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Histone H3.3 K27M chromatin functions 
implicate a network of neurodevelopmental 
factors including ASCL1 and NEUROD1 in DIPG
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Abstract 

Background:  The histone variant H3.3 K27M mutation is a defining characteristic of diffuse intrinsic pontine glioma 
(DIPG)/diffuse midline glioma (DMG). This histone mutation is responsible for major alterations to histone H3 post-
translational modification (PTMs) and subsequent aberrant gene expression. However, much less is known about the 
effect this mutation has on chromatin structure and function, including open versus closed chromatin regions as well 
as their transcriptomic consequences.

Results:  Recently, we developed isogenic CRISPR-edited DIPG cell lines that are wild-type for histone H3.3 that can 
be compared to their matched K27M lines. Here we show via ATAC-seq analysis that H3.3K27M glioma cells have 
unique accessible chromatin at regions corresponding to neurogenesis, NOTCH, and neuronal development path-
ways and associated genes that are overexpressed in H3.3K27M compared to our isogenic wild-type cell line. As to 
mechanisms, accessible enhancers and super-enhancers corresponding to increased gene expression in H3.3K27M 
cells were also mapped to genes involved in neurogenesis and NOTCH signaling, suggesting that these pathways are 
key to DIPG tumor maintenance. Motif analysis implicates specific transcription factors as central to the neuro-onco-
genic K27M signaling pathway, in particular, ASCL1 and NEUROD1.

Conclusions:  Altogether our findings indicate that H3.3K27M causes chromatin to take on a more accessible 
configuration at key regulatory regions for NOTCH and neurogenesis genes resulting in increased oncogenic gene 
expression, which is at least partially reversible upon editing K27M back to wild-type.

Keywords:  ATAC-seq, ASCL1, NEUROD1, diffuse midline glioma, Super-enhancers, Epigenetics, DIPG, H3.3K27M, 
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Background
Diffuse intrinsic pontine gliomas (DIPG) are a leading 
cause of cancer-related deaths in children with survival 
typically being less than 2  years [1]. One of the defin-
ing features of DIPG is the presence of the histone tail 
mutation H3.3K27M, which is estimated to be in  about 
80% of these tumors, and is now classified by the World 

Health Organization (WHO) as diffuse midline glioma, 
H3 K27M-mutant [2–5]. The K27M mutation greatly 
impacts epigenetic modifications  such as causing global 
decreases in the repressive mark H3K27me3, an increase 
in the activating mark H3K27ac, and a reduction in 
DNA methylation [6–9]. Current data suggests that 
H3.3K27M either sequesters, excludes, or enzymatically 
inactivates PRC2 thus preventing it from methylating 
wild-type H3 nucleosomes except at strong affinity sites 
that lack H3.3K27M deposition [6, 9–17]. A more recent 
hypothesis is that H3K27M also prevents the spread of 
H3K27me3 from high-affinity PRC2 sites, specifically 
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large unmethylated CpG islands related to lineage differ-
entiation [18].

The exact scope of oncogenic mechanisms are still to 
be defined, but it is established that H3.3K27M disrup-
tion to epigenetic marks are involved in the maintenance 
of tumor properties [18, 19]. Several studies have been 
conducted investigating interventions to correct the dis-
rupted epigenetic landscape with some showing possible 
clinical promise. Namely, small-molecule inhibitors of 
EZH2, the catalytic subunit of PRC2 responsible for the 
H3K27me3 mark, and the histone deacetylase inhibi-
tor (HDACi) panobinostat have been heavily investi-
gated with the latter advancing to clinical trials [14, 15, 
20, 21]. Further decreasing H3K27me3 initially appears 
counter-intuitive, but this approach reduced H3K27me3 
at tumor–suppressor genes that are otherwise silenced 
in DIPG leading to reduced proliferation [14, 15]. Simi-
larly, further increasing histone H3 acetylation has the 
unexpected result of partially restoring H3K27me3 lev-
els due to histone tail polyacetylation blocking PRC2 
and H3K27M interactions leading to decreased prolif-
eration and restoring aspects of normal gene expression 
[20, 22]. However, both strategies have pitfalls including 
patient-to-patient variability, development of resistance, 
and cytotoxicity [14, 15, 20, 23–25]. This complexity 
demonstrates the necessity to further understand the 
mechanism(s) at play in DIPG that disrupt histone marks 
and the downstream effects  on chromatin and gene 
expression to identify other potential drug targets.

Importantly, the H3.3K27M mutation, and subsequent 
chromatin mark changes, in DIPG results in modifica-
tions to the transcriptome that are mostly unique from 
those associated with H3.1K27M DIPG and H3-WT glio-
blastoma including increased expression of genes related 
to neural development, neurogenesis, NOTCH signaling, 
and differentiation [3, 18, 19, 26, 27]. Drug studies have 
demonstrated that inhibition of the NOTCH pathway 
leads to both reduced proliferation and viability in DIPG 
further supporting its importance to tumor mainte-
nance and presenting a promising component of poten-
tial future combinatorial treatment methods [19, 28, 29]. 
While the epigenetic effects of K27M have been exten-
sively studied, relatively much less is known about the 
impacts on chromatin structure and function [23, 30].

Here we build upon our previous work, where we used 
CRISPR–Cas9 to gene-edit the H3.3K27M point muta-
tion in established DIPG lines to generate isogenic H3.3 
wild-type cell lines [19]. We assessed differential open 
chromatin regions (ATAC-seq) between the pairs of iso-
genic DIPG cell lines and found that in H3.3K27M DIPG 
cells genes regulating neurogenesis and neuronal pro-
cesses were enriched in open chromatin regions, includ-
ing their corresponding enhancers and super-enhancers, 

and had increased gene expression in H3.3K27M DIPG 
compared to their matched control H3.3 wild-type gene-
edited cell lines. Binding motifs for ASCL1, which we 
previously showed to be upregulated in H3.3K27M and 
important for tumorigenic functions, and NEUROD1, 
a transcription factor known to be essential for normal 
neurogenesis, were enriched in H3.3K27M cells at genes 
related to neuronal processes and nervous system devel-
opment that contained unique open chromatin regions in 
K27M cells. Based on these findings we propose a model 
in which H3.3K27M nucleosomes cause a more euchro-
matic structure at super-enhancers and gene bodies of 
genes related to neurogenesis and NOTCH signaling, 
exposing the binding site motifs for key transcription 
factors, such as ASCL1 and NEUROD1 resulting in 
increased expression of their target genes and thus con-
tributing to tumorigenesis.

Results
K27M‑dependent accessible chromatin regions in pediatric 
gliomas
To study how the oncohistone H3.3K27M affects chro-
matin dynamics and how chromatin landscape changes 
impact gene expression we used Assay for Transposase-
Accessible Chromatin using sequencing (ATAC-seq) 
[31–33] on our previously described panel of isogenic 
DIPG cell lines that were gene-edited to have wild-type 
H3.3 using CRISPR-Cas9 [19]. Briefly, two H3.3K27M 
DIPG lines SU-DIPG-XIII and SU-DIPG-XVII (hereafter 
referred to as XIII and XVII, respectively, and also more 
generally as “parental” cells), and their CRISPR gene-
edited counterparts (XIII-WT and XVII-WT) were used 
for this study.

We performed ATAC-seq using biological dupli-
cates for each cell line and after peak calling used the R 
package DiffBind to identify open chromatin peaks that 
are differential between H3.3-WT and H3.3K27M cell 
lines. The XIII and XIII-WT cells had 4522 and 12,860 
unique peaks, respectively, and XVII and XVII-WT had 
13,136 and 211 unique peaks, respectively (Additional 
file 1: Table S1). Distinct chromatin accessibility profiles 
were observed between H3.3-WT and H3.3K27M cells 
for each line showing that the presence or absence of 
H3.3K27M substantially changes chromatin accessibil-
ity (Fig.  1a–d). Principal component analysis (PCA) of 
the matched isogenic lines indicated high reproducibil-
ity between replicates and that H3.3-WT and H3.3K27M 
separate from each other (Fig. 1e, f ). When both sets of 
matched isogenic lines were included in the DiffBind 
analysis hierarchical clustering suggested that lines clus-
tered in part  based off H3F3A mutation status, that is 
H3.3K27M lines clustered together, while wild-type H3.3 
clustered together (Additional file 1: Fig. S1a). However, 
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PCA analysis also suggested some bias for clustering 
based on the original cell line with XVII and XVII-WT 
separating from XIII and XIII-WT (Additional file  1: 
Fig. S1b). This is further supported by overlapping peaks 
found in each duplicate of XIII (N13P1 and N13P2) and 
XIII-WT (N13W1 and N13W2) with most peaks being 
common to both duplicates of each line (Fig.  1g, mid-
dle and bottom Venn diagram). In addition, no peaks 
were unique to one duplicate and instead all peaks were 
shared between either one of the duplicates (i.e., N13P1 
and N13P2 or N13W1 and N13W2) or with the other 
cell line (i.e., N13P1 and N13W1) (Fig.  1g, top Venn 
diagram). This suggests that across DIPG cell lines the 
presence of H3.3K27M results in significant differences 
in open chromatin regions compared to wild-type, but 
there are many unique features in DIPG patient lines that 
are maintained regardless of H3F3A status. In addition, 
only a small proportion of open chromatin peaks were 
mapped to regions we previously defined as having dif-
ferential H3.3 deposition between parental and wild-type 
lines [19] suggesting that the presence of H3.3 alone does 
not exclusively drive changes in chromatin accessibility in 
DIPG (Additional file 1: Table S1). These findings point to 
other factors likely influencing open chromatin regions 
that are specific to each cell line.

We determined the proportion of accessible chroma-
tin peaks that were in exons, introns, promoters (defined 
as between 2  kb upstream and 1  kb downstream of the 
TSS), and intergenic regions of the genome for each cell 
line. Interestingly, the percentage of accessible peaks 
mapped to the promoter regions decreased upon rever-
sion of H3.3K27M to wild-type (Fig.  2a). This finding 
was further supported via H3K4me3 chromatin immu-
noprecipitation (ChIP) qPCR of two such regions. COBL 
is an actin nucleator involved in  neurite outgrowth and 
of particular importance to proper cerebellum formation 
[34, 35] and ZEB2 is a zinc finger E-box binding tran-
scription factor that plays a role in promoting migration 
and invasion of both adult and pediatric glioblastoma 
cells [36, 37]. We demonstrated a significant decrease 
in H3K4me3 levels upon reversion to wild-type in pro-
moter regions of both genes (Fig.  2b). Approximately 
40% or more of the peaks across all lines (except XVII, 
which had a more even distribution across all genomic 
categories) were found in intergenic and intronic regions, 
while the remaining  peaks were found in promoters and 
exons (Fig. 2a and Additional file 1: Table S1). This analy-
sis demonstrates that most of the accessible chromatin is 

located in regulatory regions, suggesting that changes to 
gene expression are often due to increased enhancer or 
super-enhancer activity.

Open chromatin regions are uniquely enriched 
for neuronal genes in K27M cells
Within the ATAC-seq data sets, we looked to see which 
functional groups of genes were enriched in the open 
chromatin peaks using gene ontology (GO) analysis 
of biological processes, cellular components, molecu-
lar function, and KEGG pathways. Both parental lines 
(XIII and XVII) showed enrichment for nervous system 
development, homophilic cell adhesion, and actin bind-
ing terms in the genes in their respective open chromatin 
regions highlighting processes that are likely important 
to DIPG biology more broadly (Fig.  2c, e, left panels). 
Due to low peak numbers, no significant GO terms were 
identified for XVII-WT but the XIII-WT open regions 
corresponded to GO terms related to cytoskeleton, actin 
binding, and focal adhesion (Fig. 2d, left panel).

When all four lines of ATAC-seq data were compared 
using DiffBind some specific gene clusters were enriched 
in all H3.3K27M cell lines compared to wild-type H3.3 
and vice versa. Parental lines XIII and XVII shared 463 
peaks, equating to 245 genes, while XIII-WT and XVII-
WT shared 3401 peaks and 1378 genes (Additional file 1: 
Table S1). This resulted in only one significant GO term 
being shared between parental line peaks (intracellu-
lar signal transduction, data not shown), despite sharing 
the key H3.3K27M mutation that is a defining feature 
of DIPG, and demonstrating that there is some degree 
of heterogeneity between patient tumors. The CRISPR 
gene-edited H3.3 wild-type cells, however, did have sig-
nificant shared GO terms including cytoskeleton, cytosol, 
pathways in cancer, and actin binding further supporting 
the hypothesis that H3K27M plays a key role in regulat-
ing chromatin accessibility at genes that contribute to cell 
morphology and tumor characteristics (Additional file 1: 
Fig. S2).

We also compared our ATAC-seq data with the 
3ʹTag-seq gene expression data from our previous study 
[19] to see if the differentially open regions of chroma-
tin in each cell line corresponded to specific genes that 
showed increased expression in the same cell types. 
ATAC-seq peaks from DiffBind for each cell line were 
overlapped with the genomic coordinates of genes that 
demonstrated increased expression via Tag-seq analy-
sis. This intersection analysis determined that 1881 and 

Fig. 1  Genome-wide profile of accessible chromatin regions in H3.3K27M and H3.3-WT DIPG tumor samples. a Read density heatmaps and average 
profiles of ATAC-seq peaks for XIII and XIII-WT, b XVII and XVII-WT. c Hierarchical clustering analysis of accessible chromatin regions via ATAC-seq 
comparing XIII and XIII-WT, d XVII and XVII-WT. e Principal component analysis (PCA) of significantly differential peaks between XIII and XIII-WT, f XVII 
and XVII-WT. g Overlap of ATAC-seq peaks in XIII and XIII-WT duplicates (top), XIII duplicates alone (middle), and XIII-WT duplicates alone (bottom)

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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5627 statistically significant upregulated genes in XIII 
and XVII, respectively, mapped to unique open chroma-
tin ATAC-seq peaks in the two parental cell lines (Addi-
tional file  1: Table  S2) as compared to their respective 
WT counterparts. Conversely, 4874 and 119 statistically 
significant upregulated genes in the H3.3-WT cell lines 
corresponded to open chromatin ATAC-seq peaks in 
XIII-WT and XVII-WT, respectively (Additional file  1: 
Table  S2). This analysis demonstrated that many genes 
with increased expression also reside in these unique 
accessible regions of chromatin, likely explaining in part 
why these genes are upregulated.

GO analysis was conducted on these overlaps to 
determine which gene families were enriched for open 
chromatin possibly  resulting in increased expression 
(Fig.  2c–e, right panels). Parental lines (XIII and XVII) 
had open chromatin in numerous upregulated genes 
related to the nervous system development, cell junction, 
axon guidance, and postsynaptic density (Fig. 2c, e, right 
panels). These terms were not present in the XIII-WT GO 
analysis indicating that enrichment of these processes 
and changes  in  corresponding genes   are  H3.3K27M-
dependent and likely play key roles in DIPG disease biol-
ogy. The XIII-WT line had open regions corresponding 
to upregulated genes in terms related to adhesion, actin, 
and the extracellular matrix (Fig.  2d, right panels). This 
is consistent with our observation that XIII-WT cells 
undergo morphological changes and become more 
adherent even in suspension culture conditions following 
the reversion of H3.3K27M to wild-type [19].

Enhancer analysis points to nervous system signaling 
and stem cell pathways
Since H3.3K27M DIPG cells have a distinct active 
enhancer profile compared to normal pons tissue [38], 
we compared the enhancer regions with open chromatin 
specific to our parental DIPG to the isogenic wild-type 
DIPG lines using the Genomic Regions Enrichment of 
Annotations Tool (GREAT) analysis (Fig. 3a) [39]. Briefly, 
enhancers were defined as regions enriched for H3K27ac, 
the peaks for which were obtained from a previous 
ChIP-seq data set [27] and were called using MACS2 
default parameters [40, 41], excluding promoters as pre-
viously defined (Additional file  1: Table  S3). Similar to 

the GO analysis conducted on gene bodies and upregu-
lated genes, parental H3.3K27M lines were enriched for 
enhancers linked to genes related to various signaling 
pathways and nervous system development including 
NOTCH signaling and myelination, both of which have 
previously been shown to play a role in pons develop-
ment and be upregulated in DIPG tumors [19, 29, 42]. 
In addition, neuronal stem cell population maintenance 
and oligodendrocyte differentiation-related enhancers 
were present in parental lines supporting findings that 
key mutations, such as H3.3K27M, likely occur in neural 
precursor cells (NPCs)/neural stem cells (NSCs) but the 
cells continue to either partially differentiate into oligo-
dendrocytes or at least gain key oligodendrocyte lineage 
characteristics and this disrupted development contrib-
utes to tumor formation [38, 42–44]. Visualization of 
ATAC-seq peaks for select genes of interest overlaid with 
the previously described H3K27ac ChIP-seq data set  
identified increased accessible chromatin peaks that mir-
rored increased H3K27ac signal within known enhancer 
regions for genes   knowntobe involved in NOTCH sign-
aling and neuronal development including ASCL1 and 
NEUROD1 (Fig. 3b).

Conversely, XIII-WT cells continued to show enrich-
ment for processes important to cell adhesion and differ-
entiation into a variety of cell types (Fig. 3a). Interestingly, 
the GO category negative regulation of MAPK cascade, 
which has been shown to be an important signaling 
pathway in DIPG tumors, was also enriched in XIII-WT 
enhancers, demonstrating that reverting the K27M muta-
tion may be sufficient to somewhat reverse the activation 
of this pathway and contribute to a decrease in tumor-
like characteristics in the isogenic line [27, 38]. Together 
these results suggest that K27M specifically contributes 
to chromatin accessibility at enhancers that are impor-
tant to cell identity and key signaling pathways resulting 
in activation of processes linked to DIPG tumorigenesis.

Open chromatin regions are enriched for transcription 
factor binding sites related to neuronal lineage in K27M 
cells
Given the distinct ATAC-seq profiles in gene bodies, 
enhancers, and super-enhancers, and transcriptomic dif-
ferences between parental and wild-type cell lines, we 

(See figure on next page.)
Fig. 2  H3.3K27M DIPG cells are enriched for open chromatin peaks in upregulated genes related to the nervous system compared to their 
isogenic gene-edited wild-type counterparts. a Bar plot showing proportion of peaks in various genomic regions. Promoters were defined as 2 kb 
upstream of the TSS and 1 kb downstream. 75% or more of the peaks for each line were found in intergenic regions or introns. b H3K4me3 levels 
at genes associated with changes in ATAC-seq peaks between Line XIII PAR (K27M, blue) and WT (wild-type, red) cell lines, validated by ChIP–qPCR. 
n = 2 biological replicates, *p value < 0.05, **p value < 0.01, ***p value < 0.001 and error bars were calculated based on standard deviation. c Gene 
ontology analysis of differential open chromatin (left side) and specifically open chromatin regions linked to increased gene expression (right side) 
in XIII, d XIII-WT, and e XVII. BP biological processes, CC cellular components, KEGG KEGG Pathways, and MF molecular function. For enriched GO 
terms p values were obtained from the Benjamini–Hochberg method



Page 6 of 18Lewis et al. Epigenetics & Chromatin           (2022) 15:18 

Fig. 2  (See legend on previous page.)
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also assessed the potential transcription factors at play 
at the interface between gene expression, chromatin, and 
regulatory elements. We first scanned gene bodies for 
motifs, as these regions were most notably enriched for 
transcription factor motifs over promoters and enhanc-
ers, and mapped them to parental or wild-type ATAC-
seq peak regions using MEME–FIMO and HOMER 
(Fig.  4a, b and Additional file  1: Fig. S3a, b). One nota-
ble finding was enrichment of the DNA binding motif for 
ASCL1, which we previously identified as upregulated in 

H3.3K27M DIPG cells and important for their cancer-
related cellular functions [19], in both XIII and XVII 
cells compared to their isogenic wild-type counterparts. 
Motifs for transcription factors known to play roles 
in stem cell potency, development, and differentiation 
into the neuronal lineage including GBX1, GBX2, NEU-
ROD1, OLIG2, and HOXA2 were also enriched in paren-
tal K27M cells (Fig.  4a and Additional file  1: Fig. S3a). 
In support of previous data, GO analysis of ASCL1 and 
NEUROD1 FIMO regions indicated that these motifs 

Fig. 3  H3.3K27M and H3.3-WT DIPG have differentially accessible enhancer regions. a GREAT analysis of differentially open chromatin 
regions between parental (XIII and XVII) and CRISPR gene-edited isogenic wild-type lines (XIII-WT). b Gene tracks including our ATAC-seq 
peaks (parental=blue, wild-type=red), H3K27ac peaks from Nagaraja et al., 2017 GEO: GSE94259 [27] (black), and enhancer regions defined by 
GREAT analysis for genes of interest (green bar at the top)
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were found in genes related to nervous system develop-
ment, axon guidance, GTPase activity, cell junction, and 
postsynaptic density (Additional file 1: Fig. S3c, d). Nota-
bly, we performed the same motif analysis using MEME–
ChIP with peaks that were found to be shared by XIII and 
XIII-WT to determine motifs that are conserved across 
glioma independent of H3K27M status. We found that 
peaks shared between parental and H3.3 wild-type were 
enriched for KLF15, ASCL1, NEUROD1, and NFYA tran-
scription factors (Additional file 1: Fig. S4). By contrast, 
XIII-WT and XVII-WT cells were enriched for a number 
of FOS::JUN family transcription factors motifs, which 
have previously been identified to either be enriched in 
wild-type H3K27 high-grade gliomas or shared across 
multiple glioma subtypes (Fig.  4b and Additional file  1: 
Fig. S3b) [23].

We used HINT–ATAC [45] to identify candidate differ-
ential transcription factor footprints in open chromatin 
regions of parental and wild-type cell lines. This analysis 
also identified transcription factors related to NOTCH 
signaling, neurogenesis, development, and oncogenesis 
including HEY1, PAX2, and HOXB9 in parental lines 
(Fig. 4c, e). While the MEME–FIMO and HINT–ATAC 
analyses did not identify shared specific factors in K27M 
lines, the factors that were identified did belong to shared  
pathways further highlighting the importance of these 
pathways in DIPG disease biology. FOSL1::JUN was pre-
sent in wild-type cells using both analysis methods as well 
as factors related to migration, cytoskeleton remodeling, 
and Sonic Hedgehog signaling including LHX6, GLI2, 
CDX1, CDX2, and SNAI1 (Fig.  4d, f, Additional file  1: 
Fig. S3e). This is consistent with GO analysis of XIII-WT 
ATAC-seq peaks and open chromatin corresponding to 
increased gene expression (Fig.  2d). Thus, transcription 
factor analysis further confirmed differences between 
parental and wild-type lines that are H3.3K27M-depend-
ent and likely driven by altered functions of neuronal fac-
tors and NOTCH signaling.

We next sought to understand the K27M-specific 
transcriptional regulatory relationships through net-
work analysis. We used FIMO to scan the K27M-specific 
ATAC-seq peaks at upregulated genes for the motifs 
identified as enriched in the HOMER and HINT–ATAC 
motif analysis and then used Cytoscape to build a net-
work of potential transcriptional regulation (Fig. 5). Our 

analysis revealed a striking overlap between ASCL1 and 
NEUROD1 motifs in these regions, suggesting the two 
factors may act coordinately to activate a K27M-specific 
oncogenic gene network (Fig. 5a). Due to this overlap we 
investigated if ASCL1 and NEUROD1 physically bind 
together using co-immunoprecipitation, but no binding 
was detected (data not shown). We repeated the func-
tional analysis for WT cells and the resulting network 
suggests that FOSL1::JUN is a major hub for regulating 
H3.3 WT specific DIPG gene expression (Fig. 5b). There 
is also a substantial overlap between FOSL1::JUN and 
MEIS1 potential targets, suggesting these two factors 
may work together or in a pathway to coordinate gene 
expression. Notably, LHX6 appears to primarily regulate 
a putative set of targets distinct from the other identified 
factors, while CUX1 motifs are all found with the motifs 
of additional factors, pointing to a more cooperative role 
in regulation.

Super‑enhancer analysis points to specific neuronal genes 
in DIPGs
Super-enhancers are linked to oncogenesis in many tumor 
types, including DIPG, and we have previously demon-
strated that H3.3K27M leads to loss of H3K27me3 at super-
enhancers, resulting in increased expression of linked 
genes that likely contribute to tumorigenesis [19, 27, 46]. 
We overlapped our accessible chromatin peaks with pre-
viously defined super-enhancers [27] and found that XIII 
cells had 306 uniquely accessible ATAC-seq peaks within 
these super-enhancers and 107 of these super-enhanc-
ers with K27M-specific ATAC-seq peaks  were linked to 
transcriptionally upregulated genes (Additional file  2: 
Table  S4A). Similarly, XVII cells had 294 super-enhanc-
ers with ATAC-seq peaks unique to H3.3K27M, and 99 
of these were tied to upregulated genes (Additional file 2: 
Table S4A). XIII-WT cells showed changes in accessibility 
at 282 super-enhancers and only 52 of those corresponded 
to upregulated genes in that cell line (Additional file  2: 
Table  S4B). The XVII-WT cells only had one accessible 
super-enhancer that corresponded to upregulated genes 
in that cell line, likely due to the low number of unique 
peaks, and were not analyzed further (Additional file  2: 
Table  S4B). In addition, visualization of ATAC-seq peaks 
for select super-enhancer regions of interest displayed dif-
ferences in peak patterns between parental and wild-type 

(See figure on next page.)
Fig. 4  Determination of physiologically relevant enriched transcription factors in H3.3K27M and H3.3 wild-type cells. a, b Motifs identified 
using MEME–ChIP and number of times that motif occurred in the ATAC-seq peaks was determined using FIMO. Background was calculated by 
scrambling DNA sequence and inputting that sequence into FIMO. Threshold for significant fold enrichment was set to 2 (black dashed line). ***p 
value < 0.001 as described in MEME–ChIP output. c, d HINT–ATAC identified DNA binding footprints in ATAC-seq data made by transcription factors. 
Those that were statistically significant (p value < 0.05, black dashed line) and of interest from MEME–ChIP analysis are plotted for c parental and d 
wild-type. e HINT–ATAC line plots showing the differential footprints of transcription factors significantly differentially bound in XIII (HEY1) and XVII 
(Pax2), and f XIII-WT (LHX6 and FOSL1::JUN)
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cell lines providing further evidence that H3.3K27M dep-
osition results in more open chromatin, especially at key 
regulatory regions, such as super-enhancers (Fig. 6c).

Upregulated genes linked to super-enhancers in either 
parental line included several related to neurogenesis 
and NOTCH signaling including NOTCH1, RAP1GAP, 
POU3F2, and NEUROD1 as well as genes important 
for stemness, differentiation, and development, such as 
SOX2, OLIG2, and PTCH1 (Fig. 6a, b and Additional file 2: 
Table S4A). Further, XIII and XVII cells shared the follow-
ing nine genes that were associated with accessible super-
enhancers and displayed increased expression: CELF2, 
COBL, DAB2IP, FAM222A, GAB2, LINC01158, SASH1, 
STK32B, and TSHZ1 (Fig.  6a–c and Additional file  2: 
Table  S4A). From this list of common genes we decided 
to validate the gene expression of COBL via RT-qPCR and 
also included OLIG2 as a control due to its established 
importance in DIPG biology and having already been vali-
dated in our previous study [3, 19, 27, 30, 38, 42–44, 47]. 
We also chose to validate ZEB2 expression, because we 
previously showed it to be upregulated in XIII and XVII 
[19] and H3K4me3 levels at the promoter are impacted by 
H3.3K27M (Fig. 2b). We were able to validate the general 
changes in gene expression by RT-qPCR (Fig. 6d and Addi-
tional file 1: Fig. S5). Taken together, this analysis suggests 
that the super-enhancers of specific genes become more 
open in H3.3K27M cells and this chromatin mechanism 
contributes to aberrant gene expression, whereas in H3.3 
wild-type these regions become more closed resulting in a 
gene expression profile more typical of normal cells.

Discussion
Major progress has been made in understanding the 
mechanisms of DIPG biology, with arguably one of the 
most important discoveries being the prevalence of the 
mutations in histone H3 proteins, especially in H3.3. The 
subsequent changes to epigenetic marks and the transcrip-
tome have been extensively examined; however, the more 
specific mechanisms behind these changes remain an open 
area of study. In an effort to better understand the machin-
ery behind these epigenomic changes, a few studies have 
investigated the chromatin landscape in H3.3K27M DIPG 
and H3.3K27M knockout DIPG cell lines [23, 30]. How-
ever, this work did not primarily focus on chromatin acces-
sibility leaving this an under-studied component of DIPG 
biology. We took this work further using ATAC-seq on 
our isogenic CRISPR–Cas9 reverted to wild-type H3.3 and 
H3.3K27M DIPG lines.

To address if more accessible chromatin is in part 
responsible for increased gene expression we intersected 
our ATAC-seq data with our previous 3ʹ Tag-seq expres-
sion data [19]. GO analysis revealed that XIII and XVII 
open chromatin regions corresponding to increased gene 
expression were enriched for terms related to neuronal 
development. The abundance of nervous system-related 
terms likely in part reflects the developmental origins of 
these tumors [38, 47, 48] and also supports the hypothesis 
that the formation of these DIPG tumors occurs in part 
through the dysregulation of very specific neuronal devel-
opmental programs [14, 18, 44, 48–50]. Conversely, analy-
sis of XIII-WT specific overexpressed genes with open 
chromatin regions revealed enrichment for morphology 
genes including actin cytoskeleton and cell adhesion, with 
little to no enrichment for neuronal terms. Together these 
results suggest that H3.3K27M results in open chroma-
tin and subsequent increased expression of defined genes 
related to  nervous system  development thus driving the 
progression of tumor formation, while the presence of 
wild-type H3.3 instead of K27M in DIPG results in open 
chromatin and upregulation of cell adhesion genes leading 
to decreases in tumor-like morphology. This is consistent 
with changes to cell morphology in DIPG cells gene-edited 
from K27M to a wild-type H3F3A state that we had previ-
ously observed as well as previous reports indicating that 
H3K27M DIPG cells express mesenchymal and oligoden-
droglial gene signatures and phenotypes [19, 25, 44, 51, 52].

A similar pattern was also observed following overlaying 
the regulatory enhancer and super-enhancer regions with 
the open chromatin regions that we identified. XIII and 
XVII cells were enriched for enhancers and super-enhanc-
ers related to NOTCH signaling and nervous system devel-
opment genes including, but not limited to, ASCL1 and 
NEUROD1, which are basic-helix–loop–helix (bHLH) 
transcription factors with known functions in neuronal cell 
fate and differentiation of glioblastoma stem cells (GSCs) as 
well as normal neuronal cells [53–57]. Our group and oth-
ers have shown that ASCL1, in connection to NOTCH and 
WNT signaling pathways, likely plays a key role in GBM 
and DIPG tumors and can act as a pioneer factor to bind to 
chromatin to promote a more open chromatin configura-
tion at enhancers of neuronal genes [19, 30, 55, 56, 58]. In 
medulloblastoma NEUROD1 has a similar role to ASCL1 
and has also been shown to be a pioneer factor in embry-
onic stem cells (ESCs), where it binds to heterochromatic 
promoters and inactive enhancers resulting in increased 

Fig. 5  Network analysis indicates that ASCL1 and NEUROD1 have overlapping targets specifically in K27M DIPG. a H3.3 K27M-specific gene 
regulatory network in DIPG showing enriched motifs in K27M specific ATAC-seq peaks at genes also upregulated in K27M DIPG cells compared to 
WT DIPG cells. b H3.3 WT-specific gene regulatory network in DIPG showing enriched motifs in WT specific ATAC-seq peaks at genes upregulated in 
WT DIPG cells compared to their isogenic K27M DIPG counterpart cells

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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H3K27ac levels and subsequent increased expression of 
neurodevelopment genes [59, 60].

Fitting with our GO results, motif analysis revealed that 
open chromatin regions in H3.3K27M cells are enriched 
for ASCL1  and NEUROD1  binding motifs. Those motifs 
are located in genes related to neuronal development 
including COBL, which is upregulated and has accessi-
ble enhancer and super-enhancer regions in H3.3K27M 
cells. COBL is a calcium and calmodulin-dependent actin 
nucleator in developing neurons, particularly in the cer-
ebellum, that increases neurite formation and branch-
ing [34, 35, 61]. Calcium and calmodulin GO terms are 
enriched in H3.3K27M DIPG open chromatin regions, 
which could contribute to the aforementioned cell mor-
phology and adhesion changes between our H3.3K27M 
and H3.3 wild-type cells. It is worth noting that ASCL1  
and  NEUROD1  motifs were detected and shown to be 
enriched in peaks shared between parental and H3.3 
wild-type lines suggesting that  ASCL1  and  NEUROD1  
have important roles in DIPG beyond H3K27M func-
tions. However,  since  both  ASCL1 and NEUROD1 
motifs were   enriched in parental H3.3K27M cells over 
those reverted to wild-type, these transcription fac-
tors still likely have unique roles in H3K27M tumors.

While there were consistencies between the two paren-
tal K27M DIPG cell lines and separately between the 
two isogenic H3.3 wild-type lines, some distinct differ-
ences remained even between cells of like H3F3A status 
resulting in some degree of sample clustering by princi-
pal component analysis based on patient origin rather 
than completely based on H3F3A status. It has been 
extensively documented that while histone H3 and IDH1 
mutation status are the main identifiers for pediatric 
high grade-glioma (HGG) and DIPG subgroups there are 
other secondary mutations within these subgroups that 
drive disease progression [1, 3, 51, 62–65]. Therefore, it 
is possible that these secondary mutations are involved in 
chromatin dynamics.

Our study identified an increase in open chromatin in 
the OLIG2 enhancer region for both H3.3K27M DIPG 
lines compared to matched isogenic H3.3 wild-type 
lines, consistent with a previous study [30], as well as 
open chromatin in the super-enhancer of OLIG2 in line 
XIII and its promoter in line XVII. OLIG2,  like ASCL1 
and NEUROD1, is a basic helix–loop–helix transcrip-
tion factor and a marker of the oligodendrocyte lineage, 
one of the proposed cells of origin for DIPG [42, 43, 47], 

and it has increased expression in H3.3K27M DIPG [19, 
48]. Expression of OLIG2 has been shown to be neces-
sary for DIPG cell tumorigenesis and proliferation within 
orthotopic mouse xenograft models containing OLIG2 
knockdown demonstrating reduced tumorigenesis and 
increased mouse survival [66]. This suggests that not only 
does OLIG2 expression mark the potential cell popula-
tion of origin but also presents a potential drug target for 
DIPGs [66]. In addition, OLIG2 is an upstream activator 
of ZEB2 and increased OLIG2 levels have been shown to 
activate ZEB2 during development leading to oligoden-
drocyte precursor cell (OPC) maturation and myelina-
tion [67]. ZEB2 is an established regulator of EMT and 
has been linked to increased invasiveness and migration, 
poor prognosis for glioma patients, and is upregulated in 
glioblastoma and in DIPG as demonstrated in this study 
[36, 37, 68]. Interestingly, ZEB2 is also linked to Notch 
signaling during Schwann cell development and acts as a 
repressor of Notch-Hey2 signaling [69]. While our data 
shows NOTCH signaling to be upregulated in DIPG this 
does not rule out the possibility that ZEB2 may be inter-
acting with NOTCH or one of its downstream targets in 
a way that drives disease progression in DIPG. Further 
investigation of ZEB2 in DIPG and its role in NOTCH 
signaling could help inform new therapies, espe-
cially those that target EMT. Our model suggests that 
H3.3K27M results in decreased H3K27me3 at the OLIG2 
enhancer ultimately resulting in increased expression of 
OLIG2 and driving disease progression (Fig. 7).

Similar to previous work, we found that approxi-
mately 50% of our ATAC-seq peaks in H3.3K27M lines 
had the activating mark H3K27ac [23]. H3K27ac levels 
are influenced by  and in some cases  dependent on his-
tone H3 mutation status much like the repressive mark 
H3K27me3. In DIPG, H3K27ac is often found in hetero-
typic nucleosomes (one histone H3 being wild-type and 
the other being H3.3K27M) [9, 15, 30] and is hypoth-
esized to contribute to blocking PRC2 from depositing 
H3K27me3 resulting in increased gene expression due to 
increased chromatin accessibility, especially at enhancers 
and super-enhancers [9, 19, 23, 26, 38].

Future work to clarify these epigenetic mechanisms 
may involve analysis of chromatin dynamics following 
drug treatments, including NOTCH inhibition given its 
promise as a drug target and our data supporting the 
importance  of NOTCH in DIPG biology. Such studies 
could provide further insights into how drug treatments 

(See figure on next page.)
Fig. 6  H3.3K27M DIPG cells have accessible super-enhancers linked to increased gene expression compared to isogenic H3.3-WT DIPG samples. a 
Select super-enhancers of interest with open chromatin according to ATAC-seq data and increased gene expression via Tag-seq ranked according 
to fold change relative to H3.3-WT in XIII and b XVII ***p value < 0.001. c Gene tracks with ATAC-seq peaks from UCSC Genome Browser of select 
super-enhancer regions of interest. d COBL and OLIG2 were selected for validation using qPCR. Fold change expression in H3.3K27M DIPG were 
calculated relative to H3.3-WT. n = 4, *p value < 0.05, and error bars were calculated based on SEM
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Fig. 6  (See legend on previous page.)
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are affecting open versus closed chromatin and the sub-
sequent changes to gene expression and downstream 
processes [19, 28, 29], potentially pointing the way to new 
therapies.

Conclusions
Taken together, our data support a model (Fig.  7), 
wherein H3.3K27M nucleosomes are enriched in the 
genome specifically at enhancers and super-enhancers 
related to neuronal fate genes that in H3.3 wild-type cells 
are located in repressed regions containing H3K27me3 
[9, 15]. This K27M incorporation in turn begins to open 
the chromatin and leads to the initial increase in expres-
sion of  ASCL1 and NEUROD1. These transcription 
factors then  bind motifs within enhancers and super-
enhancers to further increase chromatin accessibility and 
ultimately promote enhancer/super-enhancer interac-
tions to aberrantly induce other neurogenesis and onco-
genesis related genes, such as COBL. Ultimately, these 

changes along with other mutations together contribute 
to glioma formation.

Methods
Cell culture
Isogenic H3 wild-type cell lines were made  as previously 
described [19]. All cell lines were cultured in Tumor 
Stem Media as described in [27]. Briefly, the media con-
tains DMEM/F12 1:1 (Invitrogen), Neurobasal-A (Inv-
itrogen), 10 mM HEPES (Invitrogen), 1× MEM sodium 
pyruvate (Invitrogen), human basic fibroblast growth 
factor and human epidermal growth factor (20  ng/mL 
each) (Shenandoah), human platelet-derived growth fac-
tor (PDGF)-A and PDGF-B (20 ng/mL) (Shendandoah), 
heparin (10  ng/mL) (StemCell Technologies), and B27 
without Vitamin A (Invitrogen).

Fig. 7  Model of how H3.3K27M affects the chromatin landscape and subsequent gene expression. In this model, we predict that normal brain 
cells have H3K27me3 in specific regions throughout the genome resulting in heterochromatin or discrete domains of repressed chromatin and 
decreased gene expression of specific neuronal, NOTCH signaling, and oncogenesis genes. After the introduction of the point mutation in H3F3A 
resulting in the H3.3K27M mutation, H3K27me3 levels are decreased and H3K27ac levels increase. The chromatin begins to aberrantly open upon 
deposition of H3.3K27M–H3K27ac nucleosomes at defined enhancers and super-enhancers responsible for regulating expression of neurogenesis 
genes. ASCL1 and NEUROD1 transcription factors bind to their respective motifs in these opening regions. We propose that ASCL1 and NEUROD1 
binding facilitates enhancer and super-enhancer functions and further opens the chromatin regions ultimately resulting in increased expression 
of specific neurogenesis, NOTCH, and oncogenesis genes  (Adapted from “Regulation of Transcription in Eukaryotic Cells”, by BioRender.com (2021). 
Retrieved from https://​app.​biore​nder.​com/​biore​nder-​templ​ates)

https://app.biorender.com/biorender-templates
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Assay for transposase‑accessible chromatin (ATAC‑seq) 
library preparation
ATAC-seq for cell lines was performed similarly to pre-
viously published protocols [31, 33] with some modifi-
cations. Cells were dissociated and 100,000 cells were 
washed twice with cold PBS at 4  °C. Cells were resus-
pended in 50 uL of ATAC-Resuspension Buffer (10 mM 
Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Igepal, 
0.1% Tween-20, and 0.01% Digitonin) and triturated until 
cells were lysed. Samples were incubated on ice for 3 min, 
washed with 1 mL of the buffer (excluding 0.1% Igepal), 
and centrifuged at 500 RCF for 10 min at 4 °C. The pellet 
was resuspended in 50 uL of transposition mixture con-
taining 25 uL of 2× TD Buffer (20 mM Tris-HCl pH 7.6, 
10  mM MgCl2, 20% Dimethyl Formamide), 5  uL Trans-
posase (Illumina Nextera Kit), 0.5  uL 0.1% digitonin, 
0.5 uL 10% Tween-20, and PBS, and incubated at 37  °C 
for 60 min, and DNA recovered using Zymo DNA Clean 
and Concentrator-5 Kit. Libraries were generated by PCR 
in 50 uL reactions (20 uL of samples, 25 uL 2× NEBNext 
Master Mix, and 2.5 uL of each custom primers made by 
Integrated DNA Technologies (IDT) (for sequences see 
[32]). The PCR reaction was as follows: 72 °C for 5 min, 
98 °C for 30 s, and 5 cycles of 98 °C for 10 s, 63 °C for 30 s, 
and 72  °C for 1  min. DNA was recovered using Zymo 
DNA Clean and Concentrator-5 Kit.

Bioinformatics
ATAC-seq samples were sequenced in duplicate using 
the HiSeq with paired-end 150  bp sequencing. Adap-
tors were removed from raw paired-end sequencing files 
using bbduk (BBMap version 38.70 BBDuk) [70]. Reads 
were aligned to the hg19 genome using Bowtie2 (ver-
sion 1.1.2) [71]. The resultant Sequence Alignment Map 
(SAM) files were compressed to the Binary Alignment 
Map (BAM) files on which mitochondrial reads were 
removed using samtools (samtools 1.4) [72]. Peaks were 
called using HOMER (v4.11) [73]. Unique peaks in each 
cell line were identified using the R package DiffBind (R 
version 3.6.3, DiffBind version 2.12.0) [74, 75]. Genes 
were defined using the UCSC Main table browser using 
the following settling: Clade: Mammal, Genome: Human, 
Assembly: Feb. 2009 (GRCh37/hg19), Group: Genes and 
Gene Predictions, Track: NCBI RefSeq, Table: UCSC Ref-
Seq (refGene), and Region: genome. These defined genes 
were then overlapped with the ATAC-seq peaks using 
bedtools Intersect intervals (Galaxy version 2.30.0) [76] 
on the public server usegalaxy.com to define the gene 
coordinates of the peaks [77]. Gene ontology analysis 
was performed using DAVID and GREAT [39, 78, 79]. 
Motif analysis was performed using MEME–ChIP and 
FIMO (versions 5.4.1) [80, 81] and HOMER (v4.11) [73]. 

Modeling of DNA footprinting in ATAC-seq peaks was 
performed using HINT–ATAC (v0.13.2) [45].

Network analysis
To identify a K27M-specific transcriptional network, 
accessible chromatin regions in line XIII Parental cells, 
were intersected with genes significantly upregulated in 
line XIII parental (K27M) cells compared to WT cells. 
FIMO was used to scan these regions for the motifs iden-
tified as enriched in K27M ATAC-seq peaks (version 
5.4.1) [80, 81]. A network was built based on this analy-
sis and visualized with Cytoscape version 3.9.0 [82]. To 
identify an H3.3 WT-specific transcriptional network, 
open chromatin regions in line XIII-WT cells were inter-
sected with genes significantly upregulated in line XIII-
WT cells and scanned with FIMO for motifs enriched in 
WT ATAC-seq peaks.

ChIP‑qPCR
In performing ChIP, cells were crosslinked with 1% for-
maldehyde, lysed, and sonicated using a Bioruptor Pico 
(Diagenode) to generate chromatin fragments < 500  bp. 
For each ChIP, 20–30  μg of sonicated chromatin was 
used and immunoprecipitated using an H3K4me3 anti-
body (Millipore 04-745), on magnetic Dynabeads (Inv-
itrogen). For spike-in normalized ChIP-qPCR, 5  μg of 
sonicated Drosophila chromatin was added to each ChIP 
sample prior to immunoprecipitation. qPCR enrichment 
was normalized to Drosophila values across all samples. 
Primers are listed (5ʹ-to-3ʹ) as follows:

COBL forward AAG​GAC​GCC​TGC​ATA​CAA​AC

COBL reverse GTA​GTG​GTG​GAG​CAG​GTG​GT

ZEB2 forward AGT​TTT​GGC​CAG​AAA​TGG​TG

ZEB2 reverse GAG​TGG​CCG​AAA​GAG​ATC​AG

ZEB2-2 forward CCC​TTT​CCT​TCG​AAA​AGT​CC

ZEB2-2 reverse TTG​TTT​CCT​CTG​GGA​ATT​GG

Reverse transcription PCR
RNA was extracted from cells using the NucleoSpin RNA 
Kit (Macherey–Nagel) from which cDNA was made 
using the iScript cDNA Synthesis Kit (Bio-Rad). RT-
qPCR was performed using the PowerUp SYBR Green 
Master Mix (Applied Biosystems; for human COBL 
and OLIG2, normalized to GAPDH) on a Stratagene 
Mx3005P. Primers are listed (5ʹ-to-3ʹ) as follows:

COBL forward TCG​CAG​CAG​AAC​TTG​GTT​CG

COBL reverse GCA​TGG​CTC​CCA​TTG​AGC​A

OLIG2 forward TGG​CTT​CAA​GTC​ATC​CTC​GTC​

OLIG2 reverse ATG​GCG​ATG​TTG​AGG​TCG​TG
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ZEB2 forward CAA​GAG​GCG​CAA​ACA​AGC​

ZEB2 reverse CCA​CTC​CAC​CCT​CCC​TTA​TTTC​

GAPDH forward GGA​GCG​AGA​TCC​CTC​CAA​AAT​

GAPDH reverse GGC​TGT​TGT​CAT​ACT​TCT​CATGG​

Statistical analysis
For statistics comparing RNA and histone mark levels 
of specific genes in parental versus wild-type lines by 
qPCR and ChIP–qPCR (respectively), Student’s t-tests 
with a minimum of n = 2 biological replicates were per-
formed using GraphPad t-test calculator. Error bars 
represent s.e.m. or standard deviation as specified 
in the figure legends. ATAC-seq statistics were per-
formed with the program DiffBind in R. The Benjamini 
adjusted p value was used to determine significance for 
gene ontology analysis. Otherwise the standard p value 
was used.
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