite and its specific mechanisms of action. Furthermore,
in order to fully exploit the potential of the gut micro-
biota for disease prevention, we need a much greater
understanding of how dietary components and host gen-
etics affect the production of various metabolites. Fi-
nally, translation of these findings to clinical practice
will require the development of widely available clinical
chemistry methods to detect changes in an individuals
key metabolites. Despite these tremendous challenges to
fully exploiting the gut microbiota for human health, the
remarkable progress of the last decade suggests that such
approaches have significant potential to revolutionize
therapeutic approaches to human disease.
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