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Abstract

Patient disease subtypes have the potential to transform personalized medicine. However, many patient subtypes
derived from unsupervised clustering analyses on high-dimensional datasets are not replicable across multiple datasets,
limiting their clinical utility. We present CoINcIDE, a novel methodological framework for the discovery of patient
subtypes across multiple datasets that requires no between-dataset transformations. We also present a high-quality
database collection, curatedBreastData, with over 2,500 breast cancer gene expression samples. We use ColNcIDE to
discover novel breast and ovarian cancer subtypes with prognostic significance and novel hypothesized ovarian
therapeutic targets across multiple datasets. ColINcIDE and curatedBreastData are available as R packages.

Background

Subtyping patient disease populations using high-
dimensional molecular data and unsupervised clustering
algorithms has transformed how researchers and clini-
cians interpret and quantify heterogeneity within a dis-
ease. Early gene expression cancer subtyping research
showed that gene expression patterns can stratify pa-
tients into subtypes with distinct survival patterns [1];
such subtypes have the potential to drive personalized
patient treatment regimens [2] and risk prediction
models [3]. Unfortunately, while many studies report
novel subtypes for various diseases [2, 4, 5], these subtypes
are rarely routinely implemented in clinical practice. A
major hurdle is that subtypes derived from high-
dimensional data platforms are oftentimes not replicable
[6]. In a recent opinion article discussing trustworthy ex-
periments, replicability is defined as ‘the chance that an
independent experiment targeting the same scientific
question will produce a consistent result’ [7]. In the case
of patient subtypes, this means subtypes with similar sig-
naling patterns can be found across multiple datasets.
Replicability is a key aspect of defining whether an analysis
is trustworthy or not; if a clinician cannot trust the ana-
lysis that produced the subtypes, then there is little hope
for widespread adoption and a true translation from bench
to bedside.
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There are two large hurdles to producing replicable
patient subtypes: a lack of curated disease-specific data-
set collections and a lack of methods that discover con-
sensus across clusterings from multiple datasets. When
a collection of several datasets is available, there exist
few widely adopted approaches to clustering multiple
datasets to derive patient subtypes. Arguably the most
popular approach is to concatenate all of the datasets
into a single data matrix and then cluster this matrix.
While this method can find interpretable signal [8], a
large drawback is that the datasets must first be trans-
formed using batch correction techniques to remove
dataset-specific noise [8, 9]. While these methods
smooth out signal variances across datasets that may in-
deed be noise artifacts, these variances might also be
true signaling patterns. An example of the latter case is
when datasets are from different targeted clinical trials
with different latent disease subtypes. An additional
drawback to concatenation is that it provides a single
clustering, and thus valuable information about the con-
sensus of the datasets within each subtype is lost. In su-
pervised replicability analyses, it is common to not
concatenate data matrices, but to confirm consensus of
signaling patterns within, and then across, each dataset
by conducting a meta-analysis with metrics such as ef-
fect size [10]. Here, an effect size for each feature (gene)
is first computed within each dataset using binary super-
vised labels, and then a summary effect size across all
datasets is computed; features with a large summary ef-
fect size are interpreted as being robust to dataset-
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specific noise artifacts and more likely to represent sig-  the meta-analysis approach to discover consensus across
nal that highly distinguishes patients that do not share individual clusterings from each dataset, as opposed to a
the same binary label. This meta-analysis approach has single concatenated matrix.
shown promise in high-dimensional molecular datasets Here we present a comprehensive framework called
across various platforms without any batch correction = CoINcIDE: Clustering Intra and Inter DatasEts (Fig. 1).
transformations to discover repeatable signal in super- CoINCIDE enables researchers to discover truly replic-
vised analyses [11]. able subtypes and is implemented as an R package pro-
However, an analogous meta-analysis method does not  viding functionality from initial data processing to final
exist in the unsupervised realm for patient subtypes; meta-cluster functional analyses. Next, we present a
consensus clustering and ensemble clustering evaluate  high-quality database collection of 24 breast cancer
cluster stability within a single dataset [12, 13] and gene expression datasets encompassing 15 studies with
methods to discover repeatable feature, for example, linked outcomes and treatment information as a second
gene, subtypes, oftentimes rely upon the fact that feature R package. We apply CoINcIDE on this breast cancer
labels are shared across datasets [14], which is not the collection and a previously developed ovarian cancer
case for patient labels across different institutions or dataset collection [17]. We show that CoINcIDE vali-
clinical trials. There have been efforts to cluster across dates known breast cancer subtypes and discovers ovar-
clinical datasets, but these methods assume the starting ian cancer subtypes with prognostic significance and
point of the analysis is an existing set of pre-defined novel hypothesized therapeutic targets, all across mul-
edges (relationships) between nodes, which is normally tiple datasets.
not the case for de novo clustering analyses [15]. We
propose a novel methodological framework called CoIN-  Methods
cIDE that discovers robust patient subtypes, or meta- We have developed a comprehensive suite of resources,
clusters, across multiple datasets. CoINcIDE builds upon  tools, and methods to enable researchers to conduct robust
the In-Group-Proportion metric [16], a method that meta-cluster analyses and discover replicable patient sub-
quantifies the replicability of a single set of subtypes ap-  types in the form of two R packages: CoINcIDE, which im-
plied to a single external dataset. CoINcIDE does not re-  plements a set of novel methods for the discovery of patient
quire batch correction techniques, as it expands upon subtypes across multiple datasets and curatedBreastData, a
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Fig. 1 CoINcIDE steps. The four main steps to CoINcIDE, a method to discover replicable patient subtypes by finding consensus across dataset-
specific clusterings from multiple datasets. The first step of ColNcIDE is to derive these dataset-specific clusterings. The second step is to compute
cluster-cluster similarities between each cluster-cluster pair, resulting in an adjacency matrix (clusters within the same dataset are not compared).
The third step is to assign an edge between cluster pairs whose similarity passes set magnitude and significance thresholds, with the weight of
the edge equaling the similarity magnitude. This creates a network. The fourth step is to then discover meta-clusters via network community
detection methods. The resulting meta-clusters are the final subtypes
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breast cancer dataset collection providing 24 high-quality
curated breast cancer microarray datasets.

Breast cancer collection: curatedBreastData

We used 17 gene expression microarray datasets from the
curatedBreastData Bioconductor package; this package in-
cludes primary human tissue breast cancer datasets col-
lected from the National Center for Biotechnology (NCBI)
Gene Expression Omnibus (GEO) [18]. Datasets with
sample sizes over 30 and a minimum 35-gene set from the
full PAM50 gene set [19] (Additional file 1: Table S1) were
used for analyses. Datasets with sample sizes under 30 did
not comprise unique studies, but rather were small sets of
microarrays from larger studies (also included in curated-
BreastData) that had been run on different platforms.
These filters resulted in 2,235 pre-treatment patient tumor
sample microarrays encompassing 17 datasets and 15
studies across six different platforms. See Table 1 for data-
set names and platform details; sample sizes ranged from
46 to 286 and the average number of genes per platform
was approximately 11,000.

Ovarian cancer collection: curatedOvarianData

We used 24 gene expression microarray datasets from
the curatedOvarianData Bioconductor package [17].
These datasets contain primary tissue samples from pre-
treatment ovarian tumors with various histological types.
Datasets were used that had over 80 % of genes from the
meta-rank gene sets as described in later sections. This

Table 1 Characteristics of curated breast cancer datasets
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filter resulted in 3,105 samples, 10 microarray plat-
forms, and 24 datasets with two of the datasets derived
from the same GEO study. Table 2 gives details for each
dataset; sample sizes ranged from 28 to 578 and the
average number of genes per platform was approxi-
mately 15,000.

ColNcIDE

CoINCIDE encompasses four steps to discover and
visualize replicable patient subtypes by finding consen-
sus across dataset-specific clusterings from multiple
datasets. The clusters are represented as nodes in a net-
work, and the final subtypes are meta-clusters of tightly
connected clusters within this network. The four main
steps of CoINCIDE are outlined in Fig. 1.

Step 1: Select features and cluster each individual dataset

The input to our proposed method is a collection of
datasets. Each matrix has genes or features in the rows
and patients or samples in the columns. Based on exten-
sive analysis (Additional file 1: Table S2; Additional file
2: Supplemental Methods), for microarray gene expres-
sion applications, we suggest consensus clustering [12]
implemented with Hartigan Wong’s k-means algorithm
[20] using one random start and 90 % resampling of
samples along with a rounded Proportion of Ambiguous
Clusters (PAC) score [21] as the optimal single-dataset
clustering method (see Additional file 1: Table S2,

Dataset D Batch ID GEO platform ID Commercial platform name Samples (n) Genes (n)
1 12093 GPL9%6 Affymetrix Human Genome U133A 136 11,723
2 1379 Arcturus 22 k human oligonucleotide 60 11,723
3 16391 Affymetrix Human Genome U133 Plus 2.0 48 15,199
4 16446 Affymetrix Human Genome U133A 114 16,326
5 17705 JBI Affymetrix Human Genome U133A 103 10,565
6 17705 MDACC Affymetrix Human Genome U133A 195 11,026
7 19615 Affymetrix Human Genome U133 Plus 2.0 115 16,652
8 20181 Affymetrix Human Genome U133A 53 10,171
9 20194 Affymetrix Human Genome U133A 261 11,748
10 2034 Affymetrix Human Genome U133A 286 11,020
11 22226 Agilent-012391 Whole Human Genome Oligo G4112A 127 18,841
12 22358 AFFY Human Phase3 v1.0 - C02 121 17,253
13 25055 MDACC_M Affymetrix Human Genome U133A 221 11,459
14 25065 MDACC Affymetrix Human Genome U133A 71 11,158
15 25065 uso Affymetrix Human Genome U133A 54 10,822
16 32646 Affymetrix Human Genome U133 Plus 2.0 115 18,260
17 9893 MLRG Human 21 KV12.0 155 13,154

All breast cancer datasets are from the Gene Expression Omnibus (GEO). ‘Batch dataset’ does not refer to a lab replicate batch, but rather a group of microarrays
from a larger study that were run on a different platform, or collected from a different site. These batch labels were inferred from GEO sample file names. GSE = GEO

series ID prefix
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Table 2 Characteristics of curated ovarian cancer datasets
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Dataset D Batch ID GEO platform 1D Commercial platform name Samples (n) Genes (n)
1 E.MTAB.386 GPL6104 lllumina HumanRef-8 V2 129 10,560
2 GSE12470 GPL887 Agilent G4110b 53 18,940
3 GSE13876 GPL15718 Operon Human v3 157 20,822
4 GSE14764 GPL96 Affy U133a 80 13,769
5 GSE17260 GPL6480 Agilent G4112f 110 20,867
6 GSE18520 GPL570 Affy U133 Plus 2.0 63 20,440
7 GSE19829 GPL570 GPL570 Affy U133 Plus 2.0 28 20,440
8 GSE19829 GPL8300 GPL8300 Affy U95 v2 42 9,674
9 GSE20565 GPL570 Affy U133 Plus 2.0 140 20,440
10 GSE2109 GPL570 Affy U133 Plus 2.0 204 20,440
1 GSE26193 GPL570 Affy U133 Plus 2.0 107 20,440
12 GSE26712 GPL96 Affy U133a 195 13,769
13 GSE30161 GPL570 Affy U133 Plus 2.0 58 20,440
14 GSE32062 GPL6480 Agilent G4112f 260 20,867
15 GSE32063 GPL6480 Agilent G4112f 40 20,867
16 GSE44104 GPL570 Affy U133 Plus 2.0 60 20,440
17 GSE49997 GPL2986 ABI Human Genome Survey V2 204 16,048
18 GSE6008 GPL96 Affy U133a 172 8,744
19 GSE6822 GPL80 Affy Hu6800 66 5,251
20 GSE9891 GPL570 Affy U133 Plus 2.0 285 20,440
21 PMID15897565 GPL96 Affy U133a 63 13,769
22 PMID17290060 GPL96 Affy U133a 117 13,769
23 PMID19318476 GPL9% Affy U133a 42 13,769
24 TCGA GPL3291 Affy HT U133a 578 13,769

Datasets were collected from several repositories, including GEO. GSE = GEO series ID prefix; this prefix is only included for datasets taken directly from GEO

Additional file 2: Supplemental Methods, and Additional
file 3: Figures S1 and S2 for details).

Each individual dataset is clustered using a gene set
that represents a union of the genes present across all
microarrays. The user can decide the minimum number
of genes that have to overlap between different datasets
with suggested thresholds ranging from 70 % to 100 %.
If the user does not have a pre-defined gene set, CoIN-
cIDE also includes a meta-ranking gene selection
method (see Additional file 2: Supplemental Methods
for details).

Step 2: Compute similarities between clusters from different
datasets

The CoINCcIDE cluster-cluster metrics and significance
test build upon the In-Group-Proportion (IGP) [16].
After each dataset is clustered in CoINcIDE’s step 1,
clusters from dataset 1 and clusters from dataset 2 are
compared as follows: centroids are derived from the
clusters within dataset 1. Then, each cluster from dataset
2 is compared to these centroids. Patients from dataset
2, cluster A (2-A) are each assigned using Pearson’s

correlation to their respective nearest centroid in dataset
1. The centroid for which the highest fraction of patients
from cluster ‘2-A’ are assigned is deemed the best cluster
fit for cluster 2-A’; let us assume in this case cluster ‘1-
C is the best fit. Two cluster-cluster metrics are then
calculated: a nearest neighbor fraction, which is the
number of patients in cluster 2-A’ assigned to cluster ‘1-
C’ divided by the total number of patients in cluster 2-
A} and a similarity metric, which is the overall mean of
Pearson’s correlation matrix between cluster centroid ‘1-
C’ and all patients in cluster 2-A’. This is done for each
cluster in dataset 2.

For the optimal 2-A’-‘1-C’ cluster-centroid set match,
a P value is computed by generating null centroid sets
based on the centroid sets in dataset 1 using the IGP
null distribution methods [16]; the final P value is the
number of times the real patients from 2-A’ were
assigned to a null centroid set that resulted in a mean
similarity metric and a nearest neighbor fraction greater
than the true 2-A’-‘1-C’ values. We suggest 500 null
centroid iterations to compute this P value. CoINcIDE
uses the third null centroid set method proposed by
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Kapp and Tibshirani; this is the same method used in
the authors’ R package, clusterRepro [16]. Finally, the
roles of datasets 1 and 2 are reversed so that the cen-
troids are derived from dataset 2 and the clusters in
dataset 1 are treated as individual datasets. Cluster 2-A’
and cluster ‘1-C’ are only considered to be potentially
similar clusters if they are identified as the most similar
cluster-cluster pair in both iterations with datasets 1 and
2. Assuming this is the case, the nearest neighbor frac-
tion and similarity metric are averaged, and only these
cluster-cluster pairs are evaluated in step 3.

Step 3: Derive cluster network by assigning edges to similar
clusters

Cluster-cluster pairs that pass user-defined nearest
neighbor fraction, mean similarity metric and P value
thresholds are assigned an edge. The weight of this edge
is the mean similarity metric. We recommend an aver-
aged nearest neighbor fraction of 0.7 and a P value
threshold of 0.01 (applied to both P values from the
cluster-cluster pair) to produce highly significant clusters
with strongly homogenous patient make-up. A user can
test various mean similarity thresholds, which will pro-
duce slightly different CoINcIDE meta-clusters. Because
CoINCcIDE takes into the account the similarity value of
each edge (see Step 4), a few edges with low mean simi-
larity weights will not highly alter the final meta-cluster
patient assignments. On the other hand, aggressively
pruning edges by using a similarity threshold near the
maximum possible value of one will certainly remove
clusters, and perhaps entire datasets, that contain reli-
able signaling patterns, albeit with some added noise.

We recommend an unbiased method to select the
minimum mean similarity threshold, which involves
inspecting the frequencies of mean similarity values
across all datasets between all clusters (including mean
similarities between non-optimal clusters.) We fit these
frequencies to a Gaussian density curve for visualization
and inspection; we recommend using a threshold value
close to the similarity metric value that occurs at a local
maximum or peak that is greater than a 0.1 baseline
threshold.

For the two breast cancer PAM50 analyses we used
similarity thresholds of 0.15 and 0.25 based on these
density curves (Additional file 3: Figure S3A-B). The
final meta-cluster patient assignments are not highly af-
fected by small changes in the similarity threshold; run-
ning the first breast cancer analysis also using a
threshold of 0.25 produced the same results. For the 50,
264, and 2020-gene set non-PAM50 analyses, similarity
thresholds of 0.4, 0.5, and 0.5 were chosen, respectively,
as these values represented a local maxima in the density
curve for these experiments (figure not shown.) Using
the density curve method again, we chose a threshold of
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0.5 for both ovarian analyses (Additional file 3: Figure
S3C-D). In the second ovarian analysis’s density curve,
there are two local maxima above the recommended 0.1
threshold, one at 0.5 and one at 0.7 (Additional file 3:
Figure S3D). We thus ran two separate CoINcIDE ana-
lyses using each maxima as a threshold to better under-
stand how the resulting networks differ.

Step 4: Identify meta-clusters using network community
detection methods

The Girvan-Newman community detection algorithm is
then used to identify meta-clusters. This algorithm takes
as input the edge and edge weight matrices derived from
a sample-sample adjacency matrix, and outputs the final
discovered meta-clusters [22] (Fig. 1). CoINcIDE imple-
ments the Girvan-Newman algorithm using the R pack-
age igraph [23]. To ensure meta-clusters of a reasonable
size, meta-clusters with clusters from less than three
unique datasets are removed from the final network.

ColNCcIDE evaluation with simulated dataset clusters
Seven different sets of clustered datasets were simulated
from a real gene expression dataset containing four tis-
sue types using Eigen decomposition methods (see
Additional file 2: Supplemental Methods for details.)
Each set contained 10 datasets constructed in a similar
manner. Unless noted, a cluster was defined to contain
all patient samples of the same tissue type. All clusters
contained the logged expression of 200 simulated genes
(see Additional file 3: Figure S4 for example simulated
expression heatmaps.) The first set contained datasets
with evenly sized clusters of 50 patient samples each for
all four possible tissue types (Additional file 3: Figure
S4B). The second set contained clusters derived in a
similar manner to set one, but each cluster was assigned
a random size ranging from 1 to 100 samples; the third
set extended the methods of the second set by allowing
a random number of clusters per dataset ranging from 2
to 4 clusters, and the fourth set allowed the number of
clusters to randomly range between 1 and 4. The fifth
and sixth sets combined the different cluster sizes from
set three with the number of clusters in each dataset
ranging from 2 to 4 and then 1 to 4, respectively. In the
seventh and final set, two of the clusters from set 1 were
replaced by clusters with a random mixture of tissue
types (Additional file 3: Figure S4C).

For each of these seven sets, random normal noise
with a mean of zero and increasing standard deviation
from 0 to 2.4 was added to each of the 10 datasets. Each
set was simulated 50 times, and true positive rates (TPR)
and false positive rates (FPR) from the CoINcIDE meta-
clusters were computed and averaged across all 50 itera-
tions. A true positive was defined as an edge being con-
nected between two clusters of the same tissue type.
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Finally, several minimum mean similarity thresholds
ranging from 0.0 to 1.0 were tested. The minimum near-
est neighbor fraction was held at 0.7, the individual P
value maximum threshold was held at 0.01 and subtypes
with less than three unique datasets were removed to
match the thresholds used in all CoINcIDE analyses with
real data.

ColNcIDE evaluation with breast cancer PAM50 centroid
clusters

We first implemented CoINcIDE under a highly con-
trolled, semi-supervised clustering scenario to ensure
that CoINcIDE can re-discover known signal. We used
the PAM50 centroid sets that define five breast cancer
subtypes using 50 genes [24] to derive highly distinct,
clear clusters; these are well-established centroid sets [3,
25, 26]. The original PAM50 centroids for each of the
five breast cancer subtypes (Normal, Basal, Luminal A,
Luminal B, and HER2) were downloaded online from
the UNC Microarray Database [27]. HUGO gene sym-
bols were updated to their latest version using the
HGNChelper R package [28]. No dataset had less than
35/50 of these genes; this minimum 35-gene set con-
tained the key hormonal signaling genes ESR1 and
ERBB2 (Additional file 1: Table S1). Each group of pa-
tients assigned to a specific PAM50 subtype (centroid)
within a dataset was defined as a cluster (the maximum
number of PAMS50 genes found in each dataset was used
to make these assignments.) Pearson’s correlation was
used to assign a patient to the optimal PAM50 subtype,
as this is the similarity metric used by the commercial
PAMS50 platform algorithm [29].

ColNcIDE application with de novo PAM50 gene set
clusters

The PAMS50 feature set was used again, allowing the
maximum number of PAM50 genes found in a specific
dataset to cluster that individual dataset. Each dataset
was now de novo clustered using the suggested methods
from CoINCcIDE Step 1.

Comparison of ColNcIDE with concatenated matrix
clustering
CoINCcIDE was compared with the method of concaten-
ating datasets and then clustering them to compare their
abilities to discover replicable and biologically intuitive
subtypes. Because concatenation requires that all fea-
tures are found across all datasets, CoINcIDE was re-
run using only the minimum 35-gene PAM50 gene set
found across all 17 datasets (Additional file 1: Table S1)
for a fair evaluation; a similarity threshold of 0.3 was im-
plemented based on the density plot (figure not shown).
All 17 breast cancer datasets were included in the
concatenated data matrix. Concatenated matrices were
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tested with three transformation methods: no transform-
ation, gene-wise Batch Mean Centering (BMC) and
ComBat [9]; each transformation was run before cluster-
ing the concatenated matrix (see Additional file 2: Sup-
plemental Methods for details). The effects of the BMC
and ComBat transformations on the actual PAM50 cen-
troid classifications were also investigated by using the
PAMS50 centroid classification of each patient as the ac-
tual subtype, before any transformations, after BMC,
and alternatively after ComBat. A supervised analysis
using the baseline non-transformed datasets was also
run using the full PAMS50 gene set, to ensure that using
the smaller intersecting PAM50 gene set on the BMC
and ComBat supervised analyses did not significantly
alter AUC values. Survival analyses were conducted for
all breast cancer analyses (see Additional file 2: Supple-
mental Methods for details). Finally, to inspect the effect
of BMC on CoINcIDE, BMC was applied to each indi-
vidual dataset using the maximum number of PAMS50
genes found in each dataset and then CoINcIDE was
run, using the same parameters as the initial de novo
PAM50 CoINcIDE analysis. The effect of ComBat on
CoINCcIDE was not inspected because ComBat cannot be
run on an individual dataset.

CoINcIDE application with breast cancer meta-rank gene
de novo clusters

CoINCIDE was then run using the same k-means clus-
tering scheme as in the above methods section with
three meta-ranked gene lists to test CoINcIDE on differ-
ing gene set sizes that contained none of the PAMS50
genes included in the earlier clustering gene sets. Gene
sets of 50, 264, and 2,020 genes were selected via the
meta-ranking algorithm (PAMS50 genes were removed
before the meta-ranking algorithm was run.) The 50-
gene set test was included because the PAM50 gene set
includes 50 genes. This gene set could not include the
top 20 dataset-specific genes for each dataset, as this re-
sulted in more than 50 genes (Additional file 1: Table
S3; see Additional file 2: Supplemental Methods for de-
tails on the meta-rank algorithm), but the latter two fea-
ture sets did include these additional top-ranked genes
by dataset. Initial global meta-rank sets of 200 and
2,000, respectively, were chosen, and then any non-
intersecting genes that were ranked in the top 20
genes by mean absolute difference for a specific data-
set were included. This resulted in two features sets
with 264 and 2,020 genes (Additional file 1: Tables S4
and S5, respectively.)

ColNcIDE application with ovarian cancer meta-rank gene
de novo clusters

Finally, we tested CoINCIDE using the same k-means
clustering scheme as in the above methods section with
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two meta-ranked gene lists to test CoINcIDE differing
gene set sizes. The two gene sets were chosen in exactly
the same manner as the breast cancer 200 and 2,000 ini-
tial global-rank sets with additional dataset-specific
intra-ranked genes. This resulted in two features sets
with 240 and 2,014 genes (Additional file 1: Tables S6
and S7, respectively.)

Results

ColNcIDE: A framework for subtype discovery across
multiple datasets

CoINCIDE is a novel framework that identifies patient
subtypes, or meta-clusters, from clustering individual
datasets and then assigning edges between similar clus-
ters across datasets to create a network and identify sub-
types through community detection (Fig. 1) [22]. The
resulting subtype network provides a robust platform for
evaluating the effect sizes of genes within each subtype
across multiple datasets and an intuitive visualization
technique to better understand cluster-cluster and
dataset-dataset interactions. To demonstrate our work
to cluster across multiple datasets and discover replic-
able subtypes, we first use simulated datasets, and then
we use two collections of cancer data: a breast cancer
collection and an ovarian cancer collection. The breast
cancer collection constitutes 2,719 patients from 24
breast cancer gene expression studies encompassing 34
datasets (Table 1) [30]. The ovarian cancer collection
contains 3,105 patients from 24 gene expression micro-
array datasets (Table 2) [17]. We first validate CoINcIDE
using simulated data to illustrate the performance of Co-
INCcIDE in a controlled environment. Subsequently we
apply CoINcIDE on these two cancer dataset collections
to showcase its abilities on a disease with well-known
subtypes, that is, breast cancer, and one without estab-
lished subtypes, ovarian cancer.

ColNcIDE re-discovers ground truth subtypes in silico and
in a breast cancer collection

We used a gene expression dataset containing four dif-
ferent lung tissue types to simulate highly distinct pa-
tient clusters using different scenarios: equal cluster
sizes, mixed cluster sizes, and then mixes of both num-
ber of cluster sizes and numbers of clusters per dataset
(see Methods and Additional file 3: Figure S4). Across
seven simulation scenarios for varying levels of noise
and mean similarity metric thresholds, CoINcIDE re-
discovered the tissue-specific subtypes with high TPRs
and low FPRs (Fig. 2). A minimum similarity threshold
of 0.3 maintained high TPRs and zero FPRs for all simu-
lations; only when this threshold was lowered to 0.0 did
we observe FPRs over 1.0 % (Fig. 2, Additional file 3:
Figure S5A-@G). The TPR for all seven simulation scenar-
ios with increasing noise levels decreased as the
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minimum mean similarity threshold was increased (Fig. 2,
Additional file 3: Figure S6A-G). The final simulation,
serving as the negative control, had a lower TPR rate for
all similarity thresholds, as noisy clusters were never
assigned edges to any other clusters (Additional file 3: Fig-
ure S5G and Figure S6G). Simulations with a random
number of clusters that allowed datasets to have only one
cluster tended to have a slightly lower TPR for all noise
levels (Additional file 3: Figure S6D and F).

Next, for our first breast cancer analysis, we used the
supervised PAM50 centroid classifier that defines five
breast cancer subtypes using 50 genes [24] to derive
highly distinct, clear clusters. We defined each group of
patients assigned to a specific PAM50 subtype within a
dataset as a cluster. CoINcIDE correctly re-discovered
all five PAM50 subtypes, with all patients in the network
assigned to their true PAM50 subtype (Fig. 3a). These
CoINCcIDE meta-clusters were not affected by small vari-
ations in the similarity threshold level used; for example,
while the threshold used was 0.15 for this CoINcIDE
analysis based off of the similarity density curve (Add-
itional file 3: Figure S3A), applying a threshold of 0.3 to
both this PAMS50 feature set breast cancer analysis and
the subsequent de movo PAMS50 clustering analysis
described below did not change any of the final meta-
cluster results.

The corresponding PAMS50 centroid CoINcIDE net-
work shows the relationships between the five meta-
clusters (Fig. 3b, Additional file 3: Figure S7); except
for one cluster, the Basal meta-cluster which is highly
separated from all other meta-clusters. Clusters from
one dataset (dataset 17 in Table 1) had no edges that
passed the CoINcIDE thresholds for the PAM50 cen-
troid classifier analysis, and thus were not present in
the final network (Additional file 3: Figure S7). This
same pattern was observed for all of the breast de novo
clustering analyses described in later sections. Clusters
from the three two-channel microarray datasets (data-
sets 1, 12, and 13 in Additional file 3: Figure S7) tended
to be more weakly connected than clusters from the
other datasets, which were all one-channel microarrays
(Table 1).

In logistic regression models combining treatment
status variables and PAMS50 centroid CoINcIDE meta-
cluster assignments for each patient, the AUCs for
predicting binary pathological complete response
(pCR), relapse-free survival (RES), and disease-free
survival (DFS) were 0.762, 0.627, and 0.609, respect-
ively (Additional file 1: Table S8, Fig. 4a-c). Adding
the meta-cluster assignments in addition to baseline
treatment status models was significant (P value
<2.2E-16, 2.24E-05, and 1.51E-03; see Additional file
1: Table S8 and Additional file 2: Supplementary
Methods for details).
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Fig. 2 True positive rates (TPR) and true negative rates (TNR) of simulations. TPR plotted against FPR for the first six CoINcIDE logged gene
expression simulation scenarios for varied minimum mean similarity thresholds. The FPR is truncated at 0.02 because no FPR values ever reached
above this threshold. a-f were produced using the set standard deviation random normal noise level of 0.8 (Additional file 3: Figure S5A-G plot in
detail each simulation scenario at more noise levels.) a The results for the high quality simulation scenario with an equal cluster size and equal
number of clusters, (b) results for the random cluster size and equal number of clusters, (c) results for the equal cluster size and random number
of clusters with a minimum of two clusters per dataset, (d) results for the equal cluster size and random number of clusters with a minimum of
one cluster per dataset, (e) results for the random cluster size and random number of clusters per dataset with a minimum of two clusters per
dataset, and (f) results for the random cluster size and random number of clusters per dataset with a minimum of one cluster per dataset
scenario. The seventh simulation is not shown here due to space constraints but plots for this simulation scenario for equal cluster size but 50 %
random/noisy clusters can be found in Additional file 3: Figures S5G and S6G

ColINcIDE identifies known breast cancer subtypes using
de novo clusterings from 17 datasets

Next, we used CoINCIDE to find de novo clusters in the
breast cancer cohort using the PAMS50 gene set. CoINcIDE
discovered five subtypes (Fig. 5a); one was a Luminal A/Lu-
minal B mixture, one was predominantly Luminal A, one
was a HER2/Luminal B mixture, and two were predomin-
antly Basal. The second Basal meta-cluster contained only

three datasets (Additional file 3: Figure S8). The AUCs for
treatment status plus meta-cluster assignment were 0.762,
0.657, and 0.620 for predicting pCR, RES, and DFS, re-
spectively (Fig. 4d-f); the corresponding P values for adding
meta-cluster assignments to baseline treatment status were
<2.2E-16, 4.40E-09, and 1.04E-03 (Additional file 1: Table
S8). In the final network, several edges crossed between the
Luminal A and Luminal A/B meta-clusters (Fig. 5b).
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Next, we compared CoINCIDE to concatenating all 17  set). CoINcIDE discovered meta-clusters of similar
datasets using only an intersecting 35-gene PAM50 fea- make-up to the PAM50 de novo analysis reported above,
ture set, as concatenation requires an intersection, as  but it did not discover a HER2 meta-cluster and instead of
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and Additional file 1: Table S1 for the intersection gene clusters (Additional file 3: Figure S9A-B). Concatenated
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Fig. 5 CoINcIDE PAM50 gene set de novo clustering analysis. a Bar plots summarizing patients in the CoINcIDE PAM50 de novo clustering
meta-clusters or subtypes by their PAM50 classification. b Resulting cluster-cluster network for PAMS50 de novo clustering across 16 datasets;
one dataset did not have clusters that met the P value, nearest neighbor fraction, and mean similarity thresholds (0.01, 0.7, 0.25, respectively.)

clustering with no between-dataset transformation, which
acted as a baseline concatenation model, discovered three
subtypes (clusters); these clusters were highly heteroge-
neous in terms of PAMS50 subtype signal (Fig. 6b).
Concatenated clustering with gene-wise batch mean cen-
tering (BMC) discovered 2 subtypes, one predominantly
Basal and one mixed Luminal A, B, and HER2 (Fig. 6c).
Concatenated clustering with ComBat discovered three
subtypes, one predominantly Basal, one predominantly
Luminal A, and one mixed Luminal B/HER2 (Fig. 6d).
The AUC values for predicting pCR, RFS, and DFS each
of these concatenated clusterings were all fairly similar
and ranged from 0.583 to 0.606 (Additional file 1: Table
S8 and Additional file 3: Figure S10D-H). The status of
each patient's PAM50 subtype status was also calculated
after each transformation for comparison; patient PAM50
subtype status was heavily altered by the between-dataset
transformation methods; BMC altered the PAM50 sub-
type classification of 821 patients and ComBat altered the
classification of 673 patients when compared to the base-
line PAM50 classifications (Additional file 3: Figure S11A-
B). When the ComBat and BMC classification versions
were directly compared, 848 patients’ classifications dif-
fered. We also analyzed whether a transformation like
BMC would alter CoINCIDE results. When BMC was
applied to each breast cancer dataset before running Co-
INCIDE using the full PAMS50 gene set, CoINcIDE discov-
ered a similar number of original input clusters (45) and
final clusters in the CoINcIDE network (37) as the full Co-
INcIDE PAM50 analysis without BMC (44 and 38,
respectively). CoINcIDE discovered six subtypes that were
similar in PAM50 status make-up to the non-BMC CoIN-
cIDE analysis but with two as opposed to one predomin-
antly Luminal A subtype (Additional file 3: Figures S12
and 5B.) The predictive AUC values for pCR, RFS and

DES were 0.762, 0.660, and 0.630, respectively (see Add-
itional file 1: Table S8 for details).

We then investigated whether the CoINCcIDE de novo
PAMS50 analyses produced subtypes with similar prog-
nostic significance as subtypes derived in a supervised
manner using the PAM50 centroid classifications dir-
ectly as patient subtypes (see Supplemental Methods in
Additional file 2 for details). Transforming the datasets
using BMC or ComBat before the supervised centroid
analysis did not improve prognostic performance, and in
some cases the performance decreased after these trans-
formations (see Additional file 3: Figure S10I-Q and
Additional file 1: Table S8 for details). CoINcIDE, using
either the intersecting or full PAM50 gene set to derive
de novo clusters for each dataset, performed comparably
or better in terms of AUC compared to these supervised
analyses (Additional file 1: Table S8).

Finally, as our last evaluation of CoINcIDE using the
curated breast datasets, we ran de novo clustering ana-
lyses using meta-ranked gene sets based on gene expres-
sion variance without using PAM 50 genes (see Methods
for details.) We derived gene sets of 50, 264, and 2,020
genes. All three non-PAM50 de novo CoINcIDE analyses
produced subtypes with similar patient make-up as the
PAM50 de novo CoINcIDE analysis (Additional file 3:
Figure S13A, C, and E). All three of the non-PAM50
analyses were more predictive of outcomes than any of
the concatenated clustering analyses (Additional file 1:
Table S8); in particular, the non-PAM50 264-gene set
CoINCIDE analysis produced subtypes with an AUC of
0.757 when combined with treatment status to predict
pCR (Additional file 1: Table S8, Additional file 3: Figure
S10U). This result is comparable to those of both the
semi-supervised PAM50 centroid classification and de
novo PAM50 CoINcIDE analyses and better than the
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models produced by the supervised PAMS50 analyses
(Additional file 1: Table S8).

CoINcIDE identifies novel subtypes in ovarian cancer with
prognostic significance and associated therapeutic

targets

Next, we used CoINcIDE on the ovarian cancer datasets
to discover novel subtypes using de novo meta-ranked
gene sets in the same manner as the non-PAM50 CoIN-
cIDE analyses (see Methods for details.) Two gene lists,
one small (that is, 200 meta-ranked genes + 40 additional
non-intersecting intra-rank genes) and one large (that is,
2,000 meta-ranked genes + 14 intra-ranked genes) were
used, resulting in two CoINcIDE de novo clustering ana-
lyses (Additional file 1: Tables S6 and S7, respectively).
These analyses incorporated 24 datasets from the curate-
dOvarianData collection [17].

Using the ovarian cancer 240-gene de novo clusters as
inputs, CoINcIDE discovered three meta-clusters, or
subtypes (Fig. 7a-b); subtypes 1 and 2 contained pre-
dominantly patient tumor samples with serous histology

and subtype 3 contained mixed tumor histologies
(Additional file 3: Figure S14A). From the TCGA data-
set, two of the serous clusters were assigned to the two
different serous subtypes, while the third serous cluster
was not assigned any edges and thus was not included in
the final network (Additional file 3: Figure S15A).

An effect size analysis was run on the dataset clusters
assigned to each CoINCIDE subtype to identify marker
genes for each subtype. A GSEA analysis using genes
with an effect size of at least 0.5 for each subtype re-
vealed distinctive signaling patterns; subtype 1 was
enriched in gene sets for immune signaling, subtype 2
was enriched in gene sets for classic oncogenes such as
PTEN, P53, and KRAS and cell development, and sub-
type 3 was enrichments in gene sets for VEGF and RAF
pathways. Each subtype contained distinct potential drug
target genes as defined by the Druggable Genome [31]
with an effect size greater than 0.75 (Additional file 1:
Tables S9 and S10). These subtypes significantly strati-
fied patients both by overall survival and survival with a
5-year cutoff (Fig. 7b) (P values of 0.0479 and 0.0118,
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respectively). The mixed histology subtype contained
sparse outcomes data and had the worst outcome
(Fig. 7b).

Using the larger 2,014-gene set, CoINcIDE discovered
six subtypes (Fig. 7c-d); subtypes 1 to 3 contained pre-
dominantly patient tumor samples with serous histology,
subtypes 4 and 5 contained mixed histologies, and sub-
type 6 contained predominantly mucinous tissue sam-
ples; the three serous subtypes contained the majority of
the patients in the network (Additional file 3: Figure
S14B). One of the 24 input datasets was not used be-
cause it did not contain 80 % of these 2,014 meta-ranked
genes, leaving 23 datasets for analysis (Additional file 3:
Figure S15B).

We again used an effect size analysis to identify
marker genes for each subtype and analyzed them using
GSEA. This analysis revealed that subtype 1 was
enriched in gene lists for immune signaling and Hun-
tington’s and Parkinson’s disease, subtype 2 was enriched
in gene lists for DNA repair and cell cycle signaling, sub-
type 3 was enriched in gene lists for classic oncogenes

such as Notch and mTOR signaling, subtype 4 was
enriched in gene lists for metabolism signaling, subtype
5 was enriched in gene sets for HIV/immune signaling,
and subtype 6 was enriched in gene lists for apoptosis.
Each subtype contained distinct potential drug target
genes as defined by the Druggable Genome [31] with an
effect size greater than 0.75 (Additional file 1: Tables S11
and S12).

These six ovarian cancer subtypes significantly strati-
fied patients both by overall survival and survival with a
5-year cutoff (P values of 6.84E-06 and 8.16E-06, re-
spectively). Because the non-serous subtypes contain
sparse outcomes data, we cannot make strong inferences
about the clinical utility of these subtypes, and thus we
will focus our discussion on the three serous subtypes.
The 5-year Kaplan Meier survival curve shows a distinct
survival stratification between the serous immune and
the serous DNA repair and oncogene subtypes (meta-
clusters 1 versus 2 and 3, Fig. 7d). A similar analysis with
only the three serous subtypes was also highly significant
(figure not shown; P value of 7.93E-06). Meta-clusters 1,
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2, 3, 4, and 5 contained 735, 200, 33, 32, and 789 pa-
tients, respectively; meta-cluster 6 contained only eight
patients with outcomes data. When we removed meta-
cluster 6 from the overall survival and survival analyses,
the remaining five meta-clusters still significantly stratified
patients (P values of 2.22E-06 and 2.97E-06, respectively).

To compare the prognostic significance of the full set
of six CoINcIDE subtypes against that of standard clin-
ical variables, we also ran univariate Cox proportional
hazards models using histological type, tumor grade, and
tumor stage. Histological type and tumor grade were
weakly prognostic for overall survival (P values of 4.00E-
02 and 3.26E-03, respectively) and with a 5-year cutoff
(P values of 1.00E-01 and 1.30E-02, respectively). Tumor
stage significantly stratified patients by both overall sur-
vival and with a 5-year cutoff (P values of 8.80E-12 and
1.35E-09, respectively). The CoINCcIDE subtypes were
not strongly defined by tumor stage (Additional file 3:
Figure S16), suggesting that CoINcIDE captures novel
clinically relevant signal.

When the second global density curve maxima simi-
larity threshold of 0.7 (Additional file 3: Figure S3D) was
used, CoINCcIDE discovered seven subtypes; 5/7 of these
subtypes had greater than three datasets and closely mir-
rored the subtypes found in the 0.5 threshold analysis,
including the three large serous clusters (Additional file 3:
Figure S17A-B). These subtypes significantly predicted
overall and 5-year cutoff continuous outcomes (Additional
file 3: Figure S18) with P values of 2.52E-04 and 3.46E-04,
respectively. Several of these meta-clusters (meta-clusters
5, 6, and 7) had less than 30 outcomes recorded; if these
clusters are removed, the overall and 5-year cutoff survival
P values were higher, but still significant at 6.63E-03 and
2.81E-03, respectively.

We further confirmed the stability of the three serous
meta-clusters from the large gene list CoINcIDE analysis
(using the initial 0.5 similarity threshold) by removing
the TCGA dataset and re-running CoINcIDE. Removing
this large, high-quality dataset did not change any of the
other dataset clusters’ final assignments in the three ser-
ous subtypes (Additional file 3: Figure S19A-B); the as-
signments for the three non-serous subtypes also did
not change because none of these contained clusters
from the TCGA dataset. These CoINcIDE subtypes
without the TCGA dataset still significantly stratified pa-
tients by overall survival and with a 5-year cutoff (P
values of 1.05E-04 and 3.67E-05, respectively).

Discussion

We present here CoINcIDE, a framework for discovery
of patient subtypes across multiple datasets. The simu-
lated tissue cluster data results show that CoINcIDE per-
forms well with reasonable noise levels, clusters with
differing sample sizes, and datasets with differing
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numbers of clusters. The TPR slightly decreased for sim-
ulations that allowed datasets to have a single cluster, in
part because CoINcIDE does not allow for the compari-
son of clusters that are both derived from datasets with
only one cluster. CoINcIDE is conservative in that it
maintains a low FPR even as noise levels increase; even
when the minimum mean similarity threshold was set to
0.0, the FPR rate never increased above 10 %. CoINcIDE
also does not assign edges between low-quality, noisy
clusters, as seen in the final simulation where 50 % of
the clusters were samples randomly selected from all tis-
sue types (Additional file 3: Figures S5G and S6G).
These results give us confidence that CoINCcIDE can
identify true subtypes in scenarios that mimic real-life
datasets with varying noise levels, numbers of clusters,
and sizes of clusters.

The CoINcIDE PAMS50 centroid cluster breast cancer
analysis re-discovered the PAMS50 subtypes, confirming
CoINCcIDE’s accuracy on a large database of real gene ex-
pression datasets. We acknowledge that completely ac-
curate PAM50 subtypes can only be achieved using the
commercially available platform, nor are the PAMS50
subtypes a ground truth, but simply a set of subtypes
known to be replicable [32]. However, using the PAM50
centroids to assign patients to PAM50 subtypes, we have
illustrated that CoINcIDE accurately captures known
clinically relevant subtypes. Additionally, the pCR, or
treatment response, AUC of 0.762 closely matches the
reported AUC of 0.78 from the initial PAM50 publica-
tion [3], showing that CoINcIDE also produces meta-
clusters with expected correlative patterns to an external
response variable.

The CoINCcIDE breast cancer networks discovered also
reflect known hormonal signaling patterns in breast can-
cer; for example, the full PAM50 set de novo clustering
Basal meta-cluster was highly separately from the other
meta-clusters, and contained tightly interconnected clus-
ters (Fig. 3a). This trend was also seen throughout the
non-PAM50 gene set analyses (Additional file 3: Figures
S11A, C, and E). Basal breast tumors are considered to
be fairly distinct from other tumor subtypes, in terms of
treatment response, gene expression, and mutation pat-
terns [33]. Clusters of various sizes and hormonal status,
from various microarray platforms with various mixtures
of subtypes, were included in the final breast cancer
networks, highlighting CoINcIDE’s ability to overcome
dataset-specific noise without any additional dataset trans-
formations beyond baseline intra-dataset normalization.

The CoINcIDE meta-cluster network visualizations are
an intuitive data exploration tool to help researchers
identify such potential biases. For example, although it
did not heavily affect the final overall meta-clusters, the
two-channel dataset clusters in the breast analyses had
far fewer edges assigned to other clusters than the one-
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channel dataset clusters (this platform bias was not ob-
served in the ovarian cancer networks.) It is also easy to
identify a highly replicable, robust subtype as a meta-
cluster with many nodes (clusters) tightly connected by
many edges with very few edges spanning across to
other meta-clusters.

The PAM50 gene set de novo cluster CoINcIDE ana-
lysis using k-means consensus clustering showed that
CoINCcIDE can discover biologically intuitive signal when
each dataset is de novo clustered in an automatic, un-
biased fashion. A consistent pattern seen in all breast
cancer analyses was that the CoINcIDE subtypes discov-
ered tended to be more significantly prognostic (that is,
lower P values) in outcomes models for treatment re-
sponse (pCR) than long-term outcomes (RFS or DES); in
fact, the de novo clustering analysis achieved the same
pCR AUC as the PAM50 centroid clustering pCR AUC
(Additional file 1: Table S8).

The concatenated dataset analyses show how trans-
formation techniques to remove dataset-specific artifacts
can significantly alter actual biological signal found in a
dataset. This emphasizes the importance of methods like
CoINCcIDE that require no between-dataset normalization,
especially when researchers are searching for finer-grained
subtypes whose assignments may change heavily with any
transformations. However, while applying no transform-
ation, BMC or ComBat resulted in highly different
concatenated clustering results (Fig. 6), applying BMC to
each individual dataset did not heavily alter CoINcIDE’s
results, suggesting that CoINcIDE is also reasonably ro-
bust to different normalization procedures. CoINcIDE
also discovered either clearer subtypes in terms of known
PAMS50 signal and/or presented more finer-grained sub-
types for greater exploratory analyses in comparison to
the concatenated analyses. CoINcIDE also identified a po-
tential outlier (or highly distinct) dataset whose clusters
were never assigned edges to any clusters in other datasets
for any gene set tested. This dataset did not fall out as a
separate cluster in any of the concatenated clusterings,
but rather was smoothed over the different subtypes.

Similar AUC results as those from the PAMS50 de
novo CoINCcIDE analysis were achieved when using de
novo meta-ranked gene sets that did not include the
PAMS50 gene set; these results outperformed all of the
concatenated clustering results, regardless of whether
BMC or ComBat was applied (Additional file 1: Table
S8). These prognostic results using CoINcIDE also per-
formed comparably, and oftentimes better, than a com-
pletely supervised approach using the PAM50 centroid
classifications, with or without transforming the data a
priori using BMC or ComBat (Additional file 1: Table
S8). We acknowledge that these results do not reflect
the accuracy or usefulness of the commercial PAM50
platform performed in a controlled laboratory setting;
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rather, they show that CoINcIDE can produce subtypes
with similar prognostic significance than those derived
from much more controlled supervised methods. It also
appears that for supervised analyses, transformations
such as BMC or ComBat have negligible effects in
terms of producing subtypes that can accurately predict
outcomes (when combined with treatment informa-
tion), but these transformations have much stronger
negative effects when unsupervised cluster analyses are
used to derive the subtypes. However, the latter ap-
proach is oftentimes needed when a researcher or clin-
ician is not aware a priori of the key patient subtypes in
a disease.

An additional benefit to CoINcIDE over concatenated
dataset analyses includes shorter analysis run-times; k-
means clustering on a large concatenated dataset can be
computationally intensive. Finally, CoINcIDE also pro-
vides metrics to interpret the replicability and quality for
each specific subtype. The CoINcIDE R package reports
the number of datasets with clusters assigned to each
subtype that passed significance and similarity thresholds,
and how many edges for that subtype were assigned to
clusters within the same subtypes. A user can easily inter-
pret not only these quantitative metrics, but also the
resulting network visualizations. The CoINcIDE package
includes between-dataset normalization methods like
ComBat so that they can be compared alongside a CoIN-
cIDE analysis.

The ovarian analyses showed that CoINcIDE can
provide important biological insight into a disease for
which clear gene expression subtypes have proven elu-
sive [34]; this ambiguity in signal is manifested in the
CoINCcIDE networks for both the short and long gene
list analyses that have several edges spanning different
meta-clusters (Fig. 7a and c). However, the effect size
analyses on each CoINcIDE meta-cluster provide bio-
logical hypotheses for which genes may be the most ro-
bust in differentiating ovarian subtypes, in particular
the serous subtypes. For example, in the short-gene list
CoINCcIDE ovarian analysis, the Druggable Genome
[31] gene CYP4BI had the highest effect size (0.676,
Additional file 1: Table S9) in the serous meta-cluster
1. The expression of this gene has been confirmed
stratify non-platinum-resistant serous ovarian cancer
patients that do not and do have recurrences after a
taxane regimen [35]. While this effect size is relatively
modest, it is a robust measurement across several data-
sets, and suggests that CYP4B1 may provide insights
into therapy for ovarian cancer patients tailored by
subtype. In the long-gene list CoINcIDE ovarian sub-
types, CYP4B1 had an even higher effect size (0.853,
Additional file 1: Table S11) for the serous meta-
cluster 1, further highlighting its potential use as a
druggable target.
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The other two serous meta-clusters from the long-gene
list analysis, meta-clusters 2 and 5, had poorer outcomes
in general (Fig. 7d). CoINcIDE also identified potential
druggable targets within each of these meta-clusters, such
as the gene ODCI which has an effect size of 1.092 in
meta-cluster 2 (Additional file 1: Table S11) There is not
extensive literature on ODCI in serous ovarian cancer, but
it has been suggested that this gene’s expression decreases
when platinum is added to ovarian cancer cell lines [36],
suggesting ODCI may indeed have therapeutic relevance
for meta-cluster 2. Beyond providing druggable hypoth-
eses, these CoINCIDE subtypes (meta-clusters) driven by
these effect size patterns also significantly stratify patients
by length of survival (Fig. 7d), giving us further confidence
in their clinical utility.

CoINCcIDE also highlighted the shortcomings of using
only a single dataset such as the TCGA dataset to cluster
tissue samples. For example, we observed two persistent
serous subtypes across both the small and large gene list
ovarian analyses; the long gene list analysis produced a
third serous subtype that incorporated the third TCGA
serous cluster not included in the short gene list CoIN-
cIDE network. This third subtype contained far fewer
clusters and less edges interconnecting the clusters, sug-
gesting that this third meta-cluster should be viewed as
more exploratory, or that the gene set used does not
capture the signal in this meta-cluster as clearly as in
the two other serous meta-clusters.

The initial TCGA ovarian publication reported four
serous subtypes: ‘immunoreactive, ‘proliferative; ‘mesen-
chymal, and ‘differentiation’ [37]; the three serous meta-
clusters discovered by the CoINcIDE long-gene list
analysis follow roughly similar trends in that one was
enriched in immune response, one in DNA repair and
one in classical oncogene signaling. Recent TCGA ana-
lyses on the Broad Institute’s GDAC website [38] that
used non-negative matrix factorization and hierarchical
consensus clustering suggest that there are three, as op-
posed to four, stable serous ovarian meta-clusters, the
same number we discovered in our long-gene set ana-
lysis (see the caption of Additional file 3: Figure S20 for
data details.) The CoINcIDE serous ovarian meta-cluster
patient assignments roughly correspond to these recent
GDAC webserver patient assignments, but they are not
identical (Additional file 3: Figure S20). The differences
in the number of clusters and enrichment patterns be-
tween the initial TCGA published subtypes, the GDAC
webserver results and the CoINcIDE subtypes reflect a
broader, continued debate on the number and replic-
ability of ovarian serous subtypes. A recent report sug-
gests that serous ovarian cancer subtypes are a ‘holy
grail’ [34]. We acknowledge that further work, espe-
cially in vivo cell line tests, must be done to validate
the ovarian subtypes we have discovered using

Page 15 of 17

CoINCcIDE, but their prognostic significance across
multiple datasets provides a robust platform from
which to validate them further.

More importantly, the TCGA ovarian publication
stated that the reported four expression subtypes did
not significantly stratify TCGA patients by survival
duration [37], while the CoINcIDE subtypes for both
the small and large gene list analyses significantly
stratified patients by overall survival, not just for the
TCGA dataset, but across several datasets. Outcomes
data were sparse for the mixed histology subtypes, and
thus broad survival trends for these subtypes cannot be
readily inferred, but the CoINcIDE analysis still pro-
vided robust effect sizes of genes that distinguish these
subtypes from the serous subtypes. A stand-alone
TCGA analysis would not have provided this informa-
tion, because it would have only contained samples
with serous histology.

Additionally, we showed that the CoINcIDE subtypes
remained the same upon removal of the TCGA data-
set, emphasizing that multiple smaller datasets can
provide stable CoINcIDE subtypes. The success of
CoINCcIDE in finding subtypes that are both biologic-
ally intuitive and predictive of survival is of course
dependent upon the input feature (gene set) and the
single-dataset clustering algorithm, but it is an effect-
ive framework to confirm that the resulting subtypes
are highly replicable across numerous datasets and
thus stand a chance of being implemented one day in
routine clinical practice.

Conclusions

In the era of big data, multiple datasets have now been
collected for a single disease, necessitating meta-analysis
cluster frameworks. CoINcIDE harnesses the power of
multiple datasets to provide novel approaches for un-
supervised clustering across multiple datasets. CoINcIDE
has the ability to discover both replicable and prognostic-
ally significant subtypes without any additional dataset-
specific transformations, unlike the current established
method of concatenation. CoINCcIDE also does not
require a strictly intersecting feature set across all
datasets, and the final meta-cluster network provides
a rich platform to infer both potential meta-cluster
and dataset-specific trends.

Finally, the framework proposed here is not limited
to gene expression data; CoINcIDE can be imple-
mented using various clustering algorithms, and even
distance, as opposed to similarity, metrics. The CoIN-
cIDE framework and the breast cancer collection are
available as R packages to the community; it is our
hope that these resources and methods provide a plat-
form for further development of novel methods to clus-
ter across multiple datasets.



Planey and Gevaert Genome Medicine (2016) 8:27

Software and data availability

Both curatedBreastData and CoINcIDE are available
as R packages. The curatedBreastData package can
be downloaded from http://bioconductor.org/pack-
ages/release/data/experiment/html/curatedBreastData.
html and original data processing scripts can be
found at https://github.com/kplaney/curatedBreast-
Cancer. The CoINcIDE R package can be found at
https://github.com/kplaney/CoINcIDE.
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