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Inter-tissue coexpression network analysis
reveals DPP4 as an important gene in heart
to blood communication
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Abstract

Background: Inter-tissue molecular interactions are critical to the function and behavior of biological systems in
multicellular organisms, but systematic studies of interactions between tissues are lacking. Also, existing studies of
inter-tissue interactions are based on direct gene expression correlations, which can’t distinguish correlations due to
common genetic architectures versus biochemical or molecular signal exchange between tissues.

Methods: We developed a novel strategy to study inter-tissue interaction by removing effects of genetic regulation
of gene expression (genetic decorrelation). We applied our method to the comprehensive atlas of gene expression
across nine human tissues in the Genotype-Tissue Expression (GTEx) project to generate novel genetically decorrelated
inter-tissue networks. From this we derived modules of genes important in inter-tissue interactions that are likely driven
by biological signal exchange instead of their common genetic basis. Importantly we highlighted communication
between tissues and elucidated gene activities in one tissue inducing gene expression changes in others.

Results: We reveal global unidirectional inter-tissue coordination of specific biological pathways such as protein
synthesis. Using our data, we highlighted a clinically relevant example whereby heart expression of DPP4 was
coordinated with a gene expression signature characteristic for whole blood proliferation, potentially impacting
peripheral stem cell mobilization. We also showed that expression of the poorly characterized FOCAD in heart
correlated with protein biosynthetic processes in the lung.

Conclusions: In summary, this is the first resource of human multi-tissue networks enabling the investigation of
molecular inter-tissue interactions. With the networks in hand, we may systematically design combination therapies
that simultaneously target multiple tissues or pinpoint potential side effects of a drug in other tissues.

Background
Tissues in multicellular organisms do not operate in
isolation, but interact with other tissues and organ
systems. Examples include the control of adrenal
glucocorticoid secretion by the hypothalamic-pituitary-
adrenal axis and the regulation of glucose homeostasis by
the endocrine pancreas. Although abundant large-scale
data on protein–protein interactions and gene–gene

interactions [1–3] in single tissues have been reported,
large scale unbiased interactions across tissues are
currently less well characterized. An unbiased picture of
interactions between tissues in humans will provide essen-
tial insights into human biology in health and disease and
further assist in the development of treatments for com-
plex disease. For example, therapeutically targeting a gene
in one tissue may cause side effects or beneficial effects in
distant tissues. Therefore, a systematic method of unco-
vering tissue–tissue interactions in an unbiased way is ur-
gently needed.
Previously we reported an inter-tissue view of obesity

in mice with respect to molecular states that are associ-
ated with physiological states using gene expression in
adipose, liver and hypothalamus from an F2 progeny [4].
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Currently, the overall picture of tissue–tissue interac-
tions at the transcriptional level in healthy humans re-
mains unknown. The Genotype-Tissue Expression
(GTEx) project [5] aims to create a comprehensive pub-
lic atlas of gene expression and its regulation across
multiple human tissues. This project aims to release
genotype and transcriptome data generated by RNA-Seq
in more than 30 tissues of approximately 900 post-
mortem donors [6]. In its pilot phase, expression data
for nine tissues from 185 subjects are available. In this
dataset, multiple tissues have been profiled within each
subject, enabling us to perform an inter-tissue inter-
action analysis (Additional file 1). To our knowledge this
is the first comprehensive resource of multi-tissue hu-
man expression data enabling the investigation of mo-
lecular tissue–tissue interactions in healthy people.
In this study, we aim to distinguish between inter-

tissue interactions caused by different factors (Fig. 1).
Expression levels of two genes in two tissues, e.g., yi,h for
gene i in the heart, and yj,a for gene j in adipose tissue,
are correlated because they are regulated independently
by the same genetic locus (Fig. 1a), or they respond in-
dependently to the same environmental cues (Fig. 1b),
or gene i in the heart signals to the adipose and regu-
lates expression of gene j (Fig. 1c). Transcriptional regu-
lation of gene expression in different tissues by common
genetic or environmental perturbations has been well
studied [7]. A comparison of co-expression modules of
genes within individual tissues has revealed conservation
of biological pathways responding to common genetic or
environmental signals [8–10]. However, signaling be-
tween tissues via biological signals that regulate tran-
scription has not been extensively studied. Here we
developed a novel strategy for generating a global
view of tissue–tissue interactions at the transcriptional
level (Fig. 2). To derive modules of genes important
in inter-tissue interactions that are driven by bio-
logical signal exchanges instead of their common genetic

basis, we performed a genetic-decorrelated tissue–tissue
coexpression (gdTTC) network analysis for all pairs of tis-
sues. Genetic decorrelation is a method to remove all gen-
etic contribution from yi,a by regression yi,a ∼ SNPS + yi,a

*.
The resulting yi,a

* is expected to be independent from
genetic regulation. Following the genetic decorrelation
of all gene expression data, we performed standard
bipartite clustering in order to identify clusters of
genes and derived biological insight related to the
inter-tissue correlations. To dissect sub-clusters within
a cluster, we developed a selection algorithm for iden-
tifying asymmetric inter-tissue interactions, called
gene-to-module detection, to find sub-clusters regu-
lated by a few genes noted as key regulators and their
biological function.
Here we provide an unbiased global view of the asym-

metric molecular interactions between pairs of nine hu-
man tissues, which reflect biological processes that are
being communicated and coordinated amongst tissues
rather than common responses to genetic variations. We
show that some pathways, such as the “establishment of
protein localization to organelle” and “translational
initiation”, are the most prevalent pathways observed
amongst all asymmetric inter-tissue coexpression net-
works identified. On the other extreme is the observa-
tion that a wide variety of pathways are found enriched
only in asymmetric inter-tissue coexpression networks
between a single pair of tissues. Our tissue–tissue coex-
pression network analysis revealed novel asymmetric
inter-tissue interactions of which we highlight two. As a
clinically relevant example, we show an asymmetric
inter-tissue sub-network whereby heart DPP4 is coex-
pressed with a module of cell cycle-related genes in
whole blood, suggesting DPP4 expression in the heart
coordinates whole blood proliferation, thereby poten-
tially regulating stem cell trafficking and mobilization to
peripheral tissues. As a second example, we show that
expression of the poorly characterized FOCAD in the

Fig. 1 Inter-tissue correlation of expression levels of two genes in different tissues due to responding to the same genetic variation (a);
responding to the same environmental variation (b); or biological signal exchanges between two tissues (c)
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heart correlates with protein biosynthetic processes in
the lung.

Methods
Biospecimens
Tissue samples collected in the GTEx pilot study [5]
were from 237 post-mortem donors. A full description
can be found in the Supplementary Materials of the
GTEx pilot study [5]. Briefly, sampled tissues were pre-
served in PAXgene® tissue kits (PreAnalytiX®). Samples
were fixed for a minimum of 2–4 hours, and then placed
in the stabilizer buffer for shipping to the GTEx
Comprehensive Biospecimen Resource (CBR). The mean
sample ischemic time was around 420 minutes [5].
Supporting quality documents and workflows for the
project are available at http://biospecimens.cancer.gov/
resources/sops/default.asp.
Note that tissues collected in the GTEx study are post-

mortem. Melé et al. [11] show that gene expression pro-
files in the GTEx study are similar to the profiles of
corresponding tissues from living donors, and tissue pro-
file classifiers based on profiles in the GTEx study can
accurately classify expression profiles of tissues from liv-
ing donors in multiple independent studies. Melé et al.
[11] also show that sample ischemic time in the GTEx

study has a small impact on gene expression but a larger
impact on splicing.

RNA sequencing
Total RNA was isolated from PAXgene® tubes using
proper Qiagen kits following the manufacture's specifi-
cation. Detailed experimental procedures for blood,
PAXGene-preserved, and frozen tissue samples can be
found in the Supplementary Materials of the GTEx pilot
study [5]. All samples sequenced had a RNA integrity
number (RIN) value of 6.0 or higher and at least 1 μg of
total RNA.
RNA sequencing was performed using a standard

non-strand specific protocol with poly-A selection of
mRNA. Non-strand-specific RNA sequencing was
performed at the Broad Institute using a large-scale,
automated variant of the Illumina Tru Seq™ RNA
Sample Preparation protocol (Illumina: TruSeq Protocol
Info). Detailed experimental procedures can be found
in the Supplementary Materials of the GTEx pilot
study [5].
RNA-seq data were aligned with TopHat version

v1.4.1 to the UCSC human genome release version hg19
(Genome Reference Consortium GRCh37). Gencode
version 12 was used as a transcriptome model for the

Fig. 2 Schema depicting the novel strategy for generating genetically decorrelated inter-tissue networks and deriving modules of genes
important in inter-tissue interactions that are driven by biological signal exchanges instead of their common genetic basis. The black line between
gene K’ and J’ denotes the undesired correlation due to shared genetic basis, which will be removed after decorrelation. Red lines denote genuine
correlations due to non-genetic biological interactions. A gene module detection strategy is used to claim a set of genes, namely module M, in
tissue B is correlated with a gene, namely K’ in tissue A. We hypothesize that asymmetric inter-tissue correlations, whereby a gene in one tissue is
asymmetrically correlated to a group of genes in a second tissue, may indicate interesting unidirectional interactions between tissues. If gene K’ is
correlated with module M while the average number of correlations between members in M and other genes in tissue A is much lower than the
links between K’ and M, we report this asymmetric association. Biological function associated with these unidirectional interactions is determined
by gene ontology enrichment analysis, which provides insight into systemic pathway coordination
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alignment as well as all gene and isoform quantifications.
Unaligned reads were merged back in to create a final
bam. Gencode v12 annotates a total of 53,934 genes,
including 20,110 protein coding genes, 11,790 long non-
coding RNAs (lncRNAs), and 12,869 pseudogenes. Ex-
pression levels were produced at the gene level in RPKM
units using RNA-SeQC. Samples with fewer than 10 mil-
lion mapped reads were removed.

Data availability
All primary sequence and clinical data files, and any
other protected data, are deposited in and available from
dbGaP (http://www.ncbi.nlm.nih.gov/gap) (phs000424).

RNAseq data preprocessing
The RNAseq data used for the analyses described in this
manuscript were obtained from dbGaP (accession num-
ber phs000424.v2.p1) in Feb 2014. It is common practice
to adjust known and hidden confounding factors in gene
expression data before further analysis [12]. We used
PEER factors [13] to represent hidden confounding fac-
tors. While removing too many PEER factors increases
the risk of filtering out genuine biological signals, adjust-
ing too few PEER factors will obscure interesting discov-
eries with experimental covariates. To address this
problem, we developed a systematic method to quantify
the reasonable numbers of PEER factors to be adjusted
in each tissue with respect to the optimal gene ontology
(GO) enrichment (Notes and Figure S1 in Additional
file 2). Many genes had low expression levels and low
variances due to zero-valued expression levels in
many subjects. As these genes may introduce artifi-
cially high correlations between them we removed
genes in a tissue expression data set if their standard
deviations were smaller than 20 % of the difference
between their maximal and minimal expression levels.

Decorrelating genetic components of gene expression
Using the standard mixed model notations, a gene expres-
sion level (e.g., gene i) in a given tissue (e.g., tissue A) can
be modeled as Yi,A = β0 + ug + ε, where ug is the ran-
dom term representing the contribution from a large
number of loci of small effects and ε is the residual
representing other contributions. It is assumed that
the total variance was normalized to be one, and both
terms follow multivariate normal distribution. More
specifically, we assume that ε ~ N(0, (1 − hi,A)I), and
ug ~N(0, hi,AKg), where I is the identity matrix and Kg the
kinship matrix estimated from the genotypes using stand-
ard procedure calculating Realized Relationship Matrix
[14, 15]: the rth column and sth row of the matrix (that is,
the similarity of rth and sth subject) is calculated by the

formula Kg r;sð Þ ¼ 1
L

XL

l¼1

gl;r−pl
� �

gl;s−pl
� �

1−plð Þpl
, where L is the

number of available SNPs, pl is the allele frequency of the
SNP l, and gl,r is the genotype coded as 0, 1, and 2, corre-
sponding to homozygote, heterozygote, and the other

homozygote. Here hi;A ¼ Var μgð Þ
Var μgð ÞþVar εð Þ is the variance

component of expression level of gene i in tissue A that
can be explained by genotype, a parameter referred to as
“pseudo-heritability” in mixed model literals. We used
FaST-LMM method to estimate hi,A [14]. After the key
parameter hi,A has been estimated, we defined the
Cholesky decomposition matrix D in the same way as

Kang et al. [16]: D ¼ U−1
2 hi;ASþ I
� �

, where U is the
eigenvector matrix of Kg, and S is the diagnose matrix
formed by eigenvalues of Kg. Applying this matrix on the
expression data yields transformed expression data for
which the genetic contributions are decorrelated. More
precisely, we calculate the transformed data by applying
transformation Yi,A

* = DYi,A. Similarly, we generated Y*j,B
following the same procedure.
As Yi,A is adjusted for all potential environmental

covariants, and Y*i,A and Y*j,B contain no contribution
from covariance of genome similarity, the inter-tissue
interaction represented as a Spearman correlation
Corr(Y*i,A , Y*j,B) is likely driven by biological regulation.

P values and false discovery rate estimation of the
correlations
Following the standard method, for any given Spearman
correlation r with sample size n, we calculated a t-statistic

using the formula t ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n−2ð Þ= 1−r2ð Þp

. Assuming that it
follows a t-distribution with degree of freedom df = n-2,
we obtained the p value of the correlation. A pair of genes
is defined as being significantly correlated if and only if
their correlations meet the following conditions: (1) the
p values of correlations based on genetically decorrelated
data are <10−3; (2) as transformation may introduce
some artificial correlations, we set the p values of
correlations based on the original data <1 × 10−3.5.
False discovery rates (FDRs) were estimated by per-
mutation tests. We randomly permute the sample la-
bels of gene expression data, then re-calculated
transformation matrix D and genetically decorrelated
data. After calculating correlations based on original
and genetically decorrelated data, we counted the
number of pairs of genes that were significantly cor-
related as defined above. For each tissue pair, we per-
formed a permutation test five times and estimated
the average FDR for the tissue pair. FDRs for most
tissue pairs (Table S2a in Additional file 3) are <0.004
except that for the lung-skin pair, which is 42 %.
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Inter-tissue network generation
A natural way to find clusters in two groups of nodes is
to use bipartite clustering [17], an established technique
in the field of machine learning. We implemented a
standard bipartite clustering algorithm using singular
values decomposition [17]. However, when applying GO
enrichment analysis for the genes in the partitioned clus-
ters, we found no significant enrichment. A bipartite
clustering method aims to find balanced clusters in the
two groups of nodes. However, inter-tissue interactions
may not be bi-directional, where a large number of
genes in tissue A correlate with a group of genes in tis-
sue B, but rather unidirectional, where a small number
of genes in tissue A interact with a large number of
genes in tissue B. We developed the following procedure
to identify unidirectional interactions.

Gene-to-module interactions
Given a tissue pair A and B, we define a set of genes for
each gene iA in tissue A, namely MiA;B , representing
genes in tissue B that are correlated with the gene iA in
tissue A. Then, we define significant asymmetry cor-
relation sets as follows. First, we calculate the total
number of genes in tissue A that are correlated with

any of the members in M (in tissue B) as
X

JB∈MiA ;B

MJB;A

and the average number of genes for members in

MiA;B as AMiA;B ¼

X
JB∈MiA ;B

MJB;A

MiA ;B
. If MiA;B is less than

one-tenth of MiA;B, we define the set MiA;B as a candi-
date asymmetry set. Second, we check whether candi-
date asymmetric inter-tissue correlations MiA;B are
due to potential common regulations in a single tis-
sue. For the same gene i in tissue B, we define MiA;B

as an asymmetric set if MiA;B is less than one-tenth of
the size of MiA;B. The significance of a module of size
MiA;B

�� �� can be approximately estimated using binomial
models. For each pair of tissues, we calculate the
average number genes that each gene was correlated
with. Then, according to the size of a module, we estimate
the p value of observing a module of the same size by
chance. The p values for modules of size m in each tissue
pair is listed in Table S2b in Additional file 3.

Enrichment analysis
We used Bioconductor [18] to carry out the GO bio-
logical process (GOBP) enrichment analysis. We applied
the hypergeometric test using the annotation database
“org.Hs.eg.db”. The p value cutoff used was 0.05 dividing
the number of GOBPs tested in the corresponding tissue
pairs. Since the GOBPs are hierarchically organized in a
tree-like structure, terms at different levels of the tree

are not comparable. We counted the number of terms
in the path from the root as the “level” of each GO
term and used only level 3 GO terms. We also
applied the hypergeometric test for enrichment
analysis using the disease GWAS candidate gene
catalog (http://www.genome.gov/gwastudies/) and disease
signature database. MSigDB (http://www.broadinstitu
te.org/gsea/msigdb/index.jsp) and multiple Human tissue
atlas expression profile datasets were used to generate the
heat map of the expression levels of the genes in whole
blood that correlated with heart DPP4 expression levels
[19, 20].

Results and discussion
Genetic decorrelation of GTEx data and construction of
inter-tissue coexpression networks
All gene expression data used in this analysis were pre-
processed to correct for common confounders such as
batch effects and experimental artifacts by adjusting for
factors estimated using the probabilistic estimation of
expression residuals (PEER) method [13]. After correct-
ing for the PEER factors and filtering lowly expressed
genes, we calculated the Spearman correlation for each
gene pair between the nine surveyed tissues. In total,
there are 9 × 8⁄2 = 36 tissue pairs, and for each tissue pair
we calculated around 20,000 × 20,000 correlations be-
tween gene pairs. An inter-tissue interaction was defined
as a pair of genes whose correlations both before and
after genetic decorrelation are significant (see "Methods"
for details).
The major goal and novelty of this study is to explore

biological interactions between tissues, in the absence of
the potentially confounding common genetic contribu-
tions to different genes [4] due to common regulatory
elements or shared expression quantitative trait loci
(eQTL), which were reported in the GTEx paper [5]. A
high correlation between two genes in two different tis-
sues can be due to their shared genetic contribution,
which obscures tissue–tissue correlations related to bio-
logical communication. In order to dissect out these
shared genetic contributions, a straightforward proced-
ure would be to remove common genetic effects by con-
ditioning on shared eQTLs. However, this procedure
relies on many parameters, such as the number of
eQTLs to include, and therefore may suffer from over-
fitting, especially for genes whose expression levels have
complicated genetic architectures. In general, for any
two individuals, the probability of sharing genetic alleles,
regardless of how complicated their genetic architecture
is, is proportional to their genomic similarity. Motivated
by this observation, we developed a procedure to decorr-
elate genetic effects using the identity-by-state (IBS)
matrix as estimated by the genotypes. We first estimated
the pseudo-heritability [21], which is the expression
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variance component explained by the genome similar-
ities [22, 23]. Then we used the estimated heritability to
create a transformation matrix for removing genetic
regulation from the expression data so that, in theory,
the data, after transformation, contain minimal genetic
contributions. This procedure is commonly used in
mixed models [16, 24] and is described in detail in the
"Methods" section.
After genetic decorrelation, cross-tissue gene–gene

correlations were calculated again following the same
procedure described above. We used R and R to repre-
sent correlation matrices before and after genetic decorr-
elation. To evaluate whether the genetic decorrelation
procedure effectively removed the genetic component
from the data we applied two different tests. First, we
compared the shared eQTLs between cross-tissue corre-
lated gene pairs. Given a pair of tissues, we calculated
the average number of shared eQTLs (as described in
the GTEx pilot analysis [5]) of all pairs of genes that
were significantly correlated. By comparing this indicator
before and after decorrelating genetic effects, we ob-
served that the average number of shared eQTLs
decreased dramatically after transformation (Fig. 3a).
Secondly, we compared the correlation between pairs of

identical genes in two tissues before and after genetic
decorrelation. The genetic architecture of transcriptional
regulators for the same gene in different tissues is simi-
lar such that common genetic regulation likely contrib-
utes to the correlation of expression of the same gene in
different tissues. We observed that this proportion was
also significantly reduced after applying the transform-
ation (Fig. 3b). Thus, we conclude that our transform-
ation procedure removed a significant portion of the
genetic contribution to the correlation of gene expres-
sion between tissues.
In some cases, the mixed model-based transformation

can also introduce artifacts such as when the pseudo-
heritability of two genes is similar. In these instances,
their transformation matrix will be alike and could
therefore generate artificial correlations. Also, since the
sample size of the shared tissue pairs is low (Additional
file 1), the variance of the estimate of pseudo-
heritability, which is proportional to the sample size, can
be large. In order to filter out potential artificial correla-
tions introduced by genetic decorrelation, we adopted
the following conservative rule: two genes from two tis-
sues are defined as inter-tissue correlated if and only if
they are significantly correlated with each another before

Fig. 3 Assessing the indication of genetic contribution to the inter-tissue correlations. a Average number of shared eQTLs per pair of significantly
correlated genes. b Proportion of significant correlations due to cis correlation of genes (i.e., expression levels of the same gene in two different
tissues correlate with each other)
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and after the transformation. These inter-tissue correla-
tions are most likely due to biological signals instead of
common genetics.

A global overview of the patterns of inter-tissue
coexpressed genes
Given the correlation matrix R calculated above, for
each pair of tissues we constructed inter-tissue coexpres-
sion networks as bipartite graphs. In these graphs, the
nodes in two columns are the genes in the two tissues,
and an edge between two nodes is added if they are
inter-tissue correlated. To assess a global pattern of
inter-tissue coexpressed genes we examined the total
number of significant gene–gene correlations between
each tissue pair, which provided an estimate of the de-
gree of potential biological interactions between tissues
(Fig. 4a). Among the top five pairs of tissue were nerve
and heart, with nerve in combination with heart, adipose
and thyroid, and heart in combination with nerve, thy-
roid and adipose. Given that the function of nerves
within the nervous system is to send signals from one
part of the body to another and to receive feedback in

order to coordinate motor and sensory responses, it is
not surprising to observe a significant number of inter-
tissue correlations involving the tibial nerve. Similarly,
given the intimate connection between the heart and the
circulation, which delivers blood to all parts of the body,
observing a significant number of inter-tissue coexpres-
sions is expected. In contrast, the lung was the most
prominent in tissue pairs scoring the lowest number of
inter-tissue correlations in combination with skin, whole
blood and muscle.

Identification of asymmetric inter-tissue correlation
patterns
Gene clusters derived using a standard bipartite cluster-
ing algorithm [17] were not significantly enriched in any
GOBP. A standard bipartite clustering aims to find a
cluster of genes interacting with another cluster of genes
in the second tissue. However, cross-tissue interactions
may be unidirectional, e.g., a few genes in one tissue
regulate many genes in another tissue. Thus, we devel-
oped a selection strategy for identifying asymmetric
inter-tissue correlation patterns. For each individual

Fig. 4 Functional annotation of inter-tissue correlations. a Summary of the number of correlations between tissue pairs (left axis) and summary of
the number of significant GOBPs associated with the asymmetric inter-tissue correlations (gene-to-module relationships) per tissue pair (right axis).
b Heat map transformation summarizing the GO enrichment analysis results for each tissue pair. The GO categories used are listed in Additional
file 6
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gene we assessed whether there was a large cluster of
genes in another tissue asymmetrically linked with it,
which were referred to as gene-to-module relationships
(Fig. 2). The numbers of gene-to-module relationships
identified in each pair of tissues are listed in Additional
file 4. We then performed GO enrichment analysis on
the top 20 most significant gene-to-module relationships
to infer which biological pathways are involved in inter-
tissue interactions. The complete set of significantly
enriched pathways is listed in Additional file 5. It is
worth noting that the total number of inter-tissue
relationships and the number of biological pathways
enriched among genes involved in gene-to-module rela-
tionships (Fig. 4a) were not related. The tissue pairs with
the largest number of enriched level 3 GOBPs, such as
thyroid–skin and thyroid–blood, had small numbers of
total cross-tissue correlations (Fig. 4a). Thyroid is the
tissue where gene expression is most likely to be regu-
lated by genetic variation [5] so that genetic decorrela-
tion has the largest effect for thyroid expression data.
These results indicate that decorrelating genetic effects
may facilitate the identification of biological connections
between tissues.
The GOBPs associated with the top 20 most signifi-

cant gene-to-module relationships according to the tis-
sue pairs they were identified in are summarized in
Fig. 4b (GO terms used in the analysis are listed in
Additional file 6). Some pathways associated with unidir-
ectional interactions between tissues were enriched in
many tissue pairs while other pathways were only
enriched in specific tissue pairs (Fig. 4b). A closer look
at the extremes revealed some interesting observations.
Most strikingly, four pathways, including establishment
of protein localization to organelle, translational initi-
ation, cellular component disassembly and ribonucleo-
protein complex biogenesis, were identified in almost all
tissue pairs, revealing global synchronization of these
processes by unidirectional inter-tissue interactions.
Since these pathways are related to protein synthesis, our
result likely reveals the importance of coordination in
growth processes within the human body and that this
coordination can be achieved via asymmetric molecular
interactions. The joint coordination of protein biology
across tissues via asymmetric interactions implies the ex-
pression of one gene in one tissue is sufficient to impact
clusters of genes related to protein biology in another.
Other pathways that were involved in inter-tissue in-

teractions in most tissue pairs included different aspects
of the immune responses (complement activation, adap-
tive immune response, humoral immune response,
leukocyte-mediated immunity), metabolism (generation
of precursor metabolites and energy) and cell division.
While these analyses provide information on the num-

ber of inter-tissue correlations and the associated

GOBPs, they do not specify the regulators or source
nodes (as shown in Fig. 2) of these interactions. We col-
lected source nodes of the top ten most significant gene-
to-module relationships in each tissue pair, and charac-
terized them according to gene types (Fig. 5a). There
were a total of 617 source nodes, among which 345 (56 %)
source nodes were protein coding genes, significantly
higher than the 37 % expected (p value = 1.6 × 10−21). Even
though there are more transcripts mapped to pseudogenes
than to lncRNAs, there were more lncRNAs than pseudo-
genes among source nodes. These results suggest that
protein coding genes and lncRNAs play a significant role
in inter-tissue communication.
Instead of counting which GOBPs are inter-tissue reg-

ulated as shown in Fig. 4, we examined which GOBPs
are inter-tissue regulated in a unidirectional way. For
each source node we therefore picked only the top sig-
nificantly enriched GOBP associated with its gene clus-
ter (listed in Additional file 7). We then counted the
number of unique GOBPs for each possible tissue pair
(Fig. 5b). This revealed that the most biologically diverse
interactions are from thyroid to artery. One example of
such interactions is the correlation of HEBP2 in thyroid
with genes involved in translational elongation in the ar-
tery. HEBP2 is a small heme binding protein that poten-
tially regulates necrotic cell death and mitochondrial
permeability [25]. HEBP2 is universally expressed in all
tissues. However, HEBP2 protein expression is high
only in thyroid tissue except for male reproductive
tissues (http://www.proteinatlas.org/ENSG00000051620-
HEBP2/tissue), suggesting a potential role of HEBP2 in
thyroid. Other prominent interactions are from heart to
artery, artery to thyroid and nerve to artery. An example
of the former interaction is the correlation of SRPX2 in
heart to genes associated with the respiratory electron
transport chain in artery. SRPX2 encodes a secreted pro-
tein containing sushi repeat domains that can mediate
angiogenesis [26]. SRPX2 also plays a role in synapse for-
mation and vocalization in mice and mutations in SRPX2
have been identified in disorders of language cortex and
cognition [27, 28].
These results suggest that multiple biological processes

are systemically coordinated via unidirectional interac-
tions between tissues. In an effort to demonstrate the
utility of inter-tissue coexpression in yielding novel bio-
logical insights, we highlight in the following section two
asymmetric inter-tissue correlation patterns, one related
to a prominent anti-diabetic drug target and another to
protein synthesis.

DPP4 in the heart is coexpressed with a cell cycle module
in whole blood
One example for illustrating inter-tissue communication
is between heart and whole blood. DPP4 in the heart
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was found significantly coexpressed with a set of genes
in peripheral whole blood (Additional file 8), which are
enriched for genes involved in cell cycle control and
DNA replication (Fig. 6a; detailed in Additional file 9).
Interestingly, the majority of the correlations between
heart DPP4 and the whole blood genes were negative
(Additional file 8), suggesting an inverse relationship be-
tween heart DPP4 and these processes. To determine
the most representative cell populations associated with
the DPP4–whole blood gene set, we compared expres-
sion levels of these genes with expression profiles
assayed across 126 primary human tissues and cell types
in the Gene Enrichment Profiler [29]. Tissue-specific
gene expression is summarized by an enrichment score

where high enrichment scores mean higher specificity.
A heat map of the enrichment scores for the DPP4-
correlating whole blood gene set reveals that this set
of genes is most highly expressed in many proliferat-
ing blood cell types, including embryonic and CD34+
hematopoietic stem cells, preB cells, thymic CD34+ T
cells and CD105+ endothelial cells (Fig. 6b; listed in
Additional file 10). As correlations between DPP4 in
heart and the whole blood gene set are mostly negative
(Additional file 8), it suggests that cardiac DPP4 expres-
sion is negatively correlated with cell cycle events of mul-
tipotent precursor type cells, such as populations of
embryonic stem cells, which can differentiate into myeloid
progenitor or endothelial progenitor subtypes.

Fig. 5 Characteristics of inter-tissue unidirectional relationships. a Gene types of source nodes in the top ten most significant gene-to-module
relationships in each tissue pair. Protein coding genes were enriched among source nodes (p value = 1.6 × 10−21). b Numbers of unique GOBPs
that are inter-tissue regulated in a unidirectional way. For each source node we therefore picked only the top significantly enriched GOBP
associated with its gene cluster (listed in Additional file 7). The most biologically diverse interactions are from thyroid to artery. lincRNA
long intergenic non-coding RNA
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Fig. 6 (See legend on next page.)

Long et al. Genome Medicine  (2016) 8:15 Page 10 of 15



DPP4, also known as CD26, is a serine protease that
cleaves selected N-terminal penultimate amino acids and
thereby potentially alters the function of a wide number
of substrates [30]. DPP4 exists both as a cell surface pro-
tein (mDPP4) with fairly ubiquitous expression as well
as a soluble form (sDPP4) in body fluids such as plasma,
both having enzymatic capabilities. sDPP4 has been
mainly linked to the proteolytic cleavage of DPP4 from
the cell membrane [31]. About 90–95 % of serum DPP4
activity is associated with circulating DPP4 levels, but
the kinetics and regulation of circulating DPP4 levels re-
main unclear [32]. Therefore, investigating cross-tissue
DPP4 molecular associations could provide valuable
insight into DPP4 function in physiology and disease.
Thus, DPP4 is an excellent example for investigating
inter-tissue coexpression networks, as it provides the bio-
logical context to investigate such complex associations.
To further investigate the inter-tissue communication

being coordinated by cardiac DPP4 expression and the
whole blood compartment, we assessed the coexpression
network associated with DPP4 within the heart. This
within-tissue coexpression network analysis revealed a
set of genes that are highly enriched for cytokine–cytokine
receptor interactions as well as lipid-related pathways
(Fig. 6c; detailed in Additional file 11). Importantly, these
genes are also enriched in diseases such as insulin resist-
ance, metabolic syndrome and obesity (Fig. 6c). Thus,
heart expression of DPP4 appears to be associating its mo-
lecular metabolic state with decreased proliferative events
in subsets of whole blood cells. We hypothesize that this
reflects altered mobilization of stem cells to the heart re-
quired for vascular repair in response to metabolic stresses
such as diabetes.
Extensive literature exists on DPP4, mainly due to

DPP4 inhibitors or gliptins, a class of oral hypoglycemics
commonly used to treat type 2 diabetes [33]. These
compounds lower blood glucose via enhancing circu-
lating levels of the incretin GLP-1. Thus, we looked
to validate our inter-tissue network-driven DPP4 hy-
pothesis using existing knowledge. Many studies have

demonstrated that pharmacological inhibition of DPP4
is associated with a beneficial effect on the incidence
of cardiovascular events [30]. Multiple mechanisms
have been attributed to this phenomenon, including
glucose-lowering, but also other direct cardiovascular
effects such as anti-thrombotic as well as cardiac re-
modeling and inflammation control [34, 35]. This is
in part because DPP4 is known to cleave a wide array
of bioactive peptides in addition to GLP-1, such as
chemokines [36]. Relevant for the validation of our
results is the known link between DPP4 activity and
molecular signals of hematopoiesis in whole blood,
namely that DPP4 is known to cleave and inactivate
the stromal cell-derived factor SDF-1 [33, 37].
SDF-1 is a major chemokine regulating stem/progenitor

cell trafficking in the bone marrow and tissues [34].
Diabetes and other metabolic disturbances threaten the
endothelial layer of the heart, which is critical to maintain
cardiac function since endothelial cells have limited
proliferative capacity and low proliferation rates trigger
atherogenesis. Endothelial restoration depends on the co-
ordinated contribution of local endothelial cells and a sub-
set of bone-marrow progenitor cells (BM-CD34+ or
endothelial progenitor cells) that secrete soluble mediators
that also stimulate blood vessel growth and re-endothelial-
ization. Diabetes affects the ability of endothelial progeni-
tor cells to migrate to the target tissue because it reduces
the activity of the chemotractant molecule SDF-1 through
maladaptive DPP4-mediated cleavage, thereby blunting
the ability of SDF-1 to trigger CXCR4 or CXCR7 down-
stream signaling [34, 38]. Our studies suggest that a key
‘source’ of the SDF-1 signal modulating the kinetics of
stem/progenitor cells is the expression and activity of
DPP4 in the heart. Indeed, body atlas data from BioGPS
(http://biogps.org/#goto=genereport&id=1803) showed
that the expression level of DPP4 in smooth muscle, car-
diac myocytes as well as immune cell types is much higher
than that in the whole blood.
Although our study cannot determine whether it is

sDPP4 and/or mDPP4 responsible for mediating the

(See figure on previous page.)
Fig. 6 Cardiac DPP4 controls a set of cell proliferation related genes in whole blood. a A network visualization of a subset of genes in either
whole blood (left panel) or heart (right panel) that are co-correlating with heart DPP4. Central nodes reflect the names of the top scoring canonical
pathways (full list in Additional file 9) with the associated nodes being the genes co-correlating with heart DPP4 that are found in those pathways.
Heart DPP4 is in general negatively correlated with nodes in the whole blood cross-tissue network. b Heat map displaying the enrichment scores
obtained from gene enrichment profiler (http://xavierlab2.mgh.harvard.edu/EnrichmentProfiler/enrichmentMaps.html) for the whole blood gene-
set that correlated with heart DPP4 levels. Only a subset of 126 tissues are annotated (for full results see Additional file 10). c A scatter plot of ex-
pression levels of CXCR7 versus DPP4 in the heart (correlation coefficient r = 0.224, p value = 0.02). Full enrichment analyses are summarized in
Additional file 11. d Literature-based and network-supported associations between DPP4 and SDF-1 with respect to blood and heart. Network-
proposed insights are highlighted in blue. The SDF-1/CXCR4 axis has been shown to be critical in tissue repair, including in the heart, as SDF-1 is
well known as a key regulator of stem cell migration to sites of tissue injury. A major enzyme mediating the degradation of SDF-1 is DPP4. Sup-
pression of DPP4 enzymatic activities by pharmacological inhibitors preserves SDF-1, which results in enhanced homing of CXCR4+ progenitor
cells from bone marrow to infarcted tissues. CNS central nervous system, ES embryonic stem
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cross-tissue coordination, overall our data are supported
by observations in the literature [39]. Firstly, diabetes in-
duction in a rat model promoted the activation of the
membrane-bound form of cardiac DPP4, which resulted
in reduced myocardial SDF-1 levels and impaired angio-
genesis, a result that could be reversed by genetic and
pharmacological ablation of DPP4 [39]. Secondly, in
humans, it has been shown that myocardium-derived
sDPP4 activity can be assessed in the coronary sinus
which also correlates well with DPP4 activity measured
in the peripheral vein. Importantly, in patients with dia-
stolic hear failure (DHF), peripheral vein activity of
DPP4 was associated with measurements of DPP4 in the
coronary sinus as well as with indices representing DHF,
such that circulating DPP4 may potentially serve as a
biomarker for monitoring DHF [39]. Finally, circulating
DPP4 activities in both peripheral and coronary sinus in
patients with comorbid diabetes were also increased,
thus further supporting the importance of DPP4, of
which some proportion is cardiac derived.
Interestingly, our data demonstrated a significant cor-

relation (p value = 0.02; Fig. 6c) between DPP4 expres-
sion in heart and heart expression of CXCR7, a SDF-1
receptor [40] whose expression on the endothelium has
been linked to regulation of systemic levels of SDF-1
[38], suggesting that mDPP4 is likely mediating this
cross-tissue communication via SDF-1. Thus, overall,
our inter-tissue data-driven network approach could
recapitulate the known biology, namely that metabolic
disturbances of the heart are negatively associated
with progenitor cell populations in the blood via
DPP4 expression [33] (solid and dashed arrows in
Fig. 6d), thus in part validating this novel method-
ology. Importantly, our network approach supports
that a major contributor to the DPP4 pool is heart,
especially under metabolic stress, and that there may
be an important role for CXCR7 in co-modulating
SDF-1 function (Fig. 6d).

Cardiac expression of FOCAD correlated with lung protein
synthetic processes
One example of asymmetric inter-tissue correlations re-
lated to protein synthesis is observed for cardiac expres-
sion of the poorly characterized FOCAD (KIAA1797 or
focadhesin) and the gene set it correlated with in the
lung. This set of genes in lung coordinated by FOCAD
was enriched for GOBPs related to protein synthesis,
such as translational termination, translational elong-
ation and SRP-dependent cotranslational protein target-
ing to membrane.
Focadhesin is a ubiquitously expressed gene with

highest levels in brain, but appreciable levels in other
tissues such as heart. Focadhesin was recently de-
scribed as a tumor suppressor in glioblastoma, polyposis

and colorectal cancer [41–43]. The focadhesin protein lo-
calizes to the end of actin filaments, where it colocalizes
with vinculin, a major component of focal adhesions [41].
Moreover, focadhesin physically interacts with vinculin
[41, 44]. No function for this gene has been established in
the heart.
Focal adhesions are the sites where cells and extracel-

lular matrix physically interact. Many proteins constitute
the focal adhesion, with the integrins being the link be-
tween the cytosol and the extracellular matrix. Integrins
function as cell surface receptors, and their interaction
with the extracellular matrix enables them to transduce
signals from the outside to the cell (“outside-in” signal-
ing). In the heart focal adhesions play an important role
in the response to biomechanical stress, enabling the
myocardium to undergo structural changes [45]. In the
GTEx dataset, FOCAD expression in the heart correlates
with integrin α5 (ITGA5, r= 0.44, p = 1.34 × 10−5) and
paxillin (PXN, r= 0.37, p = 3.12 × 10−4), further signifying
its role in focal adhesion. Our data suggest that signaling
at the focal adhesion not only has effects within the tis-
sue, but can also affect other tissues, in this case the
lung. From a mechanistic point of view, it is known
that integrins can also signal to the extracellular
matrix (“inside-out” signaling) [46], but how such a
signal may be propagated from the heart to the lung
is at present unclear.
Our observations are consistent with the close inter-

action between heart and lung as both organs share the
same restricted space in the chest. Moreover, heart and
lung are also functionally connected, such as that the
lungs are responsible for the exchange of CO2 for O2 in
blood, while the heart circulates this blood. This tight
connection is illustrated by several pathophysiological
conditions whereby one organ can develop a problem
that influences the efficiency of the other. For example,
in pulmonary arterial hypertension there is an increase
in pulmonary vascular resistance directly impacting on
the right ventricle [47]. Chronic heart failure is associ-
ated with mild to moderate changes in pulmonary
function [48].
Other evidence supporting a role for FOCAD in heart

and lung comes from several genome-wide association
studies (GWAS) since variants in FOCAD have been
associated with cardiac as well as pulmonary traits.
SNPs in FOCAD have been associated with heart rate
in American Indians [49], and heart failure in the
STAMPEED study [50]. A SNP in FOCAD also asso-
ciated with a pulmonary function measure (percentage
predicted forced expiratory flow from the 25th to 75th

percentile/forced vital capacity for latest exam) in the
Framingham Heart GWAS [51]. Together these find-
ings implicate focadhesin in inter-tissue communica-
tion from heart to lung.
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Inter-tissue module and disease GWAS candidate genes
Although our DPP4 and FOCAD examples above have
relevancy to disease, as DPP4 is a target of current
diabetes therapy and the other gene is a GWAS hit,
to generalize the utility of our cross-tissue network
analysis on informing on disease association we anno-
tated significant inter-tissue gene modules against dis-
ease or drug signatures in MSigDB and the catalogue
of genes implicated in various GWAS (results listed
in Additional file 7). If an inter-tissue gene module is
enriched for a GOBP, it is likely enriched for a signa-
ture in MSigDB. We also observed 17 gene module
pairs from various tissue pairs that were significantly
enriched (at Fisher’s exact test p value <0.05/number
disease categories) in genes genetically associated with
disease. For example, in one adipose to artery gene
module where the source node was ANKRD36B (ankyrin
repeat domain-containing protein 36B) we found that
the genes it correlates with in the artery were signifi-
cantly enriched in genes reported to have relevance
to Gaucher disease severity in humans. Gaucher dis-
ease is associated with a genetic defect in breakdown
of complex glycolipids and causes a lysosomal storage
disorder. Interestingly, although the function of
ANKRD36B is not well defined, it has been identified
as a tumor-associated antigen in chronic lymphocytic
leukemia (CLL) [52]. Multiple myeloma risk is signifi-
cantly increased in Gaucher patients, but CLL has
also been reported in patients and perhaps our data
shed light on some of the biology associated with en-
hanced cancer risk [53]. Another significant GWAS candi-
date gene enrichment was found between the artery–
whole blood tissue pair, with the source node being
CPLX2 (Complexin 2) and the associated GWAS for
conduct disorder (interaction). Conduct disorder is a
prevalent childhood psychiatric condition including a
persistent pattern of rule-breaking and aggressive be-
havior [54]. Interestingly, CPLX2 is a known modula-
tor of neurotransmitter release and has been shown
in humans to be decreased in expression in animal
models of depression and in humans suffering from
depression. CPLX2 knockout mice also have signifi-
cant abnormalities in cognitive function and synaptic
plasticity [55]. Furthermore, variants of this gene have
been found associated with attention deficient hyper-
activity disorder [56] and schizophrenia [57] and the
module of genes it associated with in blood are
enriched for the GO pathway related to transmission
of nerve impulses. Although CPLX2 expression is
considerably high in the brain, bioGPS does suggest
ubiquitous expression and one hypothesis from our
dataset that could be tested is whether Clpx2 modu-
lates release of a signal in the blood that in turn im-
pacts on the brain.

Gene expression profiles and sample ischemic time
It is known that sample ischemic time impacts on RNA
quality, which in turn affects gene expression profiles.
RNA quality is quantified as the RNA integrity number
(RIN). The RNAseq data preprocessing process removed
confounding factors, including sample ischemic time
and RINs represented as PEER factors. To specifically
check residual effect of sample ischemic time and RINs
on the data (after correcting PEER factors) used in this
study, we correlated sample ischemic time and RINs
with gene expression profiles, and the correlation coeffi-
cient distributions were found to be similar to those of
the permuted data (Figure S2 in Additional file 2). More
specifically, the correlation coefficients between sample
ischemic time and heart DPP4 and FOCAD expression
levels are 0.07 and 0.04, with corresponding p values of
0.28 and 0.35, suggesting that the processes discussed
above are not due to ischemic time.

Potential shortcoming
It is worth noting that an asymmetric inter-tissue correl-
ation suggests but is not equivalent to a causal–reactive
relationship between tissues. Even though in the ex-
ample of heart DPP4 and whole blood expression
changes we highlighted substantial evidence supporting
a causal role of heart DPP4, we need to be cautious
when assuming causal–reactive relationships in general.
Second, the inter-tissue relationships are based on a
healthy cohort, which are useful for understanding
general communication between tissues. However, the
inter-tissue relationships for a specific disease may be
different. Multi-tissue profiles from a disease cohort are
needed to construct inter-tissue relationships under a
disease state. Inter-tissue relationship differences be-
tween healthy and disease states may shed light on how
multiple tissues together contribute to disease pathogen-
esis. Third, the accuracy of the transformation matrix D
used in genetic decorrelation depends on the sample
size. A large number of samples are needed to robustly
estimate the matrix D and to use our inter-tissue ana-
lysis based on genetic decorrelation.

Conclusions
We have developed an effective strategy to generate gen-
etically decorrelated inter-tissue networks that have the
power to highlight communication between tissues and
elucidate genes active in one tissue inducing gene ex-
pression changes in another tissue. This analysis re-
vealed global unidirectional inter-tissue coordination of
certain biological pathways, such as protein synthesis.
We highlighted cardiac FOCAD as one potential key
mediator of this process between the heart and lung.
Beyond the conserved pathways, we also uncovered a
clinically relevant example whereby expression levels of
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DPP4 in the heart are coordinated with whole blood
proliferation, thereby potentially regulating stem cell
proliferation, trafficking and mobilization to peripheral
tissues, an observation important for regenerative medi-
cine. More broadly, this is the first resource of human
multi-tissue networks enabling the investigation of mo-
lecular inter-tissue interactions. With the networks in
hand, we may systematically design combination therap-
ies that simultaneously target multiple tissues or pin-
point potential side effects of a drug in other tissues.
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