
Islam et al. Epigenetics & Chromatin            (2019) 12:1  
https://doi.org/10.1186/s13072-018-0245-6

RESEARCH

Integration of DNA methylation patterns 
and genetic variation in human pediatric tissues 
help inform EWAS design and interpretation
Sumaiya A. Islam1,2†, Sarah J. Goodman1,2†, Julia L. MacIsaac1,2, Jelena Obradović3, Ronald G. Barr4,7, 
W. Thomas Boyce5,7 and Michael S. Kobor1,2,6,7*

Abstract 

Background:  The widespread use of accessible peripheral tissues for epigenetic analyses has prompted increasing 
interest in the study of tissue-specific DNA methylation (DNAm) variation in human populations. To date, characteri-
zations of inter-individual DNAm variability and DNAm concordance across tissues have been largely performed in 
adult tissues and therefore are limited in their relevance to DNAm profiles from pediatric samples. Given that DNAm 
patterns in early life undergo rapid changes and have been linked to a wide range of health outcomes and environ-
mental exposures, direct investigations of tissue-specific DNAm variation in pediatric samples may help inform the 
design and interpretation of DNAm analyses from early life cohorts. In this study, we present a systematic comparison 
of genome-wide DNAm patterns between matched pediatric buccal epithelial cells (BECs) and peripheral blood 
mononuclear cells (PBMCs), two of the most widely used peripheral tissues in human epigenetic studies. Specifically, 
we assessed DNAm variability, cross-tissue DNAm concordance and genetic determinants of DNAm across two inde-
pendent early life cohorts encompassing different ages.

Results:  BECs had greater inter-individual DNAm variability compared to PBMCs and highly the variable CpGs are 
more likely to be positively correlated between the matched tissues compared to less variable CpGs. These sites were 
enriched for CpGs under genetic influence, suggesting that a substantial proportion of DNAm covariation between 
tissues can be attributed to genetic variation. Finally, we demonstrated the relevance of our findings to human epige-
netic studies by categorizing CpGs from published DNAm association studies of pediatric BECs and peripheral blood.

Conclusions:  Taken together, our results highlight a number of important considerations and practical implications 
in the design and interpretation of EWAS analyses performed in pediatric peripheral tissues.
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Background
Epigenome-wide association studies (EWASs) are 
becoming increasingly popular, in part due to their 
potential to enhance our understanding of the determi-
nants of health and disease, including potential early life 
embedding of experiences and exposures and their asso-
ciation with later life outcomes [1–7]. The term “epige-
netics” describes mitotically heritable modifications of 
DNA and its regulatory components, including chro-
matin and non-coding RNA, that potentially modulate 
cellular states or fate through gene expression changes, 
without changing the DNA sequence itself [8–10]. 
DNA methylation (DNAm), which involves the covalent 
attachment of a methyl group to a cytosine primarily at 
cytosine–phosphate–guanine (CpG) dinucleotides, is 
the most well-studied chromatin mark in human popu-
lations due to its relative stability and ease of measure-
ment on quantitative array-based methods [11, 12]. To 
date, EWASs have identified differential DNAm across a 
broad range of contexts including disease states, genetic 
background and environmental exposures, thereby pro-
viding evidence for the potential contribution of DNAm 
in mediating gene-by-environment ((G × E)) interactions 
[1, 13, 14].

Given that tissue specificity is an integral feature of epi-
genetic profiles, as different tissues and cell types acquire 
distinct epigenomes during differentiation, the selec-
tion of tissue source is a key consideration in the care-
ful design and interpretation of EWAS analyses [15–17]. 
The collection of a disease-relevant, target tissue allows 
for the direct assessment of epigenetic associations that 
may be implicated in the underlying phenotypic or dis-
ease biology. In certain cases, readily accessible periph-
eral tissues may represent the target tissue; for example, 
use of PBMCs for the investigation of DNAm associa-
tions to immune or inflammatory phenotypes [4, 18–20]. 
However, in many cases, the target tissue, such as brain, 
muscle, adipose tissue, among others, may be impossi-
ble or very difficult to collect from living individuals or 
at sufficient quality for analysis from postmortem sam-
ples [3]. Easily accessible peripheral tissues are therefore 
often used in human epigenetic studies for biomarker 
discovery in lieu of target tissues that are difficult to col-
lect. This is particularly relevant to pediatric cohorts in 
which biopsy specimens with invasive collection proce-
dures or postmortem samples are less common than in 
adult populations. As such, more readily accessible tis-
sues with minimally invasive collection procedures, such 
as cord blood, saliva, buccal epithelium cells (BECs) or 
peripheral blood mononuclear cells (PBMCs), are widely 
used tissue source materials for early life EWASs. The use 
of pediatric tissues in DNAm analyses is further com-
plicated by the fact that widespread alterations occur 

in tissue-specific DNAm patterns during development, 
therefore conferring additional complexity in the selec-
tion of appropriate source material for early life DNAm 
studies [21, 22]. Furthermore, changes in cell composi-
tion within a tissue are a source of potential confound in 
EWAS, as shown for a number of DNAm associations, 
including changes during development and certain envi-
ronmental exposures such as smoking [1, 23–27].

Currently, two major focal points in human epige-
netic research are to elucidate the tissue specificity of 
DNAm patterns with respect to individual CpGs as well 
as assess inter-individual variation within a single tis-
sue [21, 28–30]. At a population level, a number of stud-
ies have examined the concordance of DNAm patterns 
across multiple tissues [20, 29–34]. Findings have shown 
that beyond tissue-specific differences in absolute DNAm 
measures, inter-individual DNAm variability also var-
ies by tissue type [20, 31]. For example, previous work by 
our group has shown that BECs have greater DNAm vari-
ability over matched PBMCs at both the genome-wide 
level and at individual CpGs [20]. Moreover, CpG sites 
with higher DNAm variability tend to be more correlated 
between matched tissues [29–31, 34]. Although these 
results provide important insights into the comparability 
of DNAm measures across matched tissues, the analy-
ses to date have been conducted in adult tissues, thereby 
limiting their relevance to DNAm profiles from pediat-
ric samples. As previous studies have demonstrated that 
developmental changes in blood DNAm patterns tend 
to be more pronounced and occur more rapidly in child-
hood, the examination of DNAm concordance and vari-
ability in pediatric tissues represents an important and 
currently missing step in our understanding of EWAS 
associations from pediatric peripheral tissues [21, 22].

Genetic variation represents an additional contribu-
tor to DNAm patterns in tissues, with genetic influ-
ences accounting for nearly 20–80% of DNAm variance 
within a tissue [35–40]. Methylation quantitative trait 
loci (mQTL), sites at which DNAm is associated with 
genetic variation, are present across the genome and 
are often consistent across tissues, ancestral popula-
tions and developmental stage [41–44]. Notably, geneti-
cally influenced sites of inter-individual DNAm variation, 
which can co-occur across tissues, may be biologically 
informative. For example, allele-specific DNAm of the 
FK605 binding protein 5 (FKBP5) gene, which has been 
associated with risk of developing stress-related psychi-
atric disorders, responds to glucocorticoid stimulation 
in a similar way in peripheral blood cells and neuronal 
progenitor cells [45]. Within a particular tissue, such as 
blood, mQTL often are stable across development [43, 
46]. Moreover, approximately 75% of the inter-individual 
regional DNAm variance within a single tissue can be 
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best described by (G × E) models [47]. As such, delineat-
ing the contribution of genetic influences to tissue-spe-
cific DNAm may help clarify the interpretation of EWAS 
associations.

Given that early life development brings about sizable 
changes to DNAm patterns, it is important to examine 
DNAm variability and concordance between peripheral 
tissues, as well as genetic influences on early life DNAm 
patterns, in childhood [21, 22]. To this end, we used 
matched PBMC and BEC samples, two commonly used 
peripheral tissues in EWAS, from two independent early 
life cohorts in order to identify (a) differences in inter-
individual variability and concordance of DNAm between 
these tissues and (b) genetic contributions to these pat-
terns at the site-specific level. Our results showed that 
genome-wide DNAm variability differed between tissues, 
with BECs exhibiting greater inter-individual DNAm 
variability over PBMCs. Moreover, we found that highly 
variable CpGs were more likely to be positively correlated 
between matched tissues and enriched for DNAm sites 
under genetic influence. Finally, we demonstrated the 
relevance of our findings to EWAS analysis by categoriz-
ing DNAm associations that were previously identified in 
pediatric BECs and peripheral blood. Collectively, these 
findings highlighted a number of potential insights and 
considerations for the appropriate design and interpre-
tation of EWAS analyses performed in commonly used 
peripheral tissues of pediatric samples.

Results
Study cohorts and DNAm data processing
To explore the tissue-specific DNAm patterns of pedi-
atric PBMCs and BECs, we used subsets from two inde-
pendent human cohorts, GECKO and C3ARE, both of 
which contained matched tissue samples from healthy 
children from the Lower Mainland Vancouver area. In 
GECKO, individuals ranged in age from 6 to 11 years at 
time of BEC collection (median = 8.8) and 7 to 13 years 
at time of PBMC collection (median = 10.3). Of the 
GECKO study sample (n = 79), 46% were female (n = 36). 
In C3ARE (n = 16), individuals ranged in age from 3 to 
5 years at time of BEC collection (median = 4.5) and 4 to 
5  years at time of PBMC collection (median = 5.1) and 
50% were female (n = 8) (Table 1).

DNAm data, as measured across ~ 485,000 CpGs by 
the Illumina 450K array, were filtered down to overlap-
ping 419,507 sites which passed independent quality 
control measures in both cohorts. Each 450K dataset 
was normalized to remove probe type differences and 
adjusted for cell type heterogeneity in each tissue using 
established bioinformatic correction methods [34, 
48–51]. Genetic variants were measured genome-wide 
using the Illumina Infinium PsychChip. Following probe 

filtering for low-quality probes, 550,200 and 547,662 SNP 
probes remained for analysis in C3ARE and GECKO, 
respectively. We used these corrected DNAm and geno-
typing data of matched PBMC and BEC samples from 
both cohorts to assess inter-individual DNAm variability, 
DNAm concordance across tissues and genetic influence 
on DNAm, in order to gain insight into DNAm variation 
in these commonly used pediatric peripheral tissues.

BEC DNAm had significantly greater inter‑individual 
variability than PBMC DNAm
As inter-individual DNAm variability within a tissue 
likely relates to the potential effect sizes that are detect-
able in EWAS analyses, we were interested in assessing 
tissue-specific DNAm variability. To this end, we first 
interrogated the global differences in inter-individual 
DNAm variability between PBMC and BEC samples, 
following in silico correction for cell type differences 
in each tissue. We used reference range as a measure 
of DNAm variability as opposed to absolute range in 
order to minimize potential skewing by outlier values 
and non-normal DNAm values at individual CpGs, as 
previously described [31, 52]. Within each cohort, BEC 
DNAm had a significantly greater reference range than 
PBMC DNAm (Fig. 1a; Wilcoxon signed-rank test, all p 
values = 2.2 × 10−16). In GECKO, the median reference 
range, measured in beta values, was 1.9% higher in BECs 
(5.2%) than in PBMCs (3.3%). Similarly, in C3ARE, the 
median reference range was 1.6% higher in BECs (3.6%) 
than in PBMCs (2.0%). The difference in reference range 
was not dependent on sample size, as demonstrated by 
the consistency between GECKO and GECKOsub, the 
GECKO cohort randomly subsampled to the sample size 
of C3ARE (n = 16) 100 times (Fig. 1a). In addition, tissue-
specific differences in DNAm variability were observed at 
individual CpGs, as determined by a Fligner–Killeen test, 
a nonparametric test measuring homogeneity of vari-
ances between two groups. In GECKO, 217,091 probes 
had significantly greater variability in BEC at FDR ≤ 0.05, 
while only 32,350 probes were more variable in PBMC. 
Similarly, in the C3ARE cohort, 127,472 probes had 
greater variability in BECs (FDR ≤ 0.05) and 8183 probes 

Table 1  Sample characteristics for  C3ARE and  GECKO 
cohorts

Characteristics C3ARE GECKO

Age range (years) 
at BEC collection 
(mean)

3.7–5.8 (4.5) 6–11 (8.8)

Age range (years) at 
PBMC collection 
(mean)

4.2–5.9 (5.1) 7–13 (10.3)

Sex n = 16 total (50% F) n = 79 total (46% F)
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in PBMCs (FDR ≤ 0.05; Fig.  1b). This consistent differ-
ence in variability between BECs and PBMCs was best 
represented by cg10852045, cg14245471 and cg1855901 
(Fig.  1c). Collectively, 85% of C3ARE probes (108,498) 
with greater variability in BEC were also found in the 

GECKO cohort to have greater BEC variability. These 
108,498 CpGs were enriched for sites with high inter-
individual BEC variability in both cohorts (10,000 per-
mutations, p value < 1 × 10−4). As well, 84% of C3ARE 
probes (6840) with greater variability in PBMCs, were 
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Fig. 1  BEC DNAm was consistently more variable than PBMC DNAm at the genome-wide and probewise level. a Distribution of reference range 
in C3ARE, GECKO and GECKOsub, showing significantly great variability in BEC versus PBMC (Wilcoxon p < 2.2 × 10−16 in each cohort). b Scatterplot 
of PBMC versus BEC reference range in each cohort. c Three examples of CpGs with the greatest reference range difference between tissues. 
Individuals from the GECKO cohort are shown in red and individuals from C3ARE are shown in blue
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also more variable in PBMCs in the GECKO cohort; 
similarly, this subset was enriched for CpGs with high 
PBMC variability in both cohorts (10,000 permuta-
tions, p value < 1 × 10−4). These findings suggested that 
BEC DNAm was consistently more variable than PBMC 
DNAm across both cohorts, in line with previous analy-
ses using adult tissues [20].

Apart from tissue-specific differences in reference 
range, we also observed a cohort-specific difference in 
DNAm variability. Specifically, CpGs in GECKO had a 
significantly greater median reference range than C3ARE 
CpGs in both tissues (Wilcoxon rank-sum test, p val-
ues = 2.2 × 10−16). In BECs, the median reference range 
was 1.6% higher in GECKO than C3ARE and in PBMCs, 
it was greater by 1.3%. This difference remained sig-
nificant when GECKOsub was used in lieu of GECKO 
(BEC difference = 1.2%, PBMC difference = 1.1%, Wil-
coxon rank-sum test, p values = 2.2 × 10−16), suggesting 
that these cohort-specific DNAm variability differences 
occurred irrespective of sample size and may be related 
to age-associated increases in DNAm variability, as previ-
ously described [53–58].

Variable CpGs were more highly correlated 
between tissues
Taking advantage of the matched tissue design of our 
cohorts, we evaluated whether DNAm variation in one 
tissue reflected DNAm variation in the other. We per-
formed probewise Spearman’s correlations between 
paired BEC and PBMC samples for the C3ARE, GECKO 
and GECKOsub datasets, respectively (Additional file 1: 
Fig. S5). Using multiple reference range thresholds 
to capture increasingly variable CpGs, as previously 
described, we observed progressively greater enrichment 
of highly positively correlated CpGs, irrespective of sam-
ple size (Fig. 2a and Additional file 2: Table S1) [31]. This 
suggested that, broadly speaking, CpGs with greater vari-
ability were more likely to be correlated between these 
tissues than less variable CpGs.

We next sought to investigate DNAm variability and 
concordance at individual CpGs. Specifically, we aimed 
to identify “informative sites,” which we defined as CpGs 
that are both variable across individuals and highly cor-
related between BECs and PBMCs, using a previously 
described method [31]. Such CpGs may be predictive of 
PBMC DNAm when measured in BECs or vice versa. To 
be classified as informative, i.e., variable and concordant, a 
CpG was required to have a reference range ≥ 5% in both 
tissues and meet the minimum correlation coefficient 
between tissues of 0.47 in GECKO samples and 0.32 in 
C3ARE samples, as determined by a beta mixture model 
run on highly variable CpGs in each cohort. Overlapping 
CpGs that met these criteria in both cohorts resulted in 

a set of 8140 informative sites. Of note, we observed a 
greater than expected by chance overlap (3682 out of 8140 
sites, 45%, 10,000 permutations, p < 1 × 10−4) between our 
set of informative sites and informative CpGs previously 
identified between matched samples from adult brain and 
blood tissues [31]. Visualization of our six most corre-
lated informative sites revealed continuous distributions 
of positively correlated DNAm values between the tissues, 
as expected (Fig. 2b). However, the most variable informa-
tive sites exhibited discrete distributions with 2–3 distinct 
clusters, rather than a typical continuous distribution, 
suggesting that these CpGs may be enriched for CpGs 
which are likely under genetic influence (Fig. 2b) [30].

Genetic variation contributed to tissue concordance
In order to determine the influence of local genetic vari-
ation on inter-individual DNAm variability and concord-
ance of DNAm signal across matched peripheral tissues, 
we identified cis-mQTL in both BEC and PBMC samples, 
respectively. Briefly, CpGs were filtered by DNAm vari-
ability (reference range ≥ 0.05) in their respective tissues 
and were correlated against all SNPs within a 5 kb win-
dow, a window size previously demonstrated to enrich for 
mQTLs that are more likely to be functionally linked to 
proximal CpGs [47, 59, 60]. As the GECKO cohort had a 
larger sample size as compared to C3ARE and was there-
fore more adequately powered for cis-mQTL detection, 
the GECKO samples were used as the discovery cohort. 
A total of 16,880 and 18,245 significant cis-mQTL were 
identified in GECKO PBMCs and BECs, respectively 
(FDR ≤ 0.05 and DNAm change per allele ≥ 2.5%), with 
6359 mQTL in common between tissues (Fig. 3a). These 
mQTLs were selected for validation testing in C3ARE.

After quality control processing and variability filter-
ing of the C3ARE DNAm and genotyping data, 16,138 
and 17,563 SNP-CpG pairs could be tested for valida-
tion in PBMCs and BECs, respectively (mQTL that were 
not tested for validation lacked genetic variability in the 
C3ARE cohort). This resulted in a total of 1871 PBMC-
specific, 3705 BEC-specific and 1097 shared-tissue vali-
dated cis-mQTL (FDR ≤ 0.05 and DNAm change per 
allele ≥ 2.5%), which exhibited highly consistent effect 
sizes between GECKO and C3ARE cohorts (Spear-
man rho = 0.92, p = 2.2 × 10−16) (Fig.  3a, b). The over-
lap between validated cis-mQTL between tissues was 
greater than expected by chance (10,000 permutations, 
p value < 1 × 10−4) (Fig. 3a and Additional file 3: Fig. S6). 
This suggested that genetic influences contributed to 
covariation between tissues. Finally, we found a signifi-
cant overlap of our 1871 PBMC-specific and 1097 shared-
tissue cis-mQTL with previously published mQTL hits 
from whole blood samples of 7-year-old children in the 
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AIRES cohort (1810 out of 2968 sites, 61%, 10,000 per-
mutations, p < 1 × 10−4), further supporting our mQTL 
findings [46].

We next sought to characterize our validated cis-mQTL 
by their genomic localization and functional features. 
Firstly, the 4980 unique CpGs associated with the validated 
cis-mQTL showed a greater than expected by chance 
enrichment in intergenic regions and were depleted in 
intragenic and north shelf regions (2–4  kb upstream of 
CpG islands) (Additional file  4: Fig. S7A, FDR ≤ 0.05). In 
particular, both the CpGs associated with tissue-specific 
cis-mQTL and the CpGs associated with shared-tissue 
cis-mQTL were significantly enriched at intergenic and 
intragenic regions and showed significant depletion at 
promoters and CpG islands, where DNAm levels tend 
to be low and there is limited inter-individual variation 
(Additional file  4: Fig. S7B and C, FDR ≤ 0.05). However, 
tissue-specific mQTL CpGs exhibited significant enrich-
ment at south shelf regions (2–4 kb downstream of CpG 
islands), whereas shared-tissue mQTL CpGs were sig-
nificantly enriched in north shores (0–2  kb upstream of 
CpG islands) but depleted in north shelf regions (Addi-
tional file 4: Fig. S7B and C, FDR ≤ 0.05). In addition, we 
found that CpGs associated with shared-tissue cis-mQTL 
exhibited a greater than expected by chance enrichment of 
informative CpGs (687 out of 812 unique CpGs in shared-
tissue cis-mQTLs, 85%, 10,000 permutations, p < 1 × 10−4), 
further substantiating that site-specific DNAm correlation 

between tissues are influenced, in part, by genetic varia-
tion (Additional file 5: Fig. S8).

Tissue‑specific differential DNAm was consistent 
across cohorts
Taking further advantage of our matched tissue design, 
we subsequently assessed differential DNAm between 
PBMCs and BECs at individual CpGs for both cohorts. 
In the GECKO samples, 36% of CpGs (150,647) were 
differentially methylated between matched BECs and 
PBMCs (Wilcoxon signed-rank test; FDR ≤ 0.05 and 
delta beta ≥ 0.05). The number of significant differen-
tially methylated sites was not greatly affected by sam-
ple size differences as GECKOsub had similar findings 
with 36% of sites exhibiting differential DNAm (149,094 
CpGs, with 148,767 sites overlapping with GECKO). 
Similarly, in C3ARE, 38% of CpGs (157,992) were signifi-
cantly differentially methylated (Wilcoxon signed-rank 
test; FDR ≤ 0.05 and delta beta ≥ 0.05). The overwhelm-
ing majority of these CpGs (139,662) were differentially 
methylated in the same direction in GECKO, GECKOsub 
and C3ARE (Fig.  4). Of these sites, 102,203 (73%) had 
greater average DNAm in PBMCs and 37,459 (27%) had 
greater average DNAm in BECs. This corresponded with 
a greater median DNAm across all PBMC probes (68%, 
68%) as compared to all BEC probes (47%, 50%) in both 
C3ARE and GECKO, respectively.

Fig. 4  Tissue-specific differential DNA methylation was consistent across cohorts. Volcano plots of differential methylation analysis (run using a 
paired Wilcoxon signed-rank test) between BEC and PBMC tissues for C3ARE, GECKO and GECKOsub datasets. Vertical lines represent an effect size 
threshold of > 0.05 for absolute mean difference between tissues (BEC–PBMC) and the horizontal line represents the nominal p value corresponding 
to an FDR < 0.05 in each cohort. CpGs in dark purple met the effect size and significance cut-offs independently in all three datasets (139,662 CpGs). 
GECKO − log p values were ~ 5X greater than that of GECKOsub and C3ARE likely due to sample size differences between datasets (n = 79, n = 16, 
n = 16, respectively); y-axes were left unstandardized to display trends within each cohort
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Differentially methylated sites were common in previously 
published EWAS findings
To provide a granular categorization of CpGs measured 
on the 450K array, we overlapped CpGs that were iden-
tified as a) informative (i.e., variable across individu-
als and correlated between BECs and PBMCs) (8140), 
b) differentially methylated between matched tissues 
(139,662), or c) under genetic influence (4980; i.e., 
number of unique CpGs associated with validated cis-
mQTL) across both GECKO and C3ARE cohorts. Of all 
CpGs associated with cis-mQTL, 17.7% were informa-
tive and 76.2% were differentially methylated (Fig. 5a). 
However, in CpGs associated with cross-tissue cis-
mQTL (812 unique CpGs in total), 84.6% were informa-
tive and 58.8% were differentially methylated.

We then applied this categorization scheme to pre-
viously reported EWAS findings performed in pedi-
atric BEC or PBMC tissues to provide an example of 
how the classification of CpGs can aid in the inter-
pretation of such studies. We selected five published 
studies that used the 450K array in pediatric BECs or 
peripheral blood to assess DNAm variation associated 
with puberty, aging in early life, childhood psychotic 
symptoms, fetal alcohol spectrum disorder and autism 
spectrum disorder [61–65]. By implementing our CpG 
classification scheme on their respective list of signifi-
cant EWAS hits, we found that cis-mQTL, as identi-
fied here, accounted for 0.02–13.5% of significant CpGs 
reported in these five studies. Differentially methylated 
CpGs comprised the most represented type of CpG 
across all five studies with only one study demonstrat-
ing an overlap of 24.3% with our identified informative 
sites (Fig. 5b; Additional file 6: Table S2) [65]. This sug-
gested that the majority of DNAm associations identi-
fied in these EWASs were likely specific to peripheral 
blood or BECs, rather than shared across tissues. 
Finally, we tabulated our CpGs classifications across all 
419,507 DNAm probes assessed in our study in order to 
serve as a resource for researchers wishing to compare 
their own EWAS results (Additional file 7). Collectively, 
these findings reveal the importance of considering 
DNAm variability and concordance between tissues, 
as well as genetic influences on these patterns, when 
interrogating and interpreting EWAS findings from 
pediatric peripheral tissues.

Discussion
In this study, we comprehensively compared genome-
wide DNAm in BECs and PBMCs using matched samples 
from two independent pediatric cohorts. Moreover, we 
leveraged the strength of paired DNAm and genotyping 
profiles to define cis-mQTL across the genome and assess 
the influence of local genetic variation on DNAm vari-
ability and tissue concordance. Our findings showed that 
at the genomic and site-specific level, BECs had greater 
inter-individual DNAm variability over PBMCs, with 
highly variable CpGs more likely to be positively corre-
lated between the matched tissues. In our subsequent cis-
mQTL analyses, we observed distinct genetic influences 
on tissue-specific DNAm and confirmed that a sizeable 
proportion of shared DNAm patterns between tissues 
resulted from allelic variation. Finally, we provided a 
classification framework for the post hoc examination of 
EWAS associations and examined the representation of 
our categorized CpGs in published EWAS findings per-
formed in pediatric BECs and PBMCs.

Our findings highlighted extensive differences in 
DNAm patterns between tissues and thus the impor-
tance of tissue selection when designing an EWAS. 
To a large extent, EWAS tissue selection in early life 
cohorts is guided by two factors. Firstly, ease of collec-
tion is particularly important in this age range and may 
restrict tissue availability. Buccal swabs are less invasive 
than intravenous puncture, and the latter contributes to 
participation refusal in pediatric cohorts [66]. Secondly, 
the relevance of the tissue to the phenotype or exposure 
being tested represents an important consideration for all 
EWAS analyses, irrespective of age. As peripheral blood 
represents a circulating tissue with broad immune and 
inflammatory functions, it might be more relevant to a 
wider range of health phenotypes than BECs. However, 
another hypothesis posits that tissues that arise from the 
same germ layer are more epigenetically similar and thus 
might be a preferred choice for surrogate tissue selec-
tion [67]. For example, in comparison with blood, it has 
been proposed that BEC DNAm may more closely reflect 
brain DNAm than blood DNAm, as both derive from 
the ectodermal germ layer [32, 65]. Adding to the com-
plexity of this issue, we found that BEC DNAm had sig-
nificantly greater inter-individual variability than PBMC 
DNAm at the genome-wide level and at the site-specific 

Fig. 5  Overlap and representation of identified CpGs in previously published pediatric EWAS findings. a Venn diagram of CpGs identified as 
informative, differentially methylated between tissues, or underlying our set of validated cis-mQTL. Scatterplots display three representative CpGs 
from the pairwise intersections between categories. b Stacked bar plot showing proportion of CpGs of each defined category represented in 
significant CpGs of various pediatric EWAS publications in BECs or PBMCs (All = all categories; Differential = differentially methylated between 
tissues; Informative = informative CpG; Inform + Diff = informative and differential; mQTL = CpG associated with mQTL; mQTL + Diff = mQTL CpG 
and differential; mQTL + Inform = mQTL CpG and informative; None = not in any of the listed categories)

(See figure on next page.)
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level, a finding consistent with adult BECs and PBMCs 
[20]. Having a higher proportion of variable CpGs might 
be desirable for EWAS analyses as testing any tissue with 
little inter-individual DNAm variation would naturally 
limit effect sizes. From this perspective, BECs might rep-
resent a more appropriate choice of peripheral tissue for 
population-based epigenetic studies over PBMCs. How-
ever, it is worth noting that while we did correct for cel-
lular heterogeneity in both tissues using bioinformatic 
deconvolution approaches, the higher proportion of vari-
able CpGs in BECs may, to some extent, be attributed to 
the increased diversity of cell types or residual cellular 
heterogeneity in BECs over PBMCs (i.e., epithelial and 
hematopoietic in the former and entirely hematopoietic 
in the latter) [68].

Taking advantage of our matched sample design, we 
were able to rigorously interrogate the extent of corre-
lation between DNAm signatures of BECs and PBMCs. 
CpGs with greater variability were more likely to be cor-
related between matched tissues, as best exemplified by 
the 8140 informative sites we identified. These may aid 
in the inference of unmeasured PBMC or BEC DNAm 
(when the other tissue is measured) as well as for prior-
itization of sites for cross-tissue replication. In the lat-
ter case, cross-tissue replication typically involves the 
generation of candidate gene lists in accessible tissues 
for validation in less available tissues, such as postmor-
tem samples, an approach which can boost confidence 
in identified associations [69–71]. There was a substan-
tial overlap (45%) between our informative sites and 
those previously published in matched adult blood and 
brain tissues [31]. However, we found only 1.9% of total 
measured CpGs to be informative by our measures and 
thresholds as compared to 9.7% found in the previous 
analyses of adult samples from our laboratory [31]. These 
quantitative differences might be due to a number of 
reasons, with the most likely being that the blood–brain 
informative sites were identified using a single cohort, 
while our blood–buccal informative sites were filtered 
down to sites that were common across both GECKO 
and C3ARE cohorts; other explanations may be meth-
odological (i.e., slight differences in analytical thresholds 
derived from empirical testing) or biological (i.e., blood 
may be more epigenetically similar to brain tissue than to 
BECs, resulting in more informative sites). An in-depth 
analysis of such cross-tissue comparisons between pedi-
atric and adult samples, ideally by means of longitudinal 
sampling of DNAm, may help elucidate such sources of 
tissue variation across the lifespan.

Integration of genetic and epigenetic information may 
further clarify the relative contribution of genetic and 
environmental factors on inter-individual DNAm vari-
ability. We found that genetic variation contributed to 

both inter-individual DNAm variation within a tissue, 
as well as common DNAm variation between tissues. 
This is in general agreement with previous findings that 
show that many—but not all—mQTLs have consist-
ent effects across tissues and human populations and 
are generally depleted in genomic regions which tend 
to have low DNAm variability such as promoters and 
CpG island but enriched in more variable intergenic 
and intragenic regions [41, 43, 44, 46, 72]. It is currently 
unclear why we observed more BEC-specific mQTL in 
our matched design as compared to PBMC-specific or 
cross-tissue mQTL. The most likely explanation is that 
BECs contained more validated cis-mQTL due to greater 
inter-individual DNAm variability. It is also tempting to 
speculate that allelic variation contributes more strongly 
to DNAm in BECs over PBMCs, because blood DNAm 
might be more plastic and responsive due to the role of 
blood cells in the immune system [73–75]. For example, 
changes in genome-wide transcriptional programs and 
DNAm profiles are observed in response to an inflamma-
tory stimulus in blood leukocytes, which could be incon-
gruent with a high degree of fixed, genetically driven 
DNAm patterns in these cells [73–75]. In a more compli-
cated paradigm, DNAm variation may be best explained 
by the interaction of both genetic and environmental fac-
tors ((G × E) interactions), as previously demonstrated in 
blood-based DNAm profiles [45, 47].

As touched upon in several recent reviews, genetic con-
tribution to DNAm might be more prominent in shap-
ing the DNA methylome than initially anticipated, and 
thus affect the analysis and interpretation of EWAS find-
ings [1, 76]. To illustrate this, we tested for the presence 
of our categorized CpGs in published EWAS findings. 
Notably, we found that while most identified EWAS asso-
ciations may be distinct to the tissue in which they were 
examined, in some instances, these associations may be 
reflected across multiple tissues and/or under genetic 
influence. For example, we observed CpGs associated 
with autism spectrum disorder to contain the highest 
proportion of cis-mQTL. While there might be a num-
ber of reasons for this, it is possible that the proportion 
of genetically influenced CpGs found in an EWAS may be 
proportional to the heritability of the phenotype under 
examination, although such hypotheses will require rig-
orous testing in large cohorts across a diverse spectrum 
of phenotypes with and without heritable contributions. 
Furthermore, it is difficult to discern whether having a 
high proportion of mQTL in EWAS analyses is favora-
ble or not. Previous work has shown that the majority 
of variably methylated regions are best described by an 
interaction of both genetic and environmental factors 
[47, 71]. Emerging findings from neonatal blood samples 
have additionally shown that the bulk of variable DNAm 
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sites are best accounted for by either additive (G + E) or 
interaction (G × E) models, suggesting that environmen-
tal influences on DNAm may be further delineated with 
the inclusion of genotype information [47, 77]. As such, 
any mQTL CpGs found in an EWAS may offer alternate 
interpretations to phenotypic associations with DNAm 
and would require further investigation for potential 
gene-environment effects.

It is worth noting that our study had a few inherent 
limitations. Firstly, in both GECKO and C3ARE cohorts, 
PBMCs were collected from individuals at a slightly later 
time point than BECs, resulting in an age-related differ-
ence (0–1.5 years for C3ARE; 0.5–2.3 years for GECKO) 
between matched tissues, which may have affected analy-
ses of DNAm variability. However, we anticipate that 
age-related differences in DNAm variability are relatively 
small compared to tissue-specific differences as our find-
ings are consistent with previous work performed on 
age-matched tissues in adults [20]. Another limitation 
was the relatively small sample size of our cohorts, which 
may have inflated type II error rates. We also chose to not 
assess distal genetic effects on DNAm (i.e., trans-mQTL) 
due to the increased multiple testing burden, but rather 
prioritized cis-mQTL as previous work has suggested 
these may be more functionally linked to nearby CpGs 
[47, 59, 60]. As well, previous work in blood has shown 
that the proportion of DNAm variance explained by 
trans-mQTL is much lower than that of cis-mQTL [46]. 
For these reasons, we examined SNPs that were directly 
measured and not imputed, as performed in other pedi-
atric mQTL analyses, within a 5 kb window [47, 78]. As 
a result, we likely underestimated the number of mQTL 
present in our tissues. Future work using large cohorts 
will be required to clarify the contribution of distal 
genetic variants to DNAm in other peripheral tissues. In 
addition, our mQTL findings were limited by the cover-
age of the 450K array, which interrogates less than 2% of 
all DNAm sites across the genome, although this includes 
94% of all mapped CpGs islands. As such, it is generally 
biased toward CpG-dense promoter regions, which typi-
cally have limited inter-individual and inter-tissue varia-
tion [21, 79–81]. Finally, while we found the Houseman 
blood deconvolution method to perform well in our 
cohorts, evidence of substantial DNAm changes across 
the lifespan, especially during early childhood, neces-
sitates the refinement of cell deconvolution methods, 
including adjusting for age, to allow for more nuanced 
estimation of cell types in early life [21, 22, 58].

Conclusions
The work here presents a comprehensive assessment 
of local genetic influences on DNAm in matched BECs 
and PBMCs, as well as a characterization of DNAm 

variability and concordance between paired pediatric 
tissues. Moreover, our results highlight a number of 
possible considerations for EWAS analyses, including 
the potential enrichment of mQTL findings following 
prefiltering to variable CpGs to reduce multiple test 
barriers and possible strategies to facilitate in-depth 
curation of EWAS hits. Such post hoc examination of 
significant differentially methylated CpGs will hope-
fully support the interpretation of EWAS findings and 
aid in the prioritization of candidate associations for 
functional validation.

Methods
Study cohorts and tissue samples
Matched tissues were obtained from a subset of two sep-
arate pediatric cohorts. Specifically, a subset of samples 
from the previously described C3ARE (Cleaning, Car-
rying, Changing, Attending, Reading and Expressing) 
cohort were collected from 16 individuals (8 females; 
50%) aged 3–5 years (age range 3.6–4.2 years (BEC) and 
4.5–5.2  years (PBMC)) from Vancouver, British Colum-
bia [82]. The GECKO cohort samples (Gene Expression 
Collaborative Kids Only) comprised of 79 individuals 
(36 females; 46%) aged 6–13 years (age range 6–11 years 
(BEC) and 7–13  years (PBMC)) also from Vancouver, 
British Columbia. Birth dates were not available for all 
GECKO participants; age in years was recorded at the 
BEC sample collections. In both cohorts, the majority of 
BEC samples were collected at the first visit and PBMCs 
were collected at a later date. In the C3ARE cohort, fol-
low-up visits ranged from 7 days to 1.5 years, with three 
pairs of matched BECs and PBMCs being collected on 
the same day. In the GECKO cohort, the follow-up vis-
its at which peripheral blood was collected ranged from 
6 months to 2.3 years after the initial visit. Demographic 
descriptors of both cohorts are provided in Table  1. All 
experimental procedures were conducted in accordance 
with institutional review board policies at the Univer-
sity of British Columbia. Written informed consent was 
obtained from a parent or legal guardian and assent was 
obtained from each child before study participation. For 
both cohorts, BECs were collected using the Isohelix 
Buccal Swabs (Cell Projects Ltd., Kent, UK) and stabilized 
with Isohelix Dri-Capsules for storage at room tempera-
ture prior to DNA extraction, as previously described 
[64]. Whole blood was collected into Vacutainer® CPT™ 
Cell Preparation Tubes (Becton, Dickinson and Com-
pany, NJ, USA) and PBMCs were isolated following cen-
trifugation, washing and resuspension into R10 media 
(Sigma-Aldrich, MO, USA), as previously described [83]. 
PBMC pellets were frozen and stored at − 80  °C until 
DNA extraction.
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DNA isolation and DNA methylation arrays
Genomic DNA from stabilized buccal samples was iso-
lated using Isohelix Buccal DNA Isolation Kits (Cell Pro-
jects Ltd., Kent, UK) and was purified and concentrated 
using DNA Clean & Concentrator (Zymo Research, CA, 
USA). Genomic DNA was extracted from PBMC pellets 
using the DNeasy kit (Qiagen, MD, USA). DNA yield 
and purity were assessed using a Nanodrop ND-1000 
(Thermo Fisher Scientific, MA, USA). Bisulfite conver-
sion of DNA (750  ng) was performed using the Zymo 
Research EZ DNA Methylation Kit (Zymo Research, 
CA, USA). Samples were subsequently randomized, and 
160  ng of bisulfite-converted DNA was applied to the 
Illumina Infinium HumanMethylation450K Beadchip 
(450K) array, as per manufacturer’s protocols (Illumina, 
CA, USA) [79].

DNA methylation array data quality control 
and normalization
Data from each cohort were analyzed separately. Spe-
cifically, raw intensity values from the DNAm arrays 
were imported into Illumina GenomeStudio V2011.1 
software and subjected to initial quality control checks 
for array staining, extension and bisulfite conversion 
followed by color correction and background adjust-
ment using control probes contained on the 450K array. 
Data were exported from GenomeStudio as beta values 
which represent the estimated DNAm level based on a 
ratio of intensities between methylated and unmethyl-
ated alleles, with beta values ranging from 0 (unmeth-
ylated) to 1 (fully methylated). Subsequent processing 
and analysis were performed in R Version 3.2.1 (http://
www.r-proje​ct.org). Profiles from 65 probes targeting 
single nucleotide polymorphisms (SNPs) were used 
to ensure matched tissue samples originated from the 
same individual. The 65 SNP probes were subsequently 
filtered out of the dataset. Since the cohorts were not 
equally matched for sex, we removed sex chromosome 
probes (11,648) from both datasets. Additional probe 
filtering was performed in which poor performing 
probes including those with detection p values greater 
than 0.01 or probes with missing beta values in more 
than 2% of samples were removed (14,400 C3ARE, 
13,374 GECKO). Reannotation of the Illumina 450K 
array was used to filter probes that are known to be pol-
ymorphic at the target CpG. Probes, which have non-
specific in silico binding to the sex chromosomes, were 
also removed [84]. Final probe count after quality con-
trol probe filtering was 429,494 probes for C3ARE and 
430,581 probes for GECKO. Following quality control 
processing, quantro determined quantile normalization 

to be inappropriate as the global DNAm distributions 
between the two distinct tissues were highly differential 
[85]. Beta Mixture Quantile dilation (BMIQ) normali-
zation was performed to remove differences between 
Type I and Type II probes on the 450K array, yielding 
normalized DNAm [48].

Cell type correction of DNA methylation data
The effects of cellular heterogeneity on DNAm measures 
were removed from PBMC and BEC samples in both 
cohorts. Specifically, blood cell type proportions were 
estimated for the PBMC samples using the established 
Houseman blood deconvolution method [49, 50]. This 
blood deconvolution algorithm has been previously used 
in pediatric blood DNAm profiles where it was shown to 
perform reasonably well [23]. To test whether this was 
indeed also true in our GECKO and C3ARE samples, we 
assessed the appropriateness of the Houseman probeset 
panel in our pediatric blood samples compared to adult 
blood profiles [49, 86]. We downloaded the original adult 
blood DNAm dataset (Reinius) on which the Houseman 
method was trained (Accession# GSE35069) and filtered 
to 500 probes used in the algorithm that were common 
across all GECKO, C3ARE (following preprocessing) and 
Reinius samples [86]. Given that this Houseman signature 
comprises 600 statistically related probes, 500 of which 
passed quality control in both GECKO and C3ARE, we 
chose to use two commonly used analytical approaches, 
principal component analysis (PCA) and hierarchical 
clustering, to determine the relationship of methylation 
states between cohorts in the data. PCA showed an over-
lap of child and adult PBMC profiles in the two top-rank-
ing PCs (accounting for 98% of the DNAm variance of 
the Houseman probeset panel) and similarly, adult sam-
ples did not cluster separately from child samples in the 
hierarchical clustering analysis. Collectively, these find-
ings suggested that DNAm at CpGs used in the House-
man deconvolution signature were similar between 
adult and child blood samples (Additional file 8: Fig. S1). 
Given that no cell deconvolution algorithm for buccal 
tissues exists and that buccal swabs, like saliva, are pre-
dominantly composed of BECs and leukocytes, we used a 
saliva-based deconvolution method which was designed 
to predict these cell types from underlying DNAm pat-
terns [34, 68, 87]. Predicted cell proportions from both 
PBMC and BEC tissues were used to normalize cellular 
heterogeneity within each tissue using a regression-based 
strategy [51] (Additional file 9: Fig. S2). PCA was subse-
quently used to confirm that the correlation of estimated 
cell type proportions to DNAm variance within a tissue 
was minimal in the corrected 450K datasets (data not 
shown).

http://www.r-project.org
http://www.r-project.org
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Assessment of cross‑tissue correlation, tissue‑specific 
variability and tissue‑specific differences in DNA 
methylation data
Prior to subsequent DNAm analyses, the corrected 
450K datasets were filtered down to overlapping probes 
(419,507) between the GECKO and C3ARE cohorts. 
Probewise cross-tissue Spearman’s correlations were cal-
culated on beta values between the matched PBMC and 
BEC tissues. Inter-individual variability of each CpG was 
calculated as the range between the 10th and 90th per-
centile beta values for each CpG, referred to as “refer-
ence range” [88]. This method captures variability across 
the bulk of samples while being largely robust to outlier 
samples.

In order to assess sample size-related differences in 
our DNAm analyses between GECKO and C3ARE, we 
performed 100 trials of Monte Carlo simulations. Spe-
cifically, we randomly subsampled the GECKO cohort 
to the equivalent size as the C3ARE cohort (n = 16 indi-
viduals) 100 times and reran the cross-tissue correlations 
and reference range calculations on the subsamples. We 
reported the average correlation coefficients, p values 
and references ranges from the 100 trials, which we refer 
to as “GECKOsub.”

Paired Wilcoxon signed-rank tests were used to com-
pare global differences in reference range between 
matched BEC and PBMC samples. Fligner–Killeen tests 
were used to compare probewise variability differences 
in each of the cohorts. Using previously published meth-
ods, we aimed to identify informative sites between BECs 
and PBMCs, which we defined as CpGs that are both 
variable across individuals and highly correlated between 
both tissues [31]. To identify informative sites, we first 
subset each cohort down to CpGs with a reference range 
greater than 0.10 in both tissues. We subsequently ran 
a beta mixture model on Spearman correlation rho val-
ues generating two Gaussian distributions, which sepa-
rated out a group of highly concordant CpGs (Additional 
file  10: Fig.  S3). The Spearman rho distributions in this 
set of highly correlated CpGs was used to define a thresh-
old correlation coefficient, the cutoff being two standard 
deviations lower than the mean of the distribution. In the 
GECKO cohort rho > 0.47 was determined as the thresh-
old and in the C3ARE cohort, rho > 0.32 was determined 
as the threshold. We also set a minimum reference range 
of 0.05 in both tissues to exclude CpGs with little inter-
individual variation.

Finally, we identified CpGs which were differentially 
methylated between tissues by running Wilcoxon signed-
rank tests across all probes in the C3ARE, GECKO and 
GECKOsub datasets. For all tests, the resulting p values 

were adjusted using the Benjamini–Hochberg (BH) false 
discovery rate (FDR) method [89]. CpGs which passed an 
FDR < 0.05 and an effect size threshold, delta beta > 0.05, 
independently in all three datasets, C3ARE, GECKO and 
GECKOsub, were classified as “differential sites.”

SNP genotyping arrays
In the GECKO cohort, DNA for genotyping was col-
lected from saliva samples of 63 individuals using the 
Oragene OG-500 DNA all-in-one system as per manu-
facturer’s protocol (DNA Genotek Inc, ON, Canada). In 
the C3ARE cohort, genomic DNA for genotyping was 
obtained from PBMC samples as described above. Geno-
typing data was measured at 588,454 SNP sites using the 
Illumina Infinium PsychChip BeadChip (PsychChip), as 
per manufacturer’s protocols (Illumina, CA, USA). Con-
tent for the PsychChip includes 264,909 proven tag SNPs 
found on the Infinium Core-24 BeadChip, 244,593 mark-
ers from the Infinium HumanCoreExome BeadChip, and 
50,000 additional markers associated with common psy-
chiatric disorders.

Preprocessing of SNP genotyping data and PCA analyses 
for genetic ancestry
Quality control prepreprocessing of Illumina Infinium 
PsychChip data was performed separately for each cohort 
according to recommended guidelines [90]. Specifically, 
SNPs with a low 10th percentile GenCall score or with a 
low average GenCall score were filtered out. Additionally, 
SNP probes located on mitochondrial DNA, on sex chro-
mosomes or without chromosome labels were removed. 
After probe filtering, final SNP probe counts for the 
C3ARE and GECKO datasets were 550,200 and 547,662, 
respectively. To test for difference in genetic ancestry 
between the two cohorts, we ran all samples in PCA, 
using the 542,699 SNPs called for every individual in 
both processed datasets. Genetic ancestry was not found 
to differ significantly between the cohorts (Additional 
file 11: Fig. S4), as determined by Wilcoxon ranked-sum 
test of GECKO vs C3ARE in PC1 scores (p = 0.8) and 
PC2 scores (p = 0.4). Therefore, genetic ancestry was not 
considered in further analyses.

Cis‑mQTL analyses
We ran cis-mQTL analyses in each cohort separately, 
using GECKO as the discovery cohort and C3ARE as the 
validation cohort. In the GECKO cohort, PsychChip data 
were filtered after quality control to remove any SNP 
probes containing missing values in 5% of all samples, 
leaving 560,770 SNPs. In addition, SNPs with a minor 
allele frequency less than 5% or not in Hardy–Weinberg 
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equilibrium were removed. Remaining SNPs (249,835) 
were then numerically coded, as 1, 2, or 3, for correlational 
analyses. Therefore, all SNPs used in mQTL analyses were 
directly measured on array, rather than generated through 
imputation. CpGs with a reference range of less than 5% 
were removed from mQTL analysis; this was performed 
separately in each tissue, leaving 131,706 CpGs in PBMCs 
and 210,784 CpGs in BECs. Finally, SNP–CpG pairs less 
than 5 kb apart were tested as mQTL using Spearman cor-
relations. We selected a 5  kb window as previous mQTL 
analyses using whole genome bisulfite sequencing data 
reported that associations between SNP–CpG pairs are 
more likely to be causal within a 5 kb window [47, 59, 60, 
91, 92]. In GECKO, a total of 165,591 unique SNP-CpG 
pairs in PBMC and 261,739 unique SNP-CpG pairs in 
BEC were interrogated for associations between DNAm 
and allelic variation; this included 145,222 SNP-CpG pairs 
tested in both tissues. Pairs with FDR ≤ 0.05 and DNAm 
change per allele ≥ 2.5% were designated as cis-mQTL hits 
and followed up for validation in the C3ARE cohort [93]. 
For validation testing in the C3ARE samples, SNP-CpG 
pairs were further filtered to exclude those with SNPs that 
were (a) not present in the filtered C3ARE PsychChip data 
or (b) monomorphic or had less than 2 heterozygotes in the 
C3ARE samples. The mQTL analyses were repeated in the 
C3ARE data. SNP-CpG pairs with FDR ≤ 0.05 and DNAm 
change per allele ≥ 2.5% were designated as validated cis-
mQTL hits and followed up in subsequent analyses. All 
genotyping and DNAm data were analyzed using the 
human assembly GRCH37 (hg19) genome build. All SNPs 
are reported on the (+) strand, according to standard prac-
tices in the field.

Representation of identified sites in published EWAS 
findings
In order to relate our results to published EWAS find-
ings performed in pediatric cohorts, we selected five 
published studies which used the 450K array to measure 
DNAm profiles in pediatric BECs or peripheral blood. 
Specifically, these studies examined DNAm variation 
associated with puberty, aging in early life, childhood 
psychotic symptoms, fetal alcohol spectrum disorder 
and autism spectrum disorder [61–65]. For each study, 
we downloaded the list of probes reported as significant 
and matched these probes to sites, which we identified 
as: (1) informative sites, (2) differential sites and/or (3) 
cis-mQTL-associated CpGs. For one study, in which dif-
ferentially methylated regions (DMRs) were reported, 
we downloaded the dataset (Accession # GSE50759) and 
extracted individual probes underlying the DMRs [65].

Additional files

Additional file 1: Fig. S5. Density distribution of Spearman’s correlation 
coefficient (Rho) across 419,507 CpGs in matched BEC and PBMC tissues 
for GECKO, GECKOsub, GECKOsub Averaged (mean of 100 trials of GECKO-
sub) and C3ARE datasets.

Additional file 2: Table S1. The number of CpG sites at various thresholds 
of Spearman’s correlation rho and reference range for C3ARE, GECKO and 
GECKOsub datasets.

Additional file 3: Fig. S6. Overlap of cis-mQTL identified in matched tis-
sues of both C3ARE and GECKO cohorts, respectively.

Additional file 4: Fig. S7. Representation of A) 4980 CpGs underlying 
validated cis-mQTL, B) tissue-specific mQTL-associated CpGs and C) 
shared-tissue mQTL-associated CpGs across various genomic features. Bars 
show the fold-change between CpG count in each genomic region and 
the mean count of randomly selected CpGs in that same genomic feature, 
from 10,000 iterations. Error bars show standard error (* denotes signifi-
cant enrichment or depletion at FDR ≤ 0.05) (S = South; N = North).

Additional file 5: Fig. S8. Stacked bar plot representing overlap of identi-
fied informative sites in BEC-specific, PBMC-specific and shared-tissue 
validated cis-mQTL.

Additional file 6: Table S2. The number of CpG sites of each defined 
category represented in reported significant hits of various pediatric EWAS 
publications.

Additional file 7. CpGs classifications across all 419,507 DNAm probes 
assessed in this study.

Additional file 8: Fig. S1. A) We used a data reduction method, PCA, to 
compare the 500 probeset Houseman deconvolution signature in adult 
PBMC samples (Reinius) and child PBMC samples of GECKO and C3ARE. 
We observed an overlap of adult and child PBMC profiles in PC1 and PC2 
(cumulatively accounting for 98% of DNAm variance in Houseman signa-
ture). B) Hierarchical clustering of adult PBMC samples (Reinius) and our 
pediatric PBMC profiles across all 500 Houseman deconvolution probes 
showed no discernible clustering between adult and child samples. These 
findings suggest that the Houseman deconvolution signature of both 
adult and child PBMC samples are consistent.

Additional file 9: Fig. S2. Predicted proportions of cell types in A) 
PBMCs and B) BECs for both datasets before and after cell type correction 
(Mono = monocytes; Gran = Granulocytes).

Additional file 10: Fig. S3. Beta mixture modeling on Spearman cor-
relation rho values between matched BECs and PBMCs for A) GECKO 
and b) C3ARE cohorts. The bimodal distribution of Spearman rho values 
indicated two underlying populations of CpGs, a set of uncorrelated CpGs 
(shown in red) and a set of right-skewed highly positively correlated CpGs 
(shown in green). Correlation coefficient threshold for informative CpGs 
were determined at two standard deviations minus the mean of the green 
Gaussian distribution (GECKO rho = 0.47; C3ARE rho = 0.32).

Additional file 11: Fig. S4. Principal component analysis of PsychChip 
genotyping profiles (542,699 SNPs) for C3ARE (shown in blue) and GECKO 
(shown in red) revealed that genetic ancestry did not differ significantly 
between the cohorts as determined by Wilcoxon ranked-sum test of 
GECKO versus C3ARE in PC1 scores (p = 0.8) and PC2 scores (p = 0.4).
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