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Abstract

Applying genomics to patient care demands sensitive, unambiguous and rapid characterization of a known set of
clinically relevant variants in patients’ samples, an objective substantially different from the standard discovery
process, in which every base in every sequenced read must be examined. Further, the approach must be sufficiently
robust as to be able to detect multiple and potentially rare variants from heterogeneous samples. To meet this critical
objective, we developed a novel variant characterization framework, ClinSeK, which performs targeted analysis of
relevant reads from high-throughput sequencing data. ClinSeK is designed for efficient targeted short read alignment
and is capable of characterizing a wide spectrum of genetic variants from single nucleotide variation to large-scale
genomic rearrangement breakpoints. Applying ClinSeK to over a thousand cancer patients demonstrated substantively
better performance, in terms of accuracy, runtime and disk storage, for clinical applications than existing variant discovery
tools. ClinSeK is freely available for academic use at http://bicinformatics.mdanderson.org/main/clinsek.

Background

A major objective of clinical genomics is to translate the
knowledge and technologies that are established in a dis-
covery setting, for example, large-scale cancer genome
sequencing, into a clinical setting to benefit individual
patients [1]. Despite the tremendous progress in discov-
ering mutations in patients, only a small set of variants
have been associated with causal clinical evidence and
therefore have been regarded as actionable in clinics [2].
For example, the standard panel for screening cystic fi-
brosis as recommended by the American College of
Medical Genetics is composed of only 23 mutations in
cystic fibrosis transmembrane conductance regulators
[3]. Even after accounting for all the mutations reported
for the disease up to 2014, the number of mutations is
still under 2,000 [4]. In another example, three muta-
tions in HEXA account for over 92% of affected Tay-
Sachs patients [5]. The stark contrast between the
mutations present and the mutations that physicians
could respond to motivates a re-structure of the bio-
informatics workflow that concentrates variants that lead
to known clinical consequences.
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The current paradigm for clinical variant characterization
based on next generation sequencing was designed for
discovering new variants [6] unknown to the scientific
community. It involves aligning every read to the hu-
man reference assembly, discovering mutations at every
position in the reference, and providing functional an-
notations through existing algorithms [7]. Tools devel-
oped under such a paradigm not only suffer from the
‘big-data challenge’ [8], which could hinder application
in hospital settings that lack powerful computing infra-
structure, but also are likely to report many variants of
unknown clinical significance. In addition, they may
produce suboptimal results at sites that harbor action-
able mutations, partially because of the criteria imple-
mented for controlling global false positives. The
increasing use of next generation sequencing for gen-
omic testing [9] warrants the development of a new set
of tools that operate under a paradigm that emphasizes
characterization on important clinical targets.

To answer the demand, we have designed and imple-
mented ClinSeK, a bioinformatics tool that focuses
computational power on clinically relevant sites while
avoiding investigating mutations that are non-actionable,
hence ameliorating the big-data challenge. The tool
adapts the entire arsenal of variant characterization
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techniques used in a variety of applications to the tar-
geted paradigm. Compared with existing tools designed
for each separate application, ClinSeK achieves tremen-
dous reduction in computational cost with higher sensi-
tivity and comparable accuracy in the target zone.
ClinSeK provides software-level target capture to supple-
ment existing sequencing-level techniques [10].

Methods

Starting from the short reads sequenced from a patient
sample and a list of clinically relevant variant sites,
ClinSeK aligns and analyzes only the reads that are
relevant to the given target sites (Figure 1A). This funda-
mentally differentiates ClinSeK from base-to-base dis-
covery pipelines composed of aligners such as BWA [11]
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and downstream variant callers such as GATK [12] and
MuTect [13]. The computational cost of ClinSeK de-
pends on the number of potential clinical targets to be
assessed. The total number of mutations that are likely
to be associated with all the known clinical phenotypes
in ClinVar [14] is on the order of 100,000 (79,355 as
accessed on 30 April 2014). Categorized by pathological
conditions, many rare yet well-characterized genetic dis-
orders are associated with a handful of mutations [3,5].
For example, 18 mutations in ClinVar are related to
sickle-cell anemia [14]. Ten mutations are found related
to familial dysautonomia [14]. Complex common dis-
eases such as diabetes and cancer include more causal
mutations. But even for cancer treatment assignment,
only several hundred somatic mutations are currently
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Figure 1 Schematic overview of ClinSeK. (A) The four major steps of the ClinSeK workflow for analyzing single nucleotide variants (SNVs) and
insertions and deletions (indels) from DNA-sequencing data. (B) lllustration of k-mer screening, targeted alignment and variant calling. Sequencing
reads (blue arrows) in raw FASTQ files are screened for presence of k-mers created from target sites of interest (dark, vertical dashed lines), which
are predefined based on variant databases such as ClinVar and COSMIC. Those that do not contain any target k-mers (grey arrows) are discarded.
Those associated with a target site (red vertical bar) are aligned against corresponding local reference sequences (grey horizontal bars) with potential
variants (red dots) identified. Reads were realigned with mates (arrow in opposite directions) and against paralogous sites (green vertical bars) from
other chromosomes. Variants are finally called from reads of high mapping quality (dark blue arrows). (C) lllustration of ClinSeK targeted breakpoint
analysis. DNA or RNA sequencing reads are screened for presence of k-mers in the reference and in the variant alleles near the breakpoints or
fusion junctions. Those that do not contain any target k-mers are discarded. The remaining ones are preferentially aligned to the wild-type
reference (orange arrows) and to the fusion breakpoint (magenta bar) sequence (red arrows) and are counted and compared. (D) ClinSeK
output. Reads and their alignments at the target sites are output in BAM files. Variants are output in VCF format and are further included in
the clinical report.
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viewed as actionable [15,16]. By analyzing only reads
relevant to the sites that harbor these mutations (single
nucleotides for single nucleotide substitutions and inser-
tions, and genomic regions for deletion and multiple nu-
cleotide substitutions), one can potentially achieve a
substantial reduction in computational cost.

A naive approach that directly aligns the reads to a
‘squashed’ reference that contains only target sites would
lead to many false alignments and overestimation of
alignment quality. Therefore, the key challenge is to en-
sure the set of relevant reads obtains both globally and
locally optimal alignments without referencing the entire
reference assembly. ClinSeK accomplishes this goal in
the following steps (Figure 1A,B). First, ClinSeK divides
the reference sequences over the target sites into a
k-mer (a nucleotide sequence of length k) library and
creates a catalogue of paralogous sites that are hom-
ologous to the target sites in the reference genome.
The set of target sites can be easily updated to accommo-
date new variants of interest. The size of the k-mer is
chosen to achieve a good balance between alignment sen-
sitivity and efficiency. Second, ClinSeK identifies ‘target
reads’ that contain at least one k-mer in the library and
discarded reads that do not contain any k-mer in the li-
brary. It obtains an initial Smith-Waterman alignment of
the target reads to the target site. It then identifies sites
that are spanned by a minimal amount of reads that sup-
port variant alleles. This narrows the scope of analysis to
the subset of target sites that likely contain variants. Op-
tionally, ClinSeK can output the variant status at all tar-
get sites, allowing users to distinguish true negative sites
from those lacking coverage. Third, ClinSeK realigns
reads at putative variant sites by including their mates
and factoring in their multi-alignments to pre-identified
paralogous sites (Figure 1A,B). In addition, ClinSeK scans
for insertions and deletions (indels) around the target
sites and performs a local dynamic programming align-
ment if an indel haplotype can be reconstructed. ClinSeK
also implements a refined duplicate read marking algo-
rithm that is aware of not only alignment positions but
also base identities and qualities (Additional file 1). Fi-
nally, a Bayesian approach is applied to estimate the
probability of variants given the aligned reads. To ensure
accuracy, only reads with high mapping qualities (>30)
contribute to the final variant calling. In contrast to con-
ventional analysis pipelines, ClinSeK tightly integrates
alignment and variant calling, which effectively reduces
computational cost while improving the quality of the
data at the sites of interest.

Similar to targeting single nucleotide variations (SN'Vs)
and indels, ClinSeK can target genomic structural vari-
ation from DNA-seq data or gene fusion breakpoints
from RNA-seq data when breakpoint sequences are
provided (Figure 1C). ClinSeK contrasts reads that are
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preferentially (as judged by alignment score) aligned to
alternative alleles that contain breakpoints to ones pref-
erentially aligned to wild-type references, similar to
methods that quantify differential expression across dif-
ferent isoforms or genes [17]. The breakpoint sequences
spanning pathogenic fusion junctions are usually avail-
able [18] or can be derived from genome or transcrip-
tome assembly [19,20].

ClinSeK takes as input FASTQ files. For SNVs and
indels, ClinSeK outputs a reduced BAM file which con-
tains the alignment of reads to the target sites and a
VCEF file which contains the list of variants at the target
sites and their characteristics (Figure 1D). These files are
orders of magnitude smaller than those produced by the
standard discovery pipeline and more conveniently ap-
plied to clinical decision-making.

Targeted alignment and handling of paralogous sites

The specificity of ClinSeK short read alignment highly
depends on the balance of its alignment sensitivity
against the sensitivity to paralogous sites. At extremes,
the entire genome should be included as potential par-
alogous sites. This is the approach taken by many popu-
lar global aligners based on full-text indexing [21,22].
Optimized for speed of aligning reads to the entire gen-
ome, such full-text indexing is unnecessarily demanding
in memory usage and requires online reconstruction of
the suffix array, when compressed, for targeted align-
ment. Instead, we adopted the traditional hashing-based
method, which is similar to MAQ [23]. The availability
of any prior knowledge of paralogous sites is necessary
for ClinSeK alignment so that false alignments can be
discerned. Hence, before it can be applied to sequencing
data, ClinSeK scans the reference genome to obtain
information of paralogous sites that share sequence
similarity with the target sites. This scanning needs to be
done only once on each compilation of target sites and
can be reused upon processing different samples.

A keen recognition of paralogous sites is crucial for
ClinSeK to prevent false alignment while maintaining
high sensitivity in read alignment. As illustrated in
Additional file 2, false alignments are nonexistent when
both alignment sensitivity and paralogy sensitivity are
low or when both are high (Figure S1A,C in Additional
file 2). False alignment (green triangle) emerges when
paralogy sensitivity is not high enough (even if higher
than alignment sensitivity) (Figure S1B in Additional
file 2). In ClinSeK, a site is considered paralogous (which
is defined purely on the basis of sequence similarity) if
one of the three 48-bp stretches can be aligned to the
target site with fewer than 4 mismatches or with a mix
of indels with identical alignment scores (Figure S1D in
Additional file 2). Figure S1E in Additional file 2 shows
the number of paralogous sites identified for three
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different target site groups studied in this paper: 1) the
AmpliSeq64 mutation sites; 2) ClinVar mutation sites re-
stricted to 202 cancer genes; and 3) the whole set of
ClinVar variant sites. For ClinSeK, segments with too
many paralogous sites (>50 by default) are excluded
from analysis. They are considered to be of low com-
plexity and too risky for clinical use. Most sites from
ClinVar (>95% and >99.9% if restricted to 202 cancer
genes) contain fewer than 50 paralogous sites and are
amenable to ClinSeK processing.

The primary read alignment is done by seed-anchoring
and local alignment. To guarantee high sensitivity of
reads to the reference, multiple seeds are selected
around the target sites. By default, for each target site,
ClinSeK hashes twelve 25-mer reads (seeds) evenly posi-
tioned such that at least two mismatches are tolerated in
any reads that cover the target site given a read length
longer than or equal to 100 bp. Upon each occurrence
of a seed sequence in a read, the read is compared with
the local reference sequence around the seed. To bal-
ance speed and optimality, this is done in two steps.
First, seeds are extended in two directions to seek a
complete read match tolerating at most one mismatch.
Upon any failure, local dynamic programming is then
performed to obtain the optimal alignment under a
given scoring scheme. Alignments with too many se-
quence dissimilarities on high-quality bases are dis-
carded. As is shown in Figure 2, this combination of
seeding strategy and local alignment makes ClinSeK
alignment highly accurate (Figure 2A) and sensitive even
to low quality reads (Figure 2B) compared with BWA
aln (see Additional file 1 for details of the comparison).
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Such increased sensitivity in alignment helps alleviate
potential bias in the reference sequence, particularly
when analyzing samples that come from different ethnic
background.

ClinSeK is designed to operate on paired-end reads of
lengths ranging from 75 bp to 500 bp, which is currently
the most widely used platform for clinical sequencing.
Traversing raw FASTQ reads, ClinSeK records the num-
ber of reads that indicate genetic variation at each target
site. Only sites containing over a minimum number of
variant reads (default of three) are considered in the sub-
sequent analysis (initial variant calling). Because genetic
variations are rare, this practice greatly reduces 1) the
number of sites where mate-reads need to be aligned;
2) the number of inserts that need to be further ana-
lyzed; and 3) the number of reads whose alignments
need to be stored, without losing information of poten-
tial variant reads. Note that, after this stage, the
remaining sites can still be non-variant due to wrongly
mapped reads from paralogous sites. Given the variant
status known from the initial variant calling, the second
traversal of the reads effectively skips most reads and
aligns only mate-reads around the putative variant sites
if their alignments have not been completed. With the
alignment of the full insert, further comparison with the
pre-identified paralogous sites can be achieved. We
assigned a mapping quality to every alignment of each
insert to quantify the strength of the evidence that the
insert could provide for the presence of the correspond-
ing allele. Following the work of Li and Durbin [23],
the mapping quality is defined as the Phred-scaled prob-
ability that the insert was sequenced from a different
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genomic location. In practice, it is computed using
Q,;=-10 logjol - 100 /5,100, with i looping over
all the alignments of the insert of sufficiently high
alignment score (with a default threshold of the 90th
percentile of alignment scores computed for each read
from bases of quality over 20). The term ms(i) denotes
the sum of the base qualities of all the mismatched bases
in alignment i. Based on this formula, reads mapping to
sites that have multiple paralogous sites will have very
small (near 0) mapping quality. This design effectively
limits the false positive rates for sites in repetitive
regions.

Targeted breakpoint analysis

The breakpoint analysis is carried out by first hashing
for each structural variation breakpoint, the alternative
breakpoint sequence assembly and the corresponding
reference sequence(s) around the breakpoint (Additional
file 3). Every read, upon anchoring through a seed se-
quence, is aligned to both the alternative sequence and
its corresponding reference sequences(s). For each struc-
tural variant breakpoint, we keep a record of the number
of reads preferentially aligned to the reference allele and
those preferentially aligned to the alternative allele. We
conclude a breakpoint if there are a large number of
reads that support the alternative allele. Our methods
apply to both DNA-seq or RNA-seq data dependent on
whether the reference allele is constructed from the gen-
ome or a transcriptome.

Indel realignment

Penalizing gaps in the alignment scoring scheme may
cause collective bias in SNP calling close to a bona fide
indel [12,24]. To mitigate false positive SNV calling
around indels and also to improve the measurement of
the allele frequency of these indels, ClinSeK enumerates
all the indels from the local read alignment. Alternative
gapped haplotypes are then reconstructed from well-
supported indels. ClinSeK samples from the set of all
indel events subsets of non-overlapping but adjacent
(within twice the read length) indel events and enumer-
ates (exhaustively) all putative haplotypes resulting from
at most m events (with m default of two). Every read
around the target site is realigned against the putative al-
ternative gapped haplotypes. If the resulting alignment
score is higher than the alignment score against the
ungapped haplotype, a new alignment is then recon-
structed by composing the alignment of the read to the
gapped haplotype with the mapping between the gapped
haplotype and the reference genome. The reconstruction
combines contiguous insertions, deletions and substitu-
tions and produces a valid CIGAR string. Currently,
ClinSeK only realigns indels that are found in the initial
alignment. Additional files 4 and 5 show two examples
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of the correction of false positive somatic mutations
using this approach.

Variant calling and genotyping

ClinSeK identifies the variant status through a Bayesian
model parameterized by 1) contamination (default to
0.01); 2) sequencing error rate (default to 0.001); and
3) empirical mutation rate (default to 0.001, the average
of genetic diversity in normal human population [25]).
The contribution of these default priors to the final
scores is minor and can be adjusted through command
line for particular use-cases. To characterize the variant
status, we consider two classes of models: 1) reference
model M, where all variants are explained by se-
quencing error or contamination; and 2) variant
model M,, where variants are explained jointly by se-
quencing error and the presence of a variant allele at
fraction f. The P-value of calling a variant is computed by
P(M,|D) = P(D|M,)P(M,)/P(D). See Additional file 1 for
details on computing the value.

For germline mutations, likelihoods of the three geno-
types are also computed. Let g denote the genotype of
the mutation, that is, = {O, %, 1}, representing the homo-
zygous reference, the heterozygous variant and the
homozygous variant, respectively. The genotype is called
by maximizing the following posterior probability ac-
counting for sample contamination. Dy denotes the read
counts for each allele in the normal sample:

ﬂ’"gmaxge{o,l/z,l}l)(ngv)
min(g+Cyax,1)
= argmaxge(o,1/2,1,CY P(Dn|g, c)dP(c),
max(g—Cax,0)

where Cg = 1/(min(g + Cax, 1)- max(g—Cjuux, 0)). ¢ is
the dummy variable for integrating over all possible
values of sample contamination. The probability of sam-
ple contamination is assumed to be a uniform probabil-
ity from 0 to C,,,,,. See Section 2 of Additional file 1 for
details in calculating P(Dy|g,C).

Since we are genotyping patient samples, which are
more likely to contain relatively recurrent mutations on
the target site, the probability of observing heterozygous
and homozygous variant sites is higher than that ex-
pected from a random site in a normal population. A
uniform prior for the three genotypes is chosen as
default.

Somatic calling using matched tumor and normal samples

Four models are considered in explaining the read
counts in both tumor and matched normal samples. Let
symbol M;; denote the model where i, j € {v, r} labels
whether the variant or only the reference allele is
present in the normal and tumor samples, respectively.
Model M,, suggests a somatic mutation under the
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common definition; that is, variants exist in tumor
samples but not normal samples. The other three
models, M,, M,, and M, respectively, represent cases
where 1) there are no variants in both sample; 2) a germ-
line mutation is present (in both samples); and 3) a form of
loss of heterozygosity takes place, in which case a germline
variant is lost in the tumor sample.

The posterior probability of somatic mutation is hence
given by:

_ P(DIM,,)P(M,)
PP = S o ol (o)
P(D,|M,,)P(D;|M,,)P(M,,)
. P (Du|My) P (Dr!Mu) (My)

Calculation of the likelihood follows the procedure

used in variant calling. The somatic mutation score re-
ported by ClinSeK is the Phred-scaled P(M,,|D).

Base-to-base discovery pipeline

To evaluate ClinSeK in comparison with standard
approaches to variant characterization, we set up a base-
to-base sequence analysis pipeline composed of align-
ment, variant calling and other processing such as
duplicate marking, indel realignment and filtering.
We completed the alignments using BWA [26] and
marked duplicate reads using Picard [27]. We called
single nucleotide variation using either VarScan2 [28]
(version 2.3.2) or GATK [12] (version 3.1.1). For matched
tumor/normal samples, VarScan2 labels somatic mutations
that are used in the comparison with ClinSeK for somatic
variant calling. We also used MuTect [13] (version 1.1.4)
to detect somatic mutations. For MuTect, only mutations
labeled ‘KEEP’ were considered in our comparison.

Our research was approved by the MD Anderson
Cancer Center Institutional Review Board under
protocol #PA11-0852. Exon-sequencing data for test-
ing ClinSeK can be downloaded from the Short Reads
Archive [SRA: SRP033243]. ClinSeK was compared
with other tools using the targeted exome sequencing
data of 1,049 pairs of tumor and matched normal
samples [29]. For detailed instructions and for down-
loading a set of precompiled target sites containing ac-
tionable or putative driver mutations in cancer, please
access our website at [30].

Results and discussion

We assessed ClinSeK using the targeted exome sequen-
cing data from 1,049 pairs of tumor and matched nor-
mal samples [29]. A set of 565 somatic mutations in this
data set had been previously independently ascertained
using a CLIA-compliant amplicon-based hotspot se-
quencing platform (Ion AmpliSeq64 produced by Life
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Tech, Grand Island, NY 14072, USA). This provided
a ‘reference standard’ for comparing the sensitivity of
ClinSeK against those of other tools in an unbiased
manner.

We targeted ClinSeK to the set of 719 variant sites on
the AmpliSeq64 panel and identified 1,006 somatic mu-
tations under the default setting. For comparison, we
aligned the same set of reads to the human genome as-
sembly GRCh37 using BWA-aln and called somatic mu-
tations using VarScan2 [28] and MuTect [13] under
default parameters. ClinSeK successfully detected all of
the 565 known somatic mutations (100% sensitivity),
while MuTect and VarScan2 detected 524 (92.7%) and
534 (94.5%), respectively (Figure 3A). The nine muta-
tions missed by both VarScan2 and MuTect included po-
tentially important mutations such as KRAS G12A,
EGFR E706K and TP53 R181C (Additional file 6). Six of
the missed calls are the only mutations identified in the
corresponding tumor samples and are thus potentially
critical to clinical decision-making. Inspection of read
counts for alternative alleles in the matched normal
samples revealed that MuTect missed these mutations
likely due to its high expectation on the purity of normal
samples (Additional file 7). A recent study indicated that
blood DNAs of cancer patients could contain somatic
mutations [31]. On the other hand, investigation of local
mutation context reveals that Varscan2 missed them due
mainly to ad hoc filtering of mutations near other vari-
ants such as co-segregating SNPs, multi-nucleotide vari-
ants or indels (Additional file 8). We also found that
improvement in ClinSeK alignment contributed to in-
creased sensitivity (Additional file 1). Notably, ClinSeK
took only 10 to 30 minutes to analyze each sample (with
a median of 25 million reads), while the standard pipe-
lines took over 1,000 minutes and in some cases over
2,000 minutes (Figure 3B). The resulting files (BAM and
VCE) output by ClinSeK are substantially smaller than
those obtained from standard pipelines. Such a signifi-
cant reduction in runtime (80-fold) and data storage
(200-fold) makes ClinSeK uniquely suitable for clinical
applications (see Additional file 1 for detailed compari-
son of runtimes using different sites as target and data
from other sources). The variant allele fraction calcula-
tions are highly concordant with those calculated by
VarScan2 and MuTect (Additional files 9 and 10).

To assess the specificity of variant callers, we con-
ducted independent sequencing experiments on the
same sample (technical replica) from each of 16 normal
tissue samples. We targeted 719 clinically actionable
variant sites on the AmpliSeq64 panel and applied
ClinSeK and MuTect to each pair of technical replicas
by treating one technical replicon as a tumor and the
other as the matched normal tissue. Any somatic muta-
tions identified from this set would be false positives, as



Zhou et al. Genome Medicine (2015) 7:34

Page 7 of 9

N C

KRAS.G12A (2)
TP53.R110C (0)
EGFRET09K (0)
BRAF.G464V (0)
TP53.S127F (1)
EGFR.G719S (0)
FBXW7.R505C (0)
PDGFRA.V561D (0)
TP53.R181C (1)

ClinSeK (mins)

chr9 TCGA-2941

Figure 3 ClinSeK performance in analyzing DNA-seq and RNA-seq data. (A) Comparison of ClinSekK, VarScan2 and MuTect sensitivity in characterizing
somatic mutations from 1,024 targeted exome-sequenced tumor and normal pairs. Text box lists CLIA-validated somatic mutations detected only by
ClinSeK. (B) Comparison of ClinSeK and the base-to-base pipeline in runtime (blue dots) and data storage (green dots). Dashed lines correspond to
80x and 200x respective reductions in runtime and storage. Dot sizes are proportional to the number of reads sequenced from each sample.

(Q) lllustration of ClinSeK gene fusion detection results on The Cancer Genome Atlas (TCGA) samples. Black horizontal bars indicate breakpoints.
Text boxes list TCGA sample names, in which the corresponding fusion is detected.

MB

3
g
x
U

N

o

o
<

<

S
ClinSeK

2000 4000 6000 8000 10000 A7
base-to-base pipeline (MB) . -

» x=80y

D
=]
T

o
=3
T

P
=]
T

\
N

w
o
T

£ =)
$93s
4

1000 2000 3000 _ 4000 _ 5000
base-to-base pipeline (mins)

TCGA-2817
TCGA-2001 .- . PML-RARa

TcGA2823  <hr17

# chr15
BCR;ABL 1
TCGA-2803
TCGA-2823
TCGA-2840

chr22

explained in a previous study [13]. We found no false
positive variant call (100% specificity).

ClinSeK can be applied to detect either somatic or
germline variants, depending on the configuration. A
comparison of ClinSeK with GATK on variant calling
from the normal samples showed comparable accuracy
(approximately 99.6% concordance rate) of germline
variant calling between the two tools (Additional file 1).
On this data set, ClinSeK achieves higher sensitivity with
high specificity compared with MuTect for somatic muta-
tion detection and GATK for germline mutation calling.

In addition to SNVs and indels, we also validated the
ability of ClinSeK to identify somatic structural variation
breakpoints. We applied ClinSeK to test the presence
of pathogenic BCR-ABL1 or PML-RARa fusions in
the RNA-seq data of six samples of acute myeloid
leukemia from The Cancer Genome Atlas [32] (dbGAP:
phs000178.v7.p6). The fusion breakpoint sequences were
previously available in an mRNA breakpoint library ob-
tained through transcriptome assembly [33]. ClinSeK was
able to successfully identify all seven previously known
gene fusions in all the six samples within a timeframe of
10 minutes per sample (Figure 3C).

ClinSeK identifies variants only at the targeted sites
and does not discover any novel variant. For discovery
or prospective studies, ClinSeK can be used in conjunc-
tion with other base-by-base tools to increase the detec-
tion sensitivity of clinically important variants. As novel
clinically important variants are being discovered, users
can easily update ClinSeK libraries to include them. Es-
tablishing the clinical utility of novel variants involves
lengthy and costly clinical trials, which usually take
years, while clinical decision-making demands rapid
turnaround in days or minutes. The development of
ClinSeK separates these two distinct tasks and acceler-
ates the translation of robust clinical genomic knowledge
to today’s patients.

Conclusions

The development of ClinSeK offers a software-level solu-
tion to the ever-increasing demand for efficient and ac-
curate variant characterization in clinical sequencing. It
is software designed starting from a set of clinically ac-
tionable sites and comprehensively interrogating these
sites efficiently without investing computational resource
to sites that are of no clear clinical relevance. It is
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dedicated to characterizing variants in clinical settings
where only a limited set of relevant mutations needs
to be quickly characterized with the highest possible
accuracy. It allows clinical variant characterization be
achieved much faster (minutes compared to hours, and
hence ameliorating the big-data challenge) and to a
higher accuracy than a base-to-base discovery pipeline
conducted in current clinical sequencing applications.

ClinSeK can be applied to detecting the majority of
variants, including SNVs, indels, structural variants and
gene fusions from whole genome, whole exome, targeted
exome and transcriptome sequencing data. ClinSeK is
available for academic use at [30].

Additional files

Additional file 1: Supplementary notes and methods. 1) Comparison
of ClinSeK targeted alignment with BWA aln. 2) Computing ClinSeK
variant score. 3) Read pileup and calculation of allele support. 4) Duplicate
insert marking. 5) Somatic mutation detection by ClinSeK. 6) Variant calling
on >1,000 normal samples. 7) Implementation and memory footprint. 8) Run
time on targeted exome sequence samples.

Additional file 2: Figure S1. Schematic illustration of paralogous
scanning. Distance between symbols (triangles and stars) reflects the edit
distance between sequences. Red star, target site sequence; red triangle,
read sequenced from target site; green star, paralogous site sequence;
green triangle, read sequenced from paralogous site. Size of the dashed
circle indicates the sensitivity in identifying sites paralogous to the target
site. Size of the solid circle indicates the sensitivity in read mapping.
Greater circle size represents higher sensitivity. (A) Low sensitivity in read
mapping and low sensitivity in paralogous scanning. No false positive
exists (no green triangle in the solid circle), but there is a missing read
alignment (red triangle outside the solid circle). (B) High sensitivity in
read mapping and low sensitivity in paralogous scanning. False positives
occur (green triangle in a solid circle). (C) High sensitivity in read mapping
and high sensitivity in paralogous scanning. Neither false positives nor
false negatives occur. (D) Definition of paralogous sites. Blue horizontal
bar: sequence stretch on which fewer than four mismatches exist. Green
horizontal bar: target sequence (top) and paralogous site sequence
(bottom). We use a default scoring system with affine gap penalties of
2:3:1 for [mismatchl:[gap openingl:lgap extension]. (E) The number of
target sites amenable to ClinSeK processing is shown in blue and the
number of paralogous sites identified is shown in pink. Three different
target site sets are studied: 1) AmpliSeq64; 2) ClinVar sites restricted to 202
cancer genes; 3) ClinVar sites.

Additional file 3: Figure S2. Schematic diagram of fusion detection.
The number of reads aligned to alternative fusion breakpoint assembly is
contrasted with the number of reads aligned to the reference sequence
around the breakpoint. Green and blue indicate the two reference
sequences involved in the gene fusion. Narrower bars stand for short
reads. The color of the reads indicates sequence similarity with the
reference sequence.

Additional file 4: Figure S3. Elimination of false positive SNVs by indel
realignment. Sample: IPCT-CH-4335-Tumor-945; site: chr5:112175216.

(a) Before indel realignment, a false positive mutation (T) was present.
(b) After indel realignment, the false positive is eliminated.

Additional file 5: Figure S4. Elimination of false positive SNVs by indel
realignment Sample: IPCT-CH-4522-Tumor-1082; site: chr5:112175423.

(a) Before indel realignment, a false positive mutation (T) was present.
(b) After indel realignment, the false positive is eliminated.

Additional file 6: Table S1. List of validated mutations detected by
only ClinSeK and missed by VarScan2 and MuTect, together with
potential causes of missed mutations as reported from MuTect in
rejecting these somatic mutations.
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Additional file 7: Table S2. List of validated mutations missed by
MuTect but reported by ClinSeK and VarScan2. Potential causes of missed
mutations are listed in column 6. It can be seen from these tables that
MuTect misses high frequency somatic mutations because of a low-level
alternative read count in the normal sample.

Additional file 8: Table S3. List of validated mutations missed by
Varscan2 but reported by ClinSeK and MuTect. Potential causes of missed
mutations obtained from manual inspection are listed in column 5.
VarScan's false negatives are primarily due to either 1) mutations that are
found in regions where there are other mutations nearby (where mutations
are locally clustered); or 2) the allele frequency being below a certain cutoff.
Abbreviations: DNV, di-nucleotide variation; SNV, single nucleotide variation;
TNV, tri-nucleotide variation.

Additional file 9: Table S4. Comparison of variant allele fraction (VAF)
calculation on 719 actionable mutation sites from 1,049 paired tumor
deep sequencing data sets. Sample names are omitted.

Additional file 10: Figure S5. Comparison of variant allele frequencies.
(A) The variant allele frequencies are estimated by VarScan2 (x-axis) and
ClinSeK (y-axis) from 3,472 genetic variants in 46 deep sequenced normal
samples. (B) Variant allele frequencies estimated by GATK (x-axis) and
ClinSeK (y-axis) from 3,467 germline mutations in 46 deep sequenced
normal samples.

Abbreviations
bp: base pair; SNV: single nucleotide variation.
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