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Abstract

Background: Recently, a number of large-scale cancer genome sequencing projects have generated a large
volume of somatic mutations; however, identifying the functional consequences and roles of somatic mutations in
tumorigenesis remains a major challenge. Researchers have identified that protein pocket regions play critical roles
in the interaction of proteins with small molecules, enzymes, and nucleic acid. As such, investigating the features of
somatic mutations in protein pocket regions provides a promising approach to identifying new genotype-phenotype
relationships in cancer.

Methods: In this study, we developed a protein pocket-based computational approach to uncover the functional
consequences of somatic mutations in cancer. We mapped 1.2 million somatic mutations across 36 cancer types from
the COSMIC database and The Cancer Genome Atlas (TCGA) onto the protein pocket regions of over 5,000 protein
three-dimensional structures. We further integrated cancer cell line mutation profiles and drug pharmacological data
from the Cancer Cell Line Encyclopedia (CCLE) onto protein pocket regions in order to identify putative biomarkers for
anticancer drug responses.

Results: We found that genes harboring protein pocket somatic mutations were significantly enriched in cancer driver
genes. Furthermore, genes harboring pocket somatic mutations tended to be highly co-expressed in a co-expressed
protein interaction network. Using a statistical framework, we identified four putative cancer genes (RWDDT, NCF1, PLEK,
and VAV3), whose expression profiles were associated with overall poor survival rates in melanoma, lung, or colorectal
cancer patients. Finally, genes harboring protein pocket mutations were more likely to be drug-sensitive or drug-resistant.
In a case study, we illustrated that the BAX gene was associated with the sensitivity of three anticancer drugs (midostaurin,
vinorelbine, and tipifarib).

Conclusions: This study provides novel insights into the functional consequences of somatic mutations during
tumorigenesis and for anticancer drug responses. The computational approach used might be beneficial to the study
of somatic mutations in the era of cancer precision medicine.

Background

A major goal in cancer genomics is to understand the
genotype-phenotype relationship among genetic alter-
ations, tumorigenesis, tumor progression, and anticancer
drug responses. Several large-scale cancer genomic pro-
jects, such as The Cancer Genome Atlas (TCGA) and
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the International Cancer Genome Consortium (ICGC),
have generated massive amounts of cancer genomic
data, providing us with unprecedented opportunities to
study the relationship between genetic alterations and
specific cancer phenotypes [1,2]. However, the majority
of somatic mutations detected in cancer are ‘passenger’ ra-
ther than ‘driver’ mutations [3]. Identifying the functional
consequences of somatic mutations during tumorigenesis
and tumor progression remains a monumental challenge
to cancer genomic studies.

As of April 2014, approximately 100,000 three-dimensional
(3D) structures have been included in the Protein Data
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Bank (PDB) database [4], including approximately 22,000
human protein and nucleic acid 3D structures [5]. Protein
structure and function are closely related, especially in the
case of protein pockets, which are local regions that
perform a variety of critical functions in cells, including
binding with small molecules, enzymes, and nucleic acids
[6]. Thus, protein pockets are central, structural units in
proteins that provide site-specific information as to how
a protein interacts with small molecules [7]. With an
increasing amount of both protein structural data in the
PDB database and somatic mutation data generated by
next-generation sequencing (NGS) experiments, the in-
tegration of protein structural information and large-
scale somatic mutations offers an alternative, promising
approach to uncovering functionally important somatic
mutations in cancer. Several recent studies have dem-
onstrated that disease-causing mutations commonly
alter protein folding, protein stability, and protein-
protein interactions (PPIs), often leading to new dis-
ease phenotypes [8-20]. Espinosa et al. [21] proposed a
predictor, InCa (Index of Carcinogenicity) that inte-
grates somatic mutation profiles from the Catalogue of
Somatic Mutations in Cancer (COSMIC) database and
the neutral mutations from the 1000 Genomes project
into protein structure and interaction interface informa-
tion. Using these data, they developed the InCa classifier
model to predict cancer-related mutations with 83% speci-
ficity and 77% sensitivity. Ryslik et al. [13] developed an
approach, SpacePAC (Spatial Protein Amino acid Cluster-
ing), to identify mutational clustering by directly consider-
ing the protein tertiary structure in 3D space. Utilizing the
mutational data from the COSMIC and protein structure
information from the PDB, they identified several novel
mutation clusters using SpacePAC. Ghersi and Singh [22]
reported that residues located in nucleic acids, small mol-
ecules, ions, and peptide binding sites are more likely to
be affected by somatic mutations than other residues.
Furthermore, protein pocket regions play an important
functional role in drug design and development through
the ligand-dependent mechanism that affects small mol-
ecule binding [23]. For example, several independent re-
search groups found that the presence of mutations in the
EGFR gene (point mutations in exon 21 or deletions in
exon 19) could activate the gene by altering the ATP bind-
ing site, ultimately leading to an enhancement of the ge-
fitinib response [24,25]. However, it has been debated
whether mutations in the protein pocket regions alter pro-
tein functions through the ligand-independent mecha-
nisms [26].

In this study, we proposed a computational approach
to investigate 1.2 million somatic mutations across 36
cancer types from the COSMIC database and TCGA onto
the protein pocket regions of over 5,000 3D protein struc-
tures. We seek to answer two overarching questions: (1)
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Do the somatic mutations located in protein pocket re-
gions tend to be actionable mutations? and (2) are those
specific mutations more likely to be involved in tumori-
genesis and anticancer drug responses? Through our sys-
tematic analyses, we showed that genes harboring protein
pocket somatic mutations tend to be cancer genes. Fur-
thermore, genes harboring protein pocket somatic muta-
tions tend to be highly co-expressed in the co-expressed
protein interaction network (CePIN). We identified four
putative cancer genes (RWDDI1, NCF1, PLEK, and VAV3),
whose gene expression profiles were associated with over-
all poor survival rates in melanoma, lung, or colorectal
cancer patients. Moreover, by integrating cancer cell line
mutations and drug pharmacological data from the Cancer
Cell Line Encyclopedia (CCLE), we showed that those
genes harboring protein pocket mutations are enriched
in drug sensitivity genes. In a case study, we demon-
strated that a BAX gene with pocket mutations was sig-
nificantly associated with the drug responses of three
anticancer drugs. Collectively, we unveiled that som-
atic mutations in protein pocket regions tend to be
functionally important during tumorigenesis and sensi-
tive to anticancer drug responses. In summary, the
protein pocket-based prioritization of somatic muta-
tions provides a promising approach to uncover the
putative cancer drivers and anticancer drug response
biomarkers in the post-genomic era for cancer preci-
sion medicine.

Methods

Protein pocket information

We downloaded a list of 5,371 PDB structures with pro-
tein pocket information from the Center for the Study of
Systems Biology website at Georgia Institute of Technol-
ogy [27,28]. This library contained only non-redundant,
monomeric, single-domain protein structures, measuring
40 to 250 residues in length and registering less than
35% global pair-wise sequence identity. A pocket detec-
tion algorithm called LPC (ligand protein contact) was
applied to the PDB dataset to generate a set of 20,414
ligand-binding protein pockets whose coordinates were
given in each PDB file under the header ‘PKT’, which is
an abbreviation for ‘pocket’ [28]. We first parsed out all
5,371 PDB files to obtain pocket residues and their PDB
coordinates under the PKT header. Then, we used infor-
mation from the Structure Integration with Function, Tax-
onomy, and Sequence (SIFTS) database [29] to translate
the PDB coordinates into UniProt coordinates. As of April
2014, approximately 100,000 3D structures have been
added to the PDB database, including approximately
22,000 human protein and nucleic acid structures (22%).
Since we only focused on mapping somatic mutations
onto human protein structures, we filtered out proteins
whose organisms were not human, using human protein
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information from BioMart [30] to obtain a high-quality
list of 606 human proteins. We further removed titin
(Uniprot ID: Q8WZ42), which is encoded by the longest
human gene, TTN, but has not yet been detected as
cancer-related [31].

Collection and preparation of somatic mutations

The somatic mutation data set was downloaded from Dr.
Elledge’s laboratory website at Harvard University [32,33],
which contained 1,195,223 somatic mutations from 8,207
tumor samples across 30 tumor types. Somatic muta-
tions with wild-type amino acids in their mutations
that were identical to the pocket residues (both residue
names and UniProt coordinates) were mapped onto the

Page 3 of 14

pocket regions of a total of 606 human proteins. This
mapping procedure yielded a total of 3,256 pocket region
mutations in 369 unique human proteins. Because identi-
cal mutations (defined as having the same wild-type
amino acid, alternative amino acid, and UniProt coordi-
nates) could occur in multiple pockets, we removed those
duplicated mutations (994 mutations total). The final list
of pocket mutations contained 2,262 unique mutations.
Among them, there were 1,603 missense mutations, 115
nonsense mutations, 467 silent mutation, 79 short inser-
tions/deletions (indels), and one complex missense (see
Additional file 1: Table S1 and Figure 1B). We retained
missense mutations in order to predict putative cancer
genes in our follow-up statistical analyses.
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Figure 1 Computational workflow and general summary. (A) The protein pocket-based integrative analysis workflow. (B) The distribution of
protein pocket mutations by mutation types. (C) The number of missense mutations in the pocket regions of the top 10 frequently mutated
genes. (D) Distribution of the number of missense mutations in the pocket regions in 28 cancer types. The detailed data are provided in
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Collection of cancer-associated genes

We collected a large number of cancer-associated genes
from several publicly available resources. First, a total
of 487 genes were downloaded from the Cancer Gene
Census [34] (accessed on 10 July 2013, denoted as ‘CGC
genes’). CGC genes are well-curated and have been widely
used as a reference gene set in many cancer-related pro-
jects [35]. Second, we collected 125 cancer driver genes
from Vogelstein et al. [3]. Finally, we used the 4,050
cancer-associated genes from a previous study [36]. These
4,050 cancer-associated genes were selected based on ex-
pert curation or annotation information from the main
public databases, experimentally validated cancer genes,
and cancer-mutated genes from recent cancer whole ex-
ome and whole genome sequencing projects [36]. These
genes were used as cancer-associated genes to comple-
ment with other carefully curated cancer genes.

Construction of a high-quality protein interaction

network

We downloaded human PPI data from two resources:
InnateDB [37] and the Protein Interaction Network
Analysis (PINA) platform [38] (accessed on 1 May 2013).
Briefly, InnateDB contains more than 196,000 experimen-
tally validated molecular interactions from human, mouse,
and bovine models. PINA (v2.0) is a comprehensive PPI
database that integrates six large-scale public databases:
IntAct, MINT, BioGRID, DIP, HPRD, and MIPS MPact.
Similar to our previous work [36,39], in this study, we
used only PPI pairs that were experimentally validated
through a well-defined experimental protocol. We used
two data cleaning steps. First, all protein-coding genes
were annotated with Entrez Gene IDs, chromosome loca-
tion, and the gene symbol from the NCBI database. Second,
duplicated or self-loop PPI pairs were removed. After
undertaking the data cleaning process, we obtained a total
of 113,472 unique PPI binary pairs among 13,579 proteins.

Construction of a co-expressed protein interaction
network

We calculated the gene co-expression correlation for all
gene-gene pairs using the microarray gene expression data
of 126 normal tissues [40]. The quantile normalization
method was used to normalize expression values at the
probe level. We then computed the Pearson correlation
coefficient (PCC) based on the normalized expression
values. Finally, we mapped the PCC value of all protein-
protein pairs encoded by genes in the above microarray
gene expression data set to the abovementioned PIN to
build CePIN based on a previous study [41].

Somatic mutations of the cancer cell lines
We downloaded the somatic mutations of 1,651 genes
across approximately 1,000 cancer cell lines from the
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CCLE database (accessed on 1 August 2013) at the web-
site [42]. All mutations were determined through tar-
geted, massive parallel sequencing, as described in a
previous study [43].

Drug pharmacological data

We downloaded drug pharmacological data from two
previous studies [43,44]. First, Barretina et al. [43] tested
the pharmacological profiles of 24 anticancer drugs
across 504 cell lines. Second, Garnett et al. [44] assayed
48,178 drug-cell line combinations with a range of 275
to 507 cell lines per drug and 130 anticancer drugs. The
pharmacological data across cell lines, based on the half
maximal inhibitory concentration (ICs), were converted
to the natural log value. In addition, we compiled 458
genes from a previous study that react with sensitivity or
resistance to 130 anticancer drugs [44].

Inferring putative cancer genes

We wrote a computer program (R script) to analyze all
the pocket mutations and to obtain the number of mis-
sense mutations inside each pocket region of each pro-
tein. The script also calculates the number of missense
mutations outside of the pocket region(s) of each protein
by subtracting the pocket mutations from the somatic
mutation dataset. This R script is provided in Additional
file 2. In this study, the null hypothesis is that there is no
significant association between the two category variables
(pocket mutations versus non-pocket mutations). The al-
ternative hypothesis of our computational approach is that
if a gene has more somatic mutations in its protein pocket
region in comparison to its non-pocket region (back-
ground mutations), this gene will more likely be cancer-
related. We defined a background mutation as the total
number of missense mutations in the non-pocket regions
of all proteins (369 unique proteins, Additional file 1:
Table S1). Then, we performed Fisher’s exact test, based
on numbers in a 2 x 2 contingency table (Additional file 3:
Table S2) for each protein. To identify the proteins that
were significantly enriched with missense mutations in
pocket regions versus at random, we required that the
proteins have an adjusted P value (false discovery rate,
EDR) of less than 0.1 after applying the Benjamini-
Hochberg correction for multiple testing [45]. We per-
formed the abovementioned Fisher’s exact test for each
protein harboring pocket mutations in all cancer types
(that is, pan-cancer) and again on each of the top 10
cancer types measured by the largest number of som-
atic mutations in the pocket regions. All statistical ana-
lyses (for example, Fisher’s exact test, Wilcoxon test,
and Benjamini-Hochberg correction) were performed
using the R platform (v3.0.1, [46]). All R codes used in
this study are publicly available (Additional file 2).
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Kaplan-Meier survival analysis

To validate our results, we collected mRNA expression
profiles and clinical annotation data of patients from the
TCGA website [47]. Here, we used the mRNA expres-
sion profiles of three cancer types: lung adenocarcinoma,
colon adenocarcinoma, and skin cutaneous melanoma.
The RSEM (RNA-Seq by Expectation Maximization)
values of mRNA [48] were used as the gene expression
level measure. All P values were performed using a
log-rank test. Notably, for the patients of lung and
colon adenocarcinoma, 2,000 day (above 5-year) sur-
vival rates were used.

Results

Overview of somatic mutations in protein pocket regions
We mapped 1,195,223 cancer-related somatic mutations
onto a set of 5,371 single-chain proteins with pocket re-
gion annotations in the PDB format. The SIFTS project
provided mapping information for the genomic coordinates
of somatic mutations and the sequence coordinates of PDB
pockets. The final list was comprised of 2,262 unique som-
atic mutations in the pocket regions of 369 unique human
proteins (see Additional file 1: Table S1 and Figure 1B).

We first examined the protein pocket region mutations
at the sequence level. Among the 2,262 somatic mutations
in the pocket regions, 1,603 (70.9%) were missense muta-
tions, followed by 467 silent mutations (20.6%) (Figure 1B).
Only a small portion of these mutations were nonsense
mutations (115, 5.1%), which likely truncate protein se-
quences. The top 10 frequently mutated genes measured
by missense mutations in the pocket regions were PIK3CA,
HRAS, CRP, AKTI1, NCF1, NCAM?2, VWFE, ETV6, IFNBI,
and KDM5C (Figure 1C). It is worth noting that five of
these genes (PIK3CA, HRAS, AKTI, ETV6, and KDMS5C)
are known to play important roles in cancer and are CGC
genes (that is, experimentally validated cancer genes [35],
see Methods). The average number of mutations in a
pocket region(s) per protein is 6.1 (2,262/369) with 4.3
missense mutations on average per protein (1,603/369).
For cancer types, somatic mutations in the pocket re-
gions were more frequently observed in uterine, skin,
colon, stomach, breast, lung adenocarcinoma, head and
neck, lung squamous cell, and bladder cancer than in
other types (Figure 1D).

Hotspot amino acids measured by missense mutations in
pocket regions

We provided a catalog of amino acids involved in known
somatic mutations within the pocket regions of each
cancer type. This resource allows us to explore the fea-
tures of somatic mutations, such as hotspot-mutated
amino acids in the pocket regions and their underlying
mutational processes. We examined the hotspot amino
acids altered by somatic mutations across 21 cancer
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types using COSMIC and TCGA data. Figure 2A shows
the spectrum of amino acid changes. We found that argin-
ine (Arg) is a hotspot amino acid with a high frequency of
somatic mutations in pocket regions across multiple can-
cer types, including uterine, skin melanoma, colon, stom-
ach, head and neck, and lung cancers (Figure 2A). For
example, Arg is attributed to the APOBEC family of
cytidine deaminases [49]. APOBEC3G is a member of
the polynucleotide cytosine deaminase gene family,
which plays important roles in anti-viral immunity and
cell cycles. As shown in Figure 2B, four arginine resi-
dues (Arg213, Arg215, Arg313, and Arg320) brim con-
cave active sites in the APOBEC3G catalytic domain
(PDB ID: 2JYW). Previous studies showed that these
four Arg plays important roles in anti-viral immunity
and cell cycles [50,51]. Besides Arg, glutamic acid
(Glu) is another frequently mutated amino acid in the
pocket regions of multiple cancer types, including uterine
carcinoma, skin melanoma, breast adenocarcinoma, and
bladder carcinoma. For example, AKTI is an important
oncogene and plays a critical role in many cancer types
[52,53]. Glul7 on protein AKT1 plays an important role
during ligand-binding (PDB ID: 1H10) [53], which is a
highly frequent, mutated residue in multiple cancer types,
including breast, skin melanoma, lung, and colon cancers
(Figure 2B and Additional file 1: Table S1). Furthermore,
we examined the hotspot-mutated amino acids for the top
10 mutated genes (Figure 2C). Arg and Glu were fre-
quently mutated amino acids on PIK3CA, NCFI1, AKTI,
NCAM?2,VWE, ETV6, and KDMS5C. Additionally, the as-
paragine (Asn), glycine (Gly), and glutamine (GIn) were
frequently mutated in PIK3CA and HRAS. For example,
Gly12, Gly13, and GIn61 were frequently mutated amino
acids in the HRAS pocket (Figure 2B and Additional file 1:
Table S1).

Genes harboring pocket mutations were enriched in
annotated cancer genes

There were 1,603 missense mutations in the pocket re-
gions of the proteins encoded by 325 genes. Among
these 325 genes, 12 were cancer driver genes and 26 were
CGC genes (Figure 3A, see Additional file 4: Table S3).
We found that genes harboring pocket mutations were
significantly enriched in cancer driver genes (P = 1.4 x 10,
Fisher’s exact test, Figure 3B). Similarly, those genes
harboring protein pocket mutations were more enriched
in CGC genes (P = 2.1x107, Figure 3C) and cancer-
associated genes (P = 2.8 x 10°, Figure 3D and Additional
file 4: Table S3) than in genes harboring non-pocket muta-
tions (see annotated cancer gene details in Methods). Col-
lectively, somatic mutations located in protein pocket
regions tended to be associated with cancer genes. Cau-
tion should be taken that the analysis here might be influ-
enced by incompleteness of protein structural data and
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Figure 2 The amino acid mutation spectrum in the pocket regions across 21 cancer types. (A) The missense mutation spectrum of 20
amino acids in the pocket regions across 21 cancer types. (B) The detailed three-dimensional (3D) structures showing critical pocket mutations in
three genes (APOBEC3G, AKT1, and HRAS). The PDB files were downloaded from the PDB database (http://www.rcsb.org/, accessed on 1 February
2014), and 3D pictures were prepared using software PyMOL (http://www.pymol.org/). (C) The missense mutation spectrum of 20 amino acids in
the pocket regions of the top 10 frequently mutated genes.

somatic mutation profiles, as well as by the special cancer
research interest of mutations in pocket regions.

Genes harboring pocket mutations tended to be highly
co-expressed in CePIN

To further explore the functional roles of pocket muta-
tions on network level, we investigated the gene co-

expression distribution for gene-gene pairs harboring
pocket mutations. The PCC value of each gene co-
expression pair was calculated from the microarray gene
expression data of 126 normal tissues [40], as done in our
previous study [41]. We mapped the PPC value onto a
comprehensive protein interaction network (PIN) to build
a CePIN (see Methods). This CePIN contained 90,705 PPI
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(See figure on previous page.)

Table S3 and Additional file 5: Table S4.

Figure 3 The enrichment analyses of genes harboring pocket mutations in cancer genes and a co-expressed protein interaction
network (CePIN). (A) Venn diagram of genes harboring pocket mutations, cancer driver genes, and Cancer Gene Census (CGC) genes. (B) Genes
harboring pocket mutations were enriched in cancer driver genes. (C) Genes harboring pocket mutations were enriched in CGC genes. (D) Genes
harboring pocket mutations were enriched in cancer-associated genes. (E) Genes harboring pocket mutations tended to be highly co-expressed
in CePIN. The P value was calculated using Fisher's exact test. The detailed data regarding statistical analysis are provided in Additional file 4:

pairs connecting 9,945 proteins (Additional file 5: Table S4).
Here, we defined a pocket PPI as one or two proteins in a
PPI pair that harbors protein pocket missense mutation(s).
In CePIN, we found 7,849 PPI pairs that connect proteins
with pocket mutations. In this study, we designated those
PPI pairs as functionally similar when the PCC value was
more than 0.5, as in a previous study [54]. As shown in
Figure 3E, pocket PPI pairs were more enriched in func-
tionally similar PPI pairs (higher gene co-expression)
in comparison to non-pocket PPI pairs (that is, nei-
ther of the two genes in a pair had pocket mutations)
(P = 1.0 x 10, Fisher’s exact test). Detailed data regarding
our statistical analysis were provided in Additional file 5:
Table S4). Collectively, those genes harboring pocket mu-
tations tended to be highly co-expressed in CePIN, imply-
ing their crucial functional roles through network
perturbations [8,12].

Inferring putative cancer genes

Our hypothesis stated that if a gene had more somatic
mutations in its protein pocket region, this gene would
more likely be cancer-related (Figure 3). In our pan-
cancer analysis (21 cancer types), we found that 83 genes
harboring somatic mutations were enriched in protein
pocket regions (FDR <0.1, see Additional file 3: Table S2).
Among the 83 genes, 44 were known cancer-associated
genes [36]. For example, in our study HRAS (P = 5.0 x 10™%),
AKTI (P = 9.5x107°), PIK3CA (P = 5.5x 10°), B2M
(P = 6.7x10™), and KDM5C (P = 3.5 x 10°®) were pre-
dicted to be putative cancer genes using Fisher’s exact
test and evidently designated as cancer driver genes ac-
cording to the 20/20 rule [3]. To identify new cancer
genes, we predicted several putative cancer genes in
uterine, skin melanoma, colon, stomach, lung, head and
neck, and breast cancers, respectively (Additional file 3:
Table S2), since these cancer types have more somatic
mutations in COSMIC database and TCGA. For skin
melanoma, somatic mutations in four genes were signifi-
cantly enriched in their protein pocket regions (Figure 4),
including CRP (P = 2.2 x 10°®), NCF1 (P = 6.3 x 10™*), EPO
(P = 22x%x10%), and RWDDI (P = 22 x 107%). To further
validate the predicted genes in melanoma, we performed a
Kaplan-Meier overall survival analysis. We found that
melanoma patients with high expression of RWDDI had a
weak trend towards poor survival rates (P = 0.05, Figure 5).
In another case, the low expression of NCFI was associated

with poor survival rates in melanoma patients (P = 0.04).
Collectively, RWDDI and NCF1 [55] are two putative
candidate targets for melanoma treatment. Further in-
vestigation on their roles is warranted.

For uterine carcinoma, the somatic mutations on two
genes were significantly enriched in protein pocket re-
gions: DOK2 (P = 1.1 x 10™*) and NLRP7 (P = 3.2 x 10™%).
A previous study revealed that the loss of DOK2 induces
carboplatin resistance in ovarian cancer through the sup-
pression of apoptosis [56]. Moreover, DOK2 was found
to act as a potential tumor suppressor in human breast
cancer [57]. Ohno et al. [58] reported that the expres-
sion of the NLRP7 protein tend to be associated with
poor prognosis in endometrial cancer tissues. Thus, our
statistical framework could effectively predict known
cancer genes in uterine carcinoma. For colon adenocarcin-
oma, the somatic mutations in four genes were significantly
enriched in protein pocket regions: B2M (P = 3.1 x 10,
IFNA2 (P = 3.1x10™), VAV3 (P = 6.6 x 10™*), and ETV6
(P = 1.0 x 107). Among them, VAV3 is the member of the
VAV family of Rho GTPas nucleotide exchange factors,
and it reportedly has been involved in tumor progression
and metastasis [59,60]. Notably, we found that somatic
mutations of colorectal cancer were enriched in the VAV3
pocket region. Interestingly, colon cancer patients with
downregulated VAV3 expression were observed to possess
significantly poorer survival rates (P = 0.02, Figure 5). We
found that two genes in lung adenocarcinoma had enriched
mutations in their pocket regions: CRP (P = 4.9 x 107)
and PLEK (P = 2.1 x 107). Allin and Nordestgaard [61]
reported that elevated circulating levels of CRP were as-
sociated with an increased risk of lung cancer. Again,
we found that a low expression of the PLEK gene was
associated with poor survival rates in lung cancer pa-
tients (P = 0.02, Figure 5). PLEK gene expression was re-
ported to play a potential role in blocking neoplastic
transformation [62]. Taken together, our protein structure-
based approach appears effective in the identification of
new putative cancer genes for future cancer biology studies.

Case study: identification of new putative biomarker for
anticancer drug sensitivity

Identifying anticancer drug response markers through
computational methods is highly promising for cancer
precision therapy [63]. In this study, we sought to evalu-
ate the putative drug sensitivity genes by incorporating
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drug pharmacological data, protein pocket information,
and cancer cell line mutation profiles from the CCLE.
We mapped 64,000 missense mutations and frameshift-
inducing indels in 1,659 genes onto the protein pocket
regions across approximately 1,000 different cancer cell
lines. A total of 104 missense mutations and 36 frame-
shift indels were mapped in the pocket regions of 34
proteins. Next, we compiled 458 genes that displayed
drug sensitivity or resistance to 130 anticancer drugs
[44]. Our statistical analysis indicated that the genes har-
boring pocket mutations were enriched within antican-
cer drug response genes (P = 4.3 x 107, Fisher’s exact
test, see Additional file 4: Table S3). Here, we provided
an example (BAX gene) of identifying putative biomarker
for anticancer drug responses. The BAX gene had the
highest number of cancer cell line mutations in the
pocket regions (PDB ID: 1F16). We first examined the
BAX gene on vinorelbine, an anti-mitotic chemotherapy
drug that is approved for breast cancer and non-small
cell lung cancer treatment by the U.S. Food and Drug
Administration (FDA). We divided the cancer cell lines
into two subgroups: BAX gene mutated (BAX-mut) and
BAX gene wild-type (BAX-WT), using all of BAX gene’s
somatic mutation profiles. We found that the ICs, (nat-
ural log scale) of BAX-mut versus BAX-WT cancer cell
lines on vinorelbine was not significantly different (P =
0.25, Figure 6B). Then, we divided the cancer cell lines
into two subgroups: BAX pocket mutated (BAX-Pmut)
and BAX wild-type (BAX-WT) using the BAX protein
pocket somatic mutation profiles. Interestingly, the 1Csq
value of the BAX-Pmut cancer cell lines harboring pro-
tein pocket mutations on vinorelbine was significantly
lower than that of BAX-WT cancer cell lines (P = 0.02,
Wilcoxon test, Figure 6C). Similar patterns were observed
when we examined the other two drugs: midostauin and
tipifamib (Figure 6C). This example, plus the general
patterns we identified, suggested that our integrative ap-
proach using protein pockets, somatic mutation, and
drug pharmacological information is promising to iden-
tify anticancer drug response biomarkers in the emer-
ging era of cancer precision therapy.

Discussion

Recently, several large-scale cancer genome sequencing
projects, such as the TCGA and ICGC, have released gen-
omic landscapes of human cancer genomes, especially
somatic mutations [1,2]. Such landscapes consist of a
small number of ‘mountains’ (genes altered in a high per-
centage of tumors) and a much larger number of ‘hills’
(genes altered infrequently) [3]. Identifying the functional
roles of the large volume of somatic mutations in hills is
important for our understanding of how they function
in tumorigenesis and tumor progression. Several recent
studies have attempted the structure-based prioritization
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of functional mutations in cancer [11,21,22]. However, few
have specifically explored the spectrum of somatic mu-
tations in protein pocket regions. In this study, we de-
veloped a protein structure-based computational approach
to explore the biochemical and structural roles of somatic
mutations during tumorigenesis through the integration
of large-scale somatic mutation profiles onto protein
pocket regions.

The rationale of our computational approach is that if
a gene has more somatic mutations in its protein pocket
region, it is likely to be cancer-related. To test this hypoth-
esis, we used three complementary methods: (1) cancer
gene enrichment analysis: we found that genes harboring
somatic mutations in their protein pocket regions were
significantly enriched with cancer genes; (2) functionally
similar pair enrichment analysis in co-expressed protein
interaction networks: genes harboring somatic mutations
in their pocket regions tended to be highly co-expressed
in co-expressed protein interaction networks; and (3) anti-
cancer drug response gene enrichment analysis: genes har-
boring somatic mutations in their protein pocket regions
were more likely to be drug-sensitive or drug-resistant.
Put together, somatic mutations located in protein pocket
regions may be enriched with ‘actionable mutations, and
through their interactions drive tumorigenesis and alter
anticancer drug treatment. To demonstrate the potential
value of our approach, we identified four putative cancer
genes (RWDDI, NCF1, PLEK, and VAV3), whose expres-
sion was associated with poor survival rates in melanoma,
lung, or colon cancer patients. Furthermore, in a case
study using a protein pocket-based approach rather than a
traditional mutation versus wild-type approach, we con-
cluded that the BAX gene was related to three anticancer
drug sensitivities. There are two types of molecular mech-
anisms to explain mutations in pocket residues are drug-
resistant or drug-sensitive. (1) A drug binds to a protein
that directly involves the mutation(s) in the pocket. For
example, several independent studies found that the ac-
tionable mutations in the EGFR gene could activate EGFR
by altering the ATP binding site, which ultimately leads
to an enhancement of drug response to gefitinib [24,25].
(2) The pocket mutations affect protein function, which
subsequently perturbs the network nodes in the drug
target’s signaling pathways, leading to drug sensitivity or
resistance. The second mechanism is in a ligand-independent
manner [26]. Here, we did not find any direct evidence in
that bcl-2-like protein 4 (encoded by BAX) is a target pro-
tein involved in ligand-protein binding with midostaurin,
vinorelbine, or tipifarnib [64-66]. Thus, BAX gene may
perturb the network nodes in the signaling pathways,
ultimately contributing to midostaurin, vinorelbine, and
tipifarnib sensitivity [41,67].

Of note, the somatic mutational landscape within a
cancer genome bears the signatures of active mutational
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processes [49,68]. In this study, we provided a catalog of  pocket regions across multiple cancer types. Specifically,
amino acids involved in known somatic mutations within ~ Arg mutations were attributed to the anti-viral immunity
pocket regions and across cancer types. Our systematic  and cell cycles of APOBEC3G [50,51], which is consistent
analyses revealed that two amino acids, Arg and Glu, were ~ with previous mutational signature analysis study [49].
most frequently mutated (hotspot mutations) within  Several recent studies, such as SpacePAC [13], iPAC [15],
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and GraphPAC [16], identified mutational clusters in
cancer by integrating somatic mutation data and protein
structure information. In comparison with these studies,
our protein pocket-based approach provides an alterna-
tive to identifying actionable mutations in the pocket re-
gions that are attributed to tumorigenesis, and further,
to anticancer drug responses. In summary, our protein
pocket-based integrative analysis provides important in-
sights into the functional consequences of somatic mu-
tations in cancer.

There are several limitations in the current work. First,
the somatic mutation profiles from both the COSMIC
and TCGA are mixed with driver and passenger muta-
tions. Second, our approach requires protein 3D structural
information to accurately detect protein pocket regions.
The current protein pocket information is far from
complete and may be inaccurate, due to the feasibility of
protein structures [69]. Although about 100,000 protein
and nucleic acid structures have been curated in the PDB
database, the human protein 3D structure information is
still far from being sufficient. In the future, we propose to
improve our work in the two following ways: (1) use the
experimentally validated driver mutations and passenger
mutations from Vanderbilts MyCancerGenome database
[70] to investigate the functional roles of driver mutations
versus passenger mutations in protein pocket regions and
non-protein pocket regions, and (2) integrate homology
modeling protein pocket information from other organ-
isms, as well as protein interface information in protein
interaction network [54], large-scale atomic-resolution
protein network [71], and protein post-translational sites
(for example, phosphorylation sites) [72], to deeply ex-
plore the functional consequences of somatic mutations
altered protein function in cancer. Despite its limit in
the scope of the current investigation, the data allowed
us to systematically explore the roles of somatic muta-
tions in protein function and drug binding/response
through a protein pocket prioritization approach. As a
proof-of-principle study, we demonstrated that the pro-
tein structure-based strategy is a promising approach to
gain insight into the functional consequences of somatic
mutations in cancer.

Conclusion

Detecting actionable mutations that drive tumorigenesis
and alter anticancer drug responses is in high-demand
in molecular cancer research and cancer precision ther-
apy. In this study, we developed a protein pocket-based
approach by incorporating large-scale somatic mutation
profiles into the protein pocket regions. We found that
genes harboring somatic mutations in their protein pocket
regions tended to be cancer genes and anticancer drug
response genes, and they had a trend to be highly co-
expressed in co-expressed protein interaction networks.
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Overall, somatic mutations located in protein pocket re-
gions could be functional mutations in cancer, and play
important roles during tumorigenesis and for anticancer
drug responses.

In addition, we demonstrated the potential value of
the protein pocket-based approach to uncover putative
cancer genes. Several genes that we identified through
our approach have multiple lines of evidence from experi-
mental data in literature. Building from our approach,
we identified four new putative cancer genes (RWDDI,
NCFI, PLEK, and VAV3), whose expression profiles were
found to be associated with poor survival rates in melan-
oma, lung, or colon cancer patients. Finally, we predicted
several putative biomarkers for anticancer drug responses
through the integration of cancer cell line mutation pro-
files and drug pharmacological data from the Cancer Cell
Line Encyclopedia with protein pocket regions. In a case
study, we illustrated that the BAX gene was associated
with three anticancer drug sensitivities: midostaurin, vino-
relbine, and tipifarnib. In summary, this pilot study pro-
vides a unique investigation of the functional effects and
molecular mechanisms of somatic mutations attributed to
tumorigenesis and anticancer drug responses. We antici-
pate that future work will help identify how critical som-
atic mutations in pocket regions alter protein function in
cancer, including protein-protein interactions and drug
binding.
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