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Enhancer alterations in cancer: a source for a cell

identity crisis
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Abstract

Enhancers are selectively utilized to orchestrate gene
expression programs that first govern pluripotency
and then proceed to highly specialized programs
required for the process of cellular differentiation.
Whereas gene-proximal promoters are typically active
across numerous cell types, distal enhancer activation is
cell-type-specific and central to cell fate determination,
thereby accounting for cell identity. Recent studies have
highlighted the diversity of enhancer usage, cataloguing
millions of such elements in the human genome. The
disruption of enhancer activity, through genetic or
epigenetic alterations, can impact cell-type-specific
functions, resulting in a wide range of pathologies. In
cancer, these alterations can promote a ‘cell identity
crisis’, in which enhancers associated with oncogenes
and multipotentiality are activated, while those
promoting cell fate commitment are inactivated. Overall,
these alterations favor an undifferentiated cellular
phenotype. Here, we review the current knowledge
regarding the role of enhancers in normal cell function,
and discuss how genetic and epigenetic changes in
enhancer elements potentiate oncogenesis. In addition,
we discuss how understanding the mechanisms
regulating enhancer activity can inform therapeutic
opportunities in cancer cells and highlight key challenges
that remain in understanding enhancer biology as it
relates to oncology.
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Introduction

The development of cell identity during the differentiation
process in multicellular organisms creates highly special-
ized cells and tissues that perform unique tasks. With the
premise that the vast majority of cells in a multicellular or-
ganism contain the exact same genetic information, each
distinct specialized cell has enhancers that are either ac-
tive or inactive. Promoters, unlike enhancers, exist imme-
diately adjacent to a gene, show directionality and tend to
have a greater degree of overlapping activity across cell
types compared with enhancers [1,2]. In humans, en-
hancers outnumber promoters and genes by approxi-
mately one order of magnitude [3,4] and their differential
usage leads to diverse gene expression patterns, which
allow for the creation of hundreds of cell functions and
identities. In undifferentiated and pluripotent embryonic
stem cells (ESCs), active enhancers are found in proximity
to and drive the expression of genes involved in maintain-
ing pluripotency [5], while genes involved in promoting
lineage specification are surrounded by largely inactive en-
hancer elements [6]. During cellular differentiation, en-
hancers that control the expression of genes involved in
lineage specification become active. For example, ESCs
that are induced to differentiate into neuroectoderm cells
gain enhancer activity surrounding genes specifically
expressed in the neuroectoderm and show reduced activ-
ity of enhancers surrounding pluripotency-related genes
[5,6]. The combinatorial binding of cell-type-specifying
transcription factors (TFs) and epigenetic modifications
drives this enhancer activity.

The loss of cell fate commitment and gain in pluripo-
tency are central features of carcinogenesis [7-9]. Whole-
genome sequencing approaches have provided evidence
that enhancers are prime targets for genetic or epigenetic
alterations that favor cancer development. From a genetics
standpoint, these alterations include mutations to genes
that encode chromatin looping factors and TFs, which act
together to bring enhancers in close physical proximity
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with gene promoters in order to drive gene expression. In
addition, genetic alterations can affect the enhancers
themselves. Epigenetic changes include abnormal depos-
ition or removal of histone modifications or DNA methy-
lation that serve to activate enhancers that are normally
repressed, or vice versa. The characterization of changes
in enhancers occurring during tumor development and
progression is delineating new therapeutic opportunities
in the form of targeted epigenetic treatments and bio-
marker discovery.

In this review, we discuss enhancer biology as it per-
tains to the promotion of cell identity and we highlight
recent findings demonstrating that genetic and epigenetic
alterations influencing enhancer function are favorable to
cancer development and progression. To conclude, we
discuss the potential for treating cancers based on enhan-
cer alterations and the need to address access to quality
patient-derived samples and to delineate intratumor dif-
ferential enhancer usage.

Enhancers and cell identity

Enhancers define cell identity by establishing cell-type-
specific gene transcription programs through the recruit-
ment of TFs active in unique cell type(s) and through
physical interactions with target gene promoters [10].
Enhancers can be discovered and defined based on a
number of factors, including their epigenetic features,
such as histone and DNA modifications, their transcrip-
tion into non-coding RNAs, the proteins that bind them,
and the three-dimensional topology that they promote.
Below, we discuss each of these features and how they
uniquely contribute to enhancer functionality in driving
cell identities.

The unique chromatin features of enhancers

Unlike promoters, which lie immediately upstream of
the genes they regulate, enhancers can reside anywhere
across the genome, including within intragenic regions
[1,11-14]. Therefore, enhancer discovery presents a unique
challenge. In recent years, the genome-wide mapping of
epigenetic modifications that are specifically enriched at
enhancers has greatly aided in their identification. For
example, monomethylation and dimethylation of histone
H3 on lysine 4 (H3K4mel/2) typify enhancers within a
given cell type, although the H3K4me2 mark is also
present at proximal promoter regions, albeit at weaker
levels [1,15,16]. The additional presence of acetylated
histones, such as H3 on lysine 27 (H3K27ac), is typical
of active regulatory elements including enhancers. ‘Poised’
or inactive enhancers are similarly marked by H3K4mel/
2, but are more likely to associate with histone H3 lysine
27 or lysine 9 di- or trimethylation [6,15,17]. DNA
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methylation at CpG dinucleotides can also mark inactive
enhancers [18].

Mapping regions of open chromatin is another way to
identify enhancers, and other regulatory elements, across
the genome of any cell type. This can be accomplished
through DNase I hypersensitive sites sequencing (DNase-
seq), formaldehyde-assisted isolation of regulatory elements
sequencing (FAIRE-seq) or assay for transposase-accessible
chromatin sequencing (ATAC-seq) assays [4,19-21]. A
third approach to mapping enhancers relies on the obser-
vation that active enhancers are bidirectionally transcribed
into RNA, generating unique non-coding enhancer RNAs
(eRNAs) [22-25].

The annotation of enhancers using these techniques has
greatly propelled our understanding of enhancer biology
as it relates to cell identity determination. For example,
Stergachis et al. [26] used DNase-seq to show that, in
addition to dramatic remodeling in which a number of
gains and losses are observed, there is an overall net loss
of regulatory elements when pluripotent ESCs are com-
pared to more differentiated hematopoietic progenitors or
to fully differentiated cells of the hematopoietic lineage.
Similar results were also reported along the cardiac differ-
entiation lineage [26]. Using TF DNA recognition motifs
analysis within DNase I hypersensitive sites (DHSs), Ster-
gachis et al. also showed a reduction in the total number
of regulatory elements containing motifs for lineage-
specific TFs [26]. For example, hematopoietic progenitor
cells differentiating into B cells have fewer DHSs with the
DNA recognition motif that is recognized by the natural
killer-specific NFIL3 TF. In contrast, no reduction in this
motif was reported during natural killer cell differenti-
ation. Thus, progenitor cells maintain accessible en-
hancers and during differentiation undergo a reduction in
the number of accessible enhancers that are unnecessary
for the differentiation cell type.

The genome-wide annotation of enhancers reveals
their diversity. In addition to the typical enhancers, low
and highly occupied targets (LOTs/HOTs) and super/
stretch enhancers reminiscent of the previously reported
clusters of open regulatory elements (COREs) [20] have
been reported. Super/stretch enhancers are of interest in
cell fate determination because they preferentially exist
proximal to cell-type-specific genes and recruit master
regulatory TFs [5,27]. For example, murine ESC-specific
super/stretch enhancers are bound by high levels of
KLF4 and ESRRB, two critical factors for the pluripo-
tency program, and surround genes that also contribute
to pluripotency [5]. Super/stretch enhancers in B cells
are bound by the PU.1 TF and map close to genes
expressed in B cells, including FOXOI and INPP5D [5].
The recent annotation of super/stretch enhancers in 86
human cell and tissue types further showcases their rele-
vance to cell identity [28].
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Enhancers serve as docking sites for proteins recruited by
non-coding RNAs

Enhancer activity relies on binding TFs [29]. The human
genome is believed to encode more than a thousand TFs
[30]. These TFs bind enhancers by recognizing specific
short DNA sequences (known as DNA recognition mo-
tifs) that lie in ‘open’ chromatin, which is characterized
by reduced nucleosome occupancy [17,31]. To date,
fewer than 200 DNA recognition motifs have been iden-
tified [30,32] and genome-wide binding profiles (cis-
tromes) for a few hundred TFs are available [3,33,34].
While some TFs are required across many or most cell
types, others appear to be lineage-specific [35]. For in-
stance, PU.1 is found in the hematopoietic lineage and is
necessary for B-cell differentiation [36]. Similarly, GATA1
is required in the hematopoietic lineage to promote eryth-
roid differentiation [37].

In addition to TFs, enhancers can recruit additional
factors to ensure their function. The specific epigenetic
modifications found at enhancers are derived from the
recruitment of epigenetic writers and erasers. For in-
stance, the myeloid/lymphoid or mixed-lineage leukemia
methylases MLL2, MLL3 and MLL4 (also known as
KMT2D, KMT2C and KMT2B, respectively) are histone
methyltransferases that bind regulatory elements and are
responsible for deposition of the enhancer marks
H3K4mel and H3K4me2 [38-40]. Similarly, lysine acetyl
transferases such as CBP (also known as CREBBP) and
P300 (also known as EP300) bind enhancers to increase
their activity through protein acetylation, inclusive of
histones [41,42]. The EZH2 methyltransferase creates si-
lenced or poised enhancers through the H3K27me3
modification [6,43]. DNA methylation also marks some
silent enhancers in normal cells [44,45], with the DNA
cytosine-5-methyltransferases DNMT1, DNMT3A and
DNMT3B establishing this mark, and the TET methylcy-
tosine dioxygenases TET1, TET2, TET3 necessary for ac-
tive removal of DNA methylation [46,47]. The presence
of specific epigenetic modifications at enhancers allows
the recruitment of epigenetic readers. For example, BRD4
recognizes histone acetylation, including H3K27ac, lead-
ing it to occupy chromatin preferentially at cell-specific
super/stretch enhancers [28,48,49].

Long non-coding RNAs (IncRNAs), which are RNAs of
more than 200 nucleotides in length that lack protein-
coding potential [50], can also serve as enhancer-like el-
ements to regulate gene expression [51]. For instance,
non-coding RNA-activating (ncRNA-a) regulates the ex-
pression of adjacent protein-coding genes independently
of their orientation, similar to typical enhancer elements
[51]. Other IncRNAs influence enhancer activity through
their interaction with epigenetic factors. For example,
the IncRNA HOTAIR interacts with the polycomb re-
pressive complex 2 (PRC2) to facilitate the deposition of
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the H3K27me3 repressive epigenetic modification on
the chromatin at the HOXD locus, whereas the IncRNA
HOTTIP activates transcription of 5 HOXA genes
through recruitment of WDR5/MLL complexes [52].
Accordingly, IncRNAs can play a crucial role in maintain-
ing cell identity. For example, the IncRNA Tcll-upstream
neural differentiation-associated RNA (TUNAR) interacts
with a complex of proteins to promote expression of the
pluripotency factors Sox2, Nanog and Fgf4 in mouse ESCs
[53]. In addition, RNA-interference-mediated knockdown
of seven abundantly expressed IncRNAs in mouse eryth-
roid cells inhibited terminal erythroid differentiation
[54], raising the possibility that a large number of tissue-
specific IncRNAs are necessary for cell identity programs.

Enhancers form chromatin interactions with target
promoters
Enhancers rarely regulate the expression of the most prox-
imal gene [55]. In fact, they may be separated from their
target promoter(s) over genomic distances that can exceed
millions of base pairs (megabases) [56,57]. Although en-
hancers can help recruit RNA polymerase II, which then
tracks along the DNA to find its target promoter [58], en-
hancers are typically reported to act by physically interact-
ing with their target gene promoters through long-range
chromatin interactions, or loops [59,60]. These interactions
form during cell differentiation [59,61] and are involved
in establishing the chromatin architecture permissive to
stimulus-specific transcriptional responses [62]. As enhan-
cer usage is largely cell-type-specific, it is not surprising that
these interactions are also unique to different cell types and
undergo large-scale changes during differentiation [63].
Ubiquitously expressed proteins, including the CCCTC-
binding factor (CTCEF), as well as the cohesin and mediator
complexes, are known to mediate chromatin interactions
[59,64-68]. Chromatin immunoprecipitation coupled with
next generation sequencing (ChIP-seq) assays against sub-
units of the cohesin complex, including SMC1A and
SMCS3, reveal that they localize to enhancers, promoters,
regions bound by the mediator complex and cell-type-
specific TFs [59,69]. The cohesin complex was also shown
to mediate chromatin interactions, inclusive of those con-
necting promoters to enhancers [67,68]. CTCF has histor-
ically been associated with an insulator function in the
genome, by which it blocks interactions between en-
hancers and promoters [70,71]. However, genome-wide
profiling of CTCF binding and subunits of the cohesin
complex exposed a substantial degree of overlap between
these factors [72,73]. In addition, CTCF was observed to
localize at tissue-specific enhancer elements [74,75], sug-
gesting a role for CTCF in mediating physical interactions
between DNA regulatory elements and in driving the
chromosomal conformation that is necessary for cell type
specification.
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A role for eRNAs in promotion of long-range promoter-
enhancer interactions to regulate gene expression has also
been recently reported. Li et al. have described eRNAs in-
duced by estrogen in breast cancer cells that mediate
promoter-enhancer interactions that are also dependent
on the cohesin complex [24]. Furthermore, Hsieh et al.
also discovered an eRNA proximal to KLK3 in the KLK
locus that enables enhancer interactions with KLK2 [76].
Others, however, have shown that inhibition of eRNA
generation during the estrogen response in MCF7 breast
cancer cells does not affect TF binding, epigenetic modifi-
cations or chromatin loop formation to target genes [77],
suggesting that these events precede eRNA transcription.

Enhancers and cancer

Enhancers provide a basis for cell identity. Thus, the
maintenance of cell-type-specific enhancer activation is
critical in order to avoid improper, or the lack of a ne-
cessary, enhancer function and the development of life-
threatening malignancies. Indeed, recent whole-genome
sequencing studies have established that alterations to
enhancers can occur through aberrant epigenetic modifi-
cations, sequence variation, or mutations, within enhan-
cer binding factors and within enhancers themselves. In
this section we discuss the epigenetic and genetic changes
that alter enhancer function and contribute to an altered
cell identity.

Epigenetic alterations affecting enhancer function in
cancer

Fluctuations in DNA methylation levels are typical of
cancer development and can directly impact enhancer
activity (Figure 1la, Table 1). Yegnasubramanian et al. de-
scribed DNA methylation gains at conserved intergenic
regions across chromosomes 21 and 22 in prostate can-
cer cells [78], indicating the potential for a previously
unappreciated role of DNA hypermethylation in enhan-
cer regions. Subsequently, Aran et al. further established
DNA methylation changes in enhancer regions linked to
cancer genes in diverse cell types including breast, lung
and cervical cancer cell lines [79]. In addition, Taberlay
et al. have recently described widespread changes in DNA
methylation of nucleosome-depleted regions within distal
regulatory elements in breast and prostate cancer cells
[80]. Intriguingly, they found that the majority of epigen-
etic changes at enhancers from both benign and cancer-
ous cells were gains in epigenetic silencing as opposed to
aberrant activation, suggesting that it is a net loss of fea-
tures that drives specific cell identity.

Abnormal patterns of histone modifications at enhancers
also characterize the development and progression of
several malignancies (Figure la,b, Table 1). Through
H3K4mel ChIP-seq assays, Akhtar-Zaidi et al. [81]
identified differential enhancer usage between normal
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Figure 1 Enhancer biology in normal and malignant cells. The
center of the figure shows how, in normal tissue, cell-type-specific
transcription factors (TFs) bind to enhancer elements to drive expression
of target cell identity genes, while enhancers utilized in alternative cell
lineages are poised or silenced. (a) Enhancer (E1) repression in the course
of cancer development through either acquisition of DNA methylation
or chromatin compaction blocking TF binding. (b) Genetic alterations in
an enhancer (E1), altering its normal function through either blocking TF
binding or inducing the binding of a new TF. (c) Enhancer (E2) activation
in the course of cancer development through epigenetic changes,
resulting in chromatin openness favorable to TF binding and target
gene expression. (d) Genetic alterations resulting in the activation of
an enhancer (E2) normally inactive in normal cells. eRNA, enhancer
RNA; LF, chromatin looping factors; P, promoter; Polll, RNA

polymerase |I.

and primary colorectal tumor cells, terming these ‘vari-
ant enhancer loci’ (VELs). VELs were found to correl-
ate with the transcription of putative target genes and
predicted gene expression patterns in a manner that
was concordant with a gain or loss of enhancer state
[81]. In addition, there was a markedly greater repres-
sion of genes associated with enhancer loss than there
was activation of genes associated with enhancer gain.
Gains in enhancer activity were also reported at loci
associated with ESCs during cancer development and
progression [26]. Using DNase-seq data to define ac-
tive regulatory elements based on chromatin openness,
followed by principle component analysis, Stergachis
et al. determined that tumorigenic cells commonly
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Table 1 Epigenetic alterations of enhancers found in malignancies

Cancer type(s) Epigenetic change Reference(s)
Colon Gains and losses of H3K4me1 [81]

Breast, cervical, colon, pancreatic, prostate, blood Gains and losses of super-enhancers [28,82,83]
Breast, lung, cervical Gains and losses of DNA methylation [79]
Melanoma, breast, T-cell leukemia Gains and losses of open chromatin (DNase) [26]

Breast Gains and losses of H3K4me2, open chromatin [84]

T-cell acute lymphoblastic leukemia Global chromatin compaction, reduced H3K27ac [85]

Breast, colon, laryngeal squamous cell HOTAIR overexpression, gains of H3K27me3 [86-88]
Hepatocellular HOTTIP overexpression, increased HOXA13 overexpression [89]

Colon CCATI-L overexpression, chromatin looping to MYC [90,91]

displayed a regulatory landscape more similar to that
of ESCs as opposed to differentiated cells of varying
origin (that is, endoderm, ectoderm, mesoderm) [26].
In addition, gains of open chromatin were observed in
other cell lineages and in sites not observed in any normal
cells, suggesting that cancer cells invoke the activity of
atypical enhancers to activate oncogenic pathways [26].

With respect to tumor progression, Magnani et al. de-
scribed distinct epigenetic landscapes associated with
enhancers in breast cancer cells resistant to endocrine
therapy compared with those responsive to treatment
[84]. This revealed that endocrine-therapy-resistant
cells rely on the NOTCH signaling pathway to elicit al-
ternative enhancer usage and cell survival independent
of estrogen signaling [84]. Active NOTCH signaling is
required for normal mammary stem cell function [92],
implying that the development of endocrine therapy re-
sistance in breast cancer cells may rely on the reversion
or reactivation of stemness pathways and a loss of estro-
gen responsiveness that is typical of luminal breast can-
cer cell identity.

VELs are not restricted to single enhancers but can
also give rise to super/stretch enhancers. This has been
documented in diverse cancer types, including multiple
myeloma, B-cell lymphoma, colon, prostate, breast and
cervical cancers [28,82,83]. Specific genes, such as the
MYC oncogene, are associated with variant enhancer
loci that cluster with other VELs to form super/stretch
VELs in many cancer types [28]. These are reminiscent
of super/stretch enhancers. Other genes preferentially
associate with super-VELs only in specific cancer types,
such as XBPI in multiple myeloma, in which it is known
to be critical for disease development [93,94].

Genetic alterations modulate enhancer function in cancer
Enhancers are also hotspots of genetic alterations pro-
moting cancer development. The majority of disease-
associated single nucleotide polymorphisms (SNPs) and
their associated loci commonly lie within non-coding re-
gions of the genome and thus do not directly alter the

amino acid sequence of a protein [95]. These disease-
associated SNPs typically map to enhancers [95-98] and
directly alter the binding affinity of TFs for their respect-
ive DNA recognition motifs (Figure 1c,d) [57,96,99-102].
For example, breast-cancer-associated SNPs map to en-
hancers bound by the forkhead box A1 (FOXA1) TF and
ERa, and modulate the affinity of FOXA1 for DNA, result-
ing in altered target gene expression [96]. Similar mecha-
nisms are at play in prostate cancer [57,99,103], colon
cancer [81] and acute myeloid leukemia (AML) [104]. En-
hancers targeted by risk variants associated with colorectal
cancer are significantly enriched within VELSs for this dis-
ease [81]. Similarly, SNPs associated with breast cancer
are significantly enriched within differentially methylated
enhancer elements in breast cancer [105]. This suggests a
convergence on these enhancers, by which their activity
can be altered, either through genetic or epigenetic
alterations.

Whole-genome sequencing of tumor samples has iden-
tified thousands of somatic mutations outside of coding
regions [106-108]. While only a subset of these mutations
is likely driving cancer development, the fact that en-
hancers can be affected by mutations that predispose to
cancer supports the idea that somatic mutations may alter
enhancer function (Figure 1c,d, Table 2). Several lines of
evidence support this hypothesis. For example, transloca-
tions commonly found in Burkitt’s lymphoma place the
MYC oncogene in control of intronic and 3’ IGH en-
hancers, ultimately leading to deregulated expression of
MYC and the development of lymphoma [109,110]. Dele-
tions of the locus control region that contains enhancers
controlling B-globin gene expression have also been de-
scribed in sickle-cell anemia patients [111]. Point muta-
tions within the telomerase reverse transcriptase (TERT)
promoter enhance TERT expression in melanoma, and in
cancers of the central nervous system, bladder and thyroid
[112-116]. These mutations provide de novo DNA binding
motifs for ETS family TFs [114]. Finally, point mutations
in enhancers surrounding SHH and SOX9 lead to polydactyly
and a form of severe skeletal malformation (campomelic
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Table 2 Mutations found in factors associated with
enhancer function

Cancer type(s) Mutation Reference(s)

Burkitt's lymphoma IGH/MYC [109]
translocation

Melanoma, central nervous TERT promoter [112-116]

system, bladder, thyroid

Breast, prostate FOXA1 [121,122]

AML, myelodysplastic syndromes GATA2 [123]

Breast, lung GATA3 [122,124-127]

AML, breast, urothelial RUNX1 [122,127,128]

Bladder, head and neck, lung, MLL2/MLL3/MLL4  [122,127,129]

urothelial, breast

B-cell lymphoma, lung EZH2 [122,127,130]

AML, lung DNMT3A [122,127,131]

AML, bladder, lung, urothelial TET2 [122,127,132]

Urothelial, bladder, breast, CTCF [122,127,133]

head and neck

Bladder, glioblastoma, lung, STAG2 [122,127,134]

urothelial

Bladder, urothelial, AML SMC1TA [122,127,135]

Bladder, AML, lung SMC3 [122,127,135]

Lung, AML RAD21 [122,127]

Transitional cell carcinoma NIPBL [135]

Prostate, adrenocortical, MED12 [121,127,136,137]

uterine leiomyoma

AML, acute myeloid leukemia.

dysplasia), respectively [117,118], while point mutations
in enhancers proximal to TBXS5 and PTFIA lead to con-
genital heart defects and pancreatic agenesis, respect-
ively [119,120].

Genetic alterations in enhancer-associated factors

Tumor sequencing efforts have identified mutations in
genes encoding lineage-specific TFs that preferentially bind
enhancers, such as FOXAI and members of the GATA
binding protein family (Table 2) [62,121-124,138,139].
FOXAI mutations have been discovered in breast and
prostate cancers [121]. These mutations occur within
the DNA binding and C-terminal domains of the pro-
tein and a subset was shown to be favorable to tumor
growth [62]. GATA2 is a TF that is critical for the for-
mation of primitive erythroid cells and is expressed in
hematopoetic stem and progenitor cells [139,140], while
GATAS3 plays an important role in luminal differenti-
ation of breast epithelial cells [141]. Mutations in
GATA2 are prevalent in familial AML/myelodysplastic
syndromes [123], whereas mutations of GATA3 occur
in ~10% of breast cancers [124-126]. RUNXI1 (a TF re-
quired for differentiation of blood cells) is another ex-
ample of a lineage-specific TF that is preferentially
mutated in AML (~9% of cases) compared with other
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cancer types (mutated in less than 4% of cases for other
cancer types) [122].

Mutations in epigenetic factors that bind enhancers
have also been reported in cancer. For example, the en-
zymes responsible for the H3K4mel/me2 epigenetic
modifications, specifically the MLL2, MLL3 and MLL4
genes, are significantly mutated in three or more cancer
types [122,127,129]. EZH2 is also commonly mutated in
diffuse large B-cell lymphomas and follicular lymphomas
[130]. Although DNA methylation is not uniquely found
at enhancers, mutations in the DNMT3A and TET2
genes were reported in AML [131,132]. DNMT3A is a
methyltransferase involved in the de novo methylation of
CpG dinucleotides [86] and TET2 converts methylcyto-
sine to 5-hydroxymethylcytosine [142].

Finally, factors involved in long-range chromatin inter-
actions, including CTCEF, the cohesin subunit stromal
antigen 2 (STAG2) [122,127], SMCI1A, SMC3, RAD21
and the loading protein Nipped-B-like (NIPBL) are sig-
nificantly mutated in cancer [134,135]. Furthermore, the
mediator complex subunit MEDI2, which is known to
contribute to chromatin loop formation [59], is mutated
in cancers of the prostate and adrenal cortex [121,136].
The exact role of these mutations remains to be clari-
fied, but the idea that they could provide an oncogenic
benefit by affecting chromatin interactions, and thus
modifying enhancer-promoter interactions, warrants fur-
ther investigation. Taken together, these results suggest
that mutations in lineage-specific TFs, epigenetic en-
zymes and chromatin-interaction factors can promote
cancer development. Whether these genetic changes im-
pinge upon TF binding, epigenetic profiles or overall
chromatin conformation, and whether this has an effect
on cell identity is not known and should be the focus of
future research investigating specific mutations.

Deregulated expression of IncRNAs that can impinge
on enhancer activity may also contribute to tumorigenesis.
For example, HOTAIR overexpression in breast cancer
leads to genome-wide alterations in H3K27me3 and pro-
motes invasive and metastatic cell properties [143]. HOT-
TIP is also overexpressed in hepatocellular carcinoma,
leading to increased HOXA13 expression and cell prolifer-
ation [89]. Furthermore, colon-cancer-associated tran-
script 1-long isoform (CCAT1-L) IncRNA is found in a
super-enhancer upstream of the MYC oncogene, where it
promotes looping and expression of MYC [90]. Yang et al.
have also studied two prostate-cancer-associated IncRNAs,
PRNCRI1 and PCGEML1, characterizing them as interacting
with the androgen receptor (AR) TF, facilitating the looping
of AR-bound enhancers [144]. These IncRNAs also pro-
moted ligand-independent activation of the AR tran-
scriptional program, thereby potentially contributing to
castration-resistant prostate cancer development. How-
ever, Prensner et al., using RNA immunoprecipitation
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studies, failed to detect the interaction between these
IncRNAs and AR, questioning the validity of the initial
findings [145]. While it remains plausible that IncRNAs
act as co-factors in TF-enhancer interactions that pro-
mote cancer progression, additional work is needed to
address these discordant results.

Implications for medicine

Alterations in enhancer usage and activity are a driving
force behind oncogenesis and thus have broad medical
applications. First, both genetic and epigenetic changes
in enhancers may be useful as biomarkers for both diag-
nosis and prognosis of cancer. SNP profiles, for example,
can distinguish the relative likelihood of developing par-
ticular neoplasms. DNA methylation of enhancers may
provide useful prognostic information beyond classical
pathological parameters. The vast majority of work to date
in the field of DNA methylation, however, has been heav-
ily promoter biased. An enhancer focus may yield more
clinical information.

Epigenetic modifications to enhancers are also thera-
peutically targetable, given the recent development of
numerous inhibitors to epigenetic readers, writers and
erasers. For example, bromodomain inhibitors are being
widely investigated for their potential as anti-neoplastic
agents. These compounds act by binding the bromodo-
main of the BET family of proteins, blocking their bind-
ing to acetyl-lysine residues and inhibiting activation of
gene transcription. Interestingly, the unique features of
super/stretch enhancers may make them more responsive
than typical enhancers to such inhibitors. For instance, the
treatment of myeloma cells with JQ1, a BET bromodomain
inhibitor, decreases their proliferation with concomi-
tant reductions in super-VEL-associated oncogene ex-
pression [82].

Conclusions, future directions and perspectives
Enhancers are components of the genome that function
to regulate gene expression and are critical for proper cel-
lular differentiation. The identity of any given cell type is
tied to the cell-type-specifying TFs that it expresses and,
in turn, to the enhancers that these TFs bind. Abnormal
enhancer activation or repression and TF activity drive
cancer development and progression through the activa-
tion of oncogenes and expression programs from alterna-
tive cell lineages, in conjunction with the silencing of
tumor suppressor genes and programs necessary for ter-
minal differentiation. These enhancer alterations have the
potential to be used both as markers of disease and as ave-
nues for therapeutic intervention.

Whole-genome profiling strategies, particularly when
based on massively parallel sequencing, have greatly
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increased the rate at which new discoveries are made
regarding enhancer biology in both a normal- and tumor-cell
setting. Projects such as the Encyclopedia of DNA Ele-
ments (ENCODE) have greatly expanded our knowledge
of the functional genome beyond coding sequences [3].
Current efforts, such as those led by the Roadmap Epige-
nomics Program and the International Human Epigenome
Consortium (IHEC) are geared towards characterizing the
functional genome in human tissues [146,147]. Studies
using cancer tissues as opposed to cell lines will also be
necessary. Using tissue samples, however, will present a
series of challenges, including cellular heterogeneity in
bulk specimens [148]. Sorting cells using cell-type-specific
markers followed by regulatory element profiling may
overcome these challenges. As an example of this issue,
breast epithelium consists of distinct epithelial cell types,
and it is postulated that unique cell types give rise to the
different breast cancer subtypes [149-152]. If true, it is
likely that many enhancer alterations described in cancer
are representative of a specific cell of origin present in
only a fraction of normal breast cells. The heterogeneous
mixture of cancer cells in tumors with differing capacities
to proliferate, migrate and regenerate also poses a chal-
lenge when using tissue samples [148]. Identifying sub-
populations of cancer cells with differential enhancer
usage compared with the bulk may help to better
characterize the biology behind aggressive and meta-
static phenotypes.

Despite the challenges that lie ahead, we have gained a
greater understanding of the role that enhancers play in
tumor development and progression. Causal mutations
in enhancers [109,110] and the gain of super/stretch en-
hancers driving oncogene expression [28,82,83] strongly
support a role for enhancers in tumor development. The
discovery and proven efficacy of new therapeutic agents
that target epigenetic factors found at enhancers, such as
JQ1, further substantiates the importance of enhancers in
cancer. Future research focusing on the assignment of en-
hancers to their target genes may also have clinical impli-
cations when considering disease prognoses and targeted
therapies. Genome-wide profiling of mutations that map
to enhancers or of the activation or inactivation of en-
hancers in tumors is anticipated to reveal particular
disease outcomes and point to therapies that can be
tailored to the specific transcriptional network associated
with these genetically and/or epigenetically altered en-
hancers in cancer.

Enhancers play a central role in cellular identity and
increasing evidence demonstrates that they are primary
targets of alterations promoting cancer development and
progression. Overall, this strongly supports a transition
in cancer research from the gene-centric view to a com-
prehensive approach inclusive of these non-coding regu-
latory elements.
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