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Abstract 

Background:  Bidirectional promoters (BPs) are prevalent in eukaryotic genomes. However, it is poorly understood 
how the cell integrates different epigenomic information, such as transcription factor (TF) binding and chromatin 
marks, to drive gene expression at BPs. Single-cell sequencing technologies are revolutionizing the field of genome 
biology. Therefore, this study focuses on the integration of single-cell RNA-seq data with bulk ChIP-seq and other 
epigenetics data, for which single-cell technologies are not yet established, in the context of BPs.

Results:  We performed integrative analyses of novel human single-cell RNA-seq (scRNA-seq) data with bulk ChIP-seq 
and other epigenetics data. scRNA-seq data revealed distinct transcription states of BPs that were previously not rec-
ognized. We find associations between these transcription states to distinct patterns in structural gene features, DNA 
accessibility, histone modification, DNA methylation and TF binding profiles.

Conclusions:  Our results suggest that a complex interplay of all of these elements is required to achieve BP-specific 
transcriptional output in this specialized promoter configuration. Further, our study implies that novel statistical 
methods can be developed to deconvolute masked subpopulations of cells measured with different bulk epigenomic 
assays using scRNA-seq data.
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Background
Promoters are key structures for a coordinated regula-
tion of gene expression. The increasing number of large-
scale high-resolution epigenomic and RNA-sequencing 
technologies are leading to a deeper understanding of 
genome-wide promoter configurations. Recent studies 
show that the number of bidirectional promoters (BPs) 
in the human genome is much larger than previously 
anticipated [1–3]. Sensitive assays, such as sequencing of 

nascent RNAs (GRO-seq) or 5′-ends of capped nascent 
RNAs (GRO-cap and Start-seq), allow the detection of 
unstable nascent RNAs produced at promoters, and have 
revealed more widespread bidirectional transcriptional 
initiation than previously recognized [4–6]. However, 
the exact classification of bidirectional or unidirectional 
promoters in a sample of interest is challenging, as it 
depends heavily on the sensitivity of the sequencing assay 
to recognize unstable, nascent RNAs [7, 8].

Recent studies discuss two types of bidirectional pro-
moters. The first type concerns transcription of two 
RNAs in opposite direction from one core promoter, i.e., 
one promoter leads to bidirectional transcription [5, 9, 
10]. In the second type, transcriptional initiation of both 
RNAs occurs at two distinct core promoters that are 
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close to each other, but are oriented in reverse direction, 
thus sometimes termed divergent bidirectional promot-
ers. In this work we focus on bidirectional promoters 
that have two distinct core promoter elements that drive 
divergent transcription of two nearby genes.

BPs harbor overrepresented TF binding sites such as 
GABPA, MYC, YY1, NRF-1, E2F1 and E2F4 [11]. For 
example, the introduction of GABPA binding sites into 
unidirectional promoters leads to bidirectional expres-
sion in 67% of the cases [12]. Further, the sequence ele-
ments at some BPs function as inseparable units [13]. 
Other TFs prevent bidirectional expression, for example, 
promoters that show elongation in only one direction 
show enrichment of CTCF binding sites [4, 14]. However, 
more research is needed to investigate how TF binding 
determines directionality of initiation and elongation at 
BPs [9].

It was recently shown that the two transcription start 
sites (TSSs) at a BP define a nucleosome-free region 
(NFR) between them. The size of the NFR may be an 
important structural element in BP regulation, determin-
ing the availability of binding sites for different TFs at the 
promoter and thus influencing gene expression strength 
as well as responsiveness to external stimuli [5, 6]. The 
current results point to a model, where an independent 
Pol2 complex assembles at each TSS and initiates tran-
scription, such that accurate phasing of the + 1 and − 1 
nucleosomes at these BPs allows epigenetic regulation 
through HMs [4–6]. Comparisons between BPs and uni-
directional promoters suggest that HMs associated with 
active gene expression exhibit a bimodal distribution at 
BPs and that upstream proximal enhancer marks may 
regulate downstream gene transcription [6, 14].

In summary, previous studies rely on the comparison 
of unidirectional against bidirectional promoters to learn 
about BP regulation. In this study, we take a different 
approach, making use of recent advances in single-cell 
sequencing and study expression of genes at BPs in indi-
vidual cells to learn about their regulation. Recent devel-
opments in single-cell genomics allow the measurement 
of RNA expression in individual cells with a similar accu-
racy as compared to bulk-sequencing of RNAs [15, 16]. 
This advance has been used to define previously over-
looked cell types and expression heterogeneity, e.g., [17].

We used novel and previously produced single-cell 
RNA-seq (scRNA-seq) data for HepG2 and K562 cells to 
investigate the expression behavior of genes at a BP. We 
found that four reproducible expression categories exist 
in BPs and that in the majority of the cases, one gene at 
a BP shows much higher expression than the other one. 
Using high-resolution histone modification datasets 
produced at IHEC standards [18] by the DEEP consor-
tium or made available by ENCODE [19], we find novel 

associations of different structural and epigenetic fea-
tures in these categories.

Results
To understand the regulation of the two genes at a bidi-
rectional promoter, we propose a novel approach to 
exploit RNA-seq data at the single-cell level, in contrary 
to the existing studies that rely on bulk RNA-seq data. 
Bulk RNA-seq masks gene expression across individual 
cells, and thus may hide interesting expression patterns 
of bidirectional gene pairs (Fig. 1a).

Figure  1b illustrates examples of single-cell expres-
sion patterns in HepG2 cells for selected BPs. It can be 
noted that, for instance, the magnitude of expression 
of the ALG2, ECE2 gene pair alternates across the cells, 
meaning that in some cells ALG2 is higher expressed 
than ECE2 and vice versa. Similarly, AAMP and PNKD 
genes exhibit this alternation, but more frequently. These 
observations motivated us to inspect such diversities in a 
systematic manner by forming an expression matrix spe-
cific to BPs for clustering analysis.

Four states of transcription with distinct bidirectional 
characteristics
We form an individual matrix of all BPs representing the 
single-cell expression of the gene located on the Watson 
strand (Watson matrix). Similarly, we construct the same 
matrix for the gene on the Crick strand (Crick matrix) 
(Fig.  1c). To simplify the follow-up analyses, we swap a 
row of the Watson matrix with the corresponding Crick 
row, if the average single-cell expression of the former is 
lower than the latter. In this way, for a given BP, we always 
keep the higher expressed gene (H) on the right side and 
the lower expressed one (L) on the left. Next, we form the 
final swapped BP matrix, where the rows represent the 
bidirectional genes (N = 1242) and the columns represent 
the cells (twice the number of single cells); the first half 
of the columns represent cells’ expression of L genes and 
the second half represent the same for H genes. Since, 
the combined matrix contains the joint expression infor-
mation for both genes of a BP in each row, we used hier-
archical clustering to group the BPs according to their 
similarity in single-cell expression patterns. This led to 
four distinct transcription states in both cell lines (Fig. 2a 
HepG2, and Additional file 1: Fig. S2A K562) with the fol-
lowing characteristics: (1) Bidirectional Lowly Expressed 
(BLE), where both genes of a BP are lowly expressed, (2) 
Bidirectional Weak Difference (BWD), where the H gene 
is higher expressed than the L gene with a weak differ-
ence between the two, (3) Bidirectional Strong Difference 
(BSD), where the H gene is much higher expressed than 
the L gene and higher than in BWD, (4) Bidirectional No 
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Fig. 1  Advantages of studying BPs at single-cell level. a An illustration of a BP, defined based on two genes located on opposing strands of DNA 
(Watson and Crick). Bulk RNA measurements at the BP may hide complexity of BP gene regulation. This is shown in the left single-cell expression 
scenario, where one of the genes is expressed and the other is silent in the same cell compared to the other scenario where single-cell expression 
agrees with bulk measurements. b Heatmaps of 65 single-cell RNA-seq expression measured in four bidirectional promoters (TPM, HepG2 cells). 
c After single-cell sequencing and estimating the gene expression of all genes in a cell, a set of 1242 BPs was extracted. Single-cell expression of 
either genes of a BP was arranged in two separate matrices for which the rows represent the BPs and columns the cells. Next, we swap the higher 
expressed gene to the matrix on the right and lower expressed one to the left. The resulting matrices are combined into one joint BP single-cell 
expression matrix
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Difference (BND), where both genes of a BP are expressed 
relatively at the same rate.

The data regarding the frequency and type of BPs in 
each state are provided in Fig.  2b, c. Figure  2b reveals 
that most of the BPs associated to these states are com-
mon between the two cell lines (1090 out of 1242). We 
further investigated whether the transcription state was 
related to the type of genes encoded in a BP. We found 
that for both cell lines the BWD and BND states are 
enriched with BPs (hypergeometric test, p ≤ 0.05), where 
both bidirectional genes are annotated as protein-coding 
(PC → PC, Fig.  2c, Additional file  1: Fig. S2B). On the 
other hand, the BLE state is enriched with BPs of either 
two non-coding genes (NC → NC) or where the L gene 
is annotated as protein-coding and the H gene as non-
coding (PC → NC).

The single-cell data allowed us to estimate the fre-
quency of (concordant or discordant) gene signatures of 
BPs in all states for both cell lines (Fig.  2d, e). The BLE 
state was overall lowly expressed and due to stochastic-
ity of expression, it is difficult to find a consistent pattern 
for this particular state. On the other hand, the BSD state 
consists of BPs where one gene’s expression is always 
higher than the other, thus we obtained a concordant 
ratio of 1. As expected, the BND state is showing some of 
the smallest concordant ratios, i.e., highest discordance, 

which points to the frequent alternations (switches) 
occurring in the expression of the genes in this state.

Figure 2f illustrates that the CAGE expression distribu-
tions follow the characteristics attributed to each cluster 
(similarly for the bulk RNA-seq and CAGE in K562 cell 
line, Additional file 1: Fig. S2C, D). However, it is worth 
mentioning that performing the clustering based on the 
bulk data, either RNA-seq or CAGE did not lead to a 
reproduction of the transcription clusters based on sin-
gle-cell RNA-seq, due to measuring a population of cells 
in bulk assays (data not shown).

The representation used in Fig. 1d is concise, but it does 
not provide a suitable visualization to explore the associ-
ations between L and H genes in the same cell. Therefore, 
to quantitatively assess the relation between single-cell 
expression of bidirectional genes in these states, we com-
puted, for each BP, the correlation between expression of 
L and H genes across single cells (Fig. 3a, data shown for 
both cell lines). The correlation analysis showed that the 
BND state has the highest correlation. On the contrary, 
the BSD state revealed lower correlation, which suggests 
a more independent regulation of its bidirectional genes. 
To address which mechanism(s) are involved in driving 
such differences in regulation of BPs, we explored the fol-
lowing aspects: (1) structural features, (2) epigenetic sig-
nals, and (3) transcriptional regulatory elements.

a

b

c

d

f

e

Fig. 2  Single-cell RNA-seq expression in bidirectional promoters. a Hierarchical clustering of the HepG2 single-cell transcript expression matrix 
visualized as a heatmap (log2, TPM). The four distinct clusters (BLE, BSD, BWD, BND) are referred to as transcription state in this manuscript. b Number 
of BPs falling into each transcription state in HepG2 and K562 cells and their overlap. c Number of BPs falling into the gene product categories 
(NC → NC, NC → PC, etc.) in HepG2. Statistically enriched values are shown in bold (hypergeometric test p <= 0.05). d Ratio of concordant BPs 
shown separately in each state for both cell lines as well as their overlap. e Examples of concordant and discordant BPs in HepG2. f CAGE read 
counts, measured for each bidirectional gene (L and H), shown for each transcription state. Color code as in a. Significant differences are marked 
with * (paired and two-sided Mann–Whitney test, p <= 0.05)
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Fig. 3  Structural features of BPs for HepG2 (left column) and K562 cells (right column). a Distributions of Pearson correlation coefficients (y-axis) 
calculated from all single-cell measurements for each BP in one of the states (x-axis). b Distributions of TSS distance of BPs in each state. c Length 
distributions of transcripts span for L and H genes of BPs shown in each state. Significant differences are marked with an * (paired and two-sided 
Mann–Whitney test, p <= 0.05). For all subfigures the color-coding is consistent with Fig. 1d
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Structural features associated with transcription states
We first tested whether the distance between TSSs of 
bidirectional genes was associated with the transcrip-
tion states. Figure 3b depicts the distributions of TSS dis-
tances in each state for both cell lines. We observed that 
the BLE state exhibits significantly larger TSS distances 
compared to the other states (t test, p ≤ 0.001). On the 
contrary, the BND state had the smallest median distance 
(significant for HepG2, t test p ≤ 0.05). This observation 
together with the correlation analysis in Fig. 3a suggests 
that the smaller distance may influence recruitment of a 
common regulatory complex that facilitates the simulta-
neous regulation of both genes.

As the scRNA-seq protocol measures steady-state fully 
elongated mRNAs, we wondered whether the length of 
the transcribed region differs in the genes associated to 
the BPs. For this, we examined the region spanned by 
all transcripts originating from transcription start sites 
within 2 kb from the most 5′ TSS of a BP gene, a region 
we refer to as transcripts span (see “Methods”). Surpris-
ingly, this length was significantly smaller (Mann–Whit-
ney test, p value ≤ 0.05) for the H genes of states BSD and 
BWD compared to their counterpart L genes. Connect-
ing this observation to the actual transcription expres-
sion depicted in Fig. 1d for these two states suggest that 
the expressions of L and H genes are inversely related to 
their transcripts spans in BPs. To elucidate whether this 
association holds for all genes or only BPs, we measured 
the transcripts span for all 63678 annotated genes in the 
human genome. We found no association of transcripts 
span with gene expression for all genes (Additional 
file  1: Fig. S2F), indicating that such structural configu-
ration might be specific to BPs. As the estimated TPM 
values are derived from the exonic regions only, we fur-
ther examined the transcript length by measuring the 
exonic region of all transcripts initiating within the 2 kb 
from the most 5′ TSS of a BP gene (Additional file 1: Fig. 
S2H, I). We found a slight increase in TPM values for the 
larger genes, regardless of considering all genes or only 
BPs (Additional file 1: Fig. S2F).

We also investigated whether the difference in GC-
content could be involved in driving variation on the 
observed expression patterns, but we found no apparent 
differences (Additional file 1: Fig. S2G).

Histone modification and DNaseI patterns reflect 
the characteristics observed in transcription states
To explore the role of epigenetics in transcription states 
observed in Fig. 1d, we produced seven histone modifi-
cations (H3K4me1, H3K4me3, H3K36me3, H3K27me3, 
H3K9me3, H3K27ac, and H3K122ac) and DNaseI-
seq data for HepG2 cells within the DEEP consor-
tium. Further we obtained data for DNaseI-seq and all 

modifications, except H3K122ac, for K562 cells from 
[19]. Figure 4 depicts the normalized read counts meas-
ured around the TSSs of bidirectional genes stratified 
according to the transcription states for all HepG2 data-
sets (similarly, for K562 in Additional file  1: Fig. S3A). 
Generally, we observed that the epigenetics data show 
specific patterns related to these states. For instance, it 
is notable that the BLE state had the lowest abundance 
for HMs associated with active promoters (H3K4me1/3, 
H3K36me3, H3K27ac, and H3K122ac) and highest for 
H3K27me3 and H3K9me3 that are mostly associated 
with repressed promoters [20]. On the other hand, the 
BND state exhibited the very opposite behavior to BLE, 
reflecting their expression characteristics observed in 
Fig. 1d.

Another interesting observation is the agreement of 
the elongation mark profiles, H3K36me3, with the tran-
scripts span distribution shown in Fig. 3c. In general, the 
larger the increase in the H3K36me3 mark, the shorter 
the transcripts span for the gene. For instance, the BSD 
state that has the shortest transcripts span exhibits the 
sharpest increase in its H3K36me3 profile downstream 
of the H gene’s TSS. This fits to the previous observation 
that the H3k36me3 mark increases gradually and peaks 
at the end of genes [21] and we can observe that general 
trend for the transcripts span on our data as well (Addi-
tional file 1: Fig. S3B).

In a recent study by Wang et el. [22], it has been shown 
that mRNA stability can be estimated using HM data at 
promoters. Previous research on genome-wide measure-
ments of RNA half-lives suggested that lncRNAs exhibit 
a wide range of stabilities similar to that of protein-cod-
ing transcripts [23]. Therefore, we used the approach by 
Wang et al. to estimate which genes appear to be stable 
and unstable, with the idea that this could also explain 
differences in the gene expression behavior we observe in 
the different states. In brief, this method uses HM signals 
at promoters, as features, and gene expression measure-
ments, as response, to learn a linear model that predicts 
gene expression. Using outlier analysis, genes that show 
lower (higher) expression as predicted are marked as 
unstable (stable) (see “Methods” and Additional file  1: 
Fig. S4A). The results show that the putative stable genes 
are significantly (hypergeometric test, p ≤ 0.05) enriched 
in all the states except BLE (consistent across both 
HepG2 and K562 samples). On the other hand, the BSD 
state was significantly enriched in the putative unstable 
category, with ~ 21% and 30% of its genes being inferred 
as unstable in HepG2 and K562 samples, respectively 
(Additional file 1: Fig. S4B).

The DNaseI-seq profile of the BND state revealed not 
only the highest signal, but also the widest spread around 
the TSS compared to the other states. This agrees with 
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the observation that there is similar amount of single-cell 
transcription for both genes.

Due to recent reports about small promoter-associ-
ated RNAs [24, 25], we obtained small RNA data [19] for 
HepG2 and K562 samples (see “Methods”) and grouped 
them according to the defined transcription states. 
Although we observed residual small RNA expression in 
the vicinity of the bidirectional TSSs, we found no con-
sistent patterns associated with the transcription states 
(Additional file 1: Fig. S3C).

We also examined the average methylation profiles 
obtained in the four transcription states (Additional 
file  1: Materials and Methods) due to the previously 
reported associations with gene expression [26, 27]. The 

results were consistent with other studies where higher 
level of DNA methylation coincided mostly with silent 
genes (BLE). Consistent with the enrichment of HMs, 
genes in the BND state showed the least amount of DNA 
methylation (Additional file 1: Fig. S3D).

The BND state coincides with strongest regulatory activity
It was shown that certain TFs preferentially bind to bidi-
rectional promoters [13, 14]. As we observed that the 
DNA accessibility profiles differed among the transcrip-
tion states (Fig.  4h), we were encouraged to investigate 
binding of transcription factors. We obtained ChIP-seq 
data for several transcription factors [19] (44 for HepG2 
and 50 for K562). One hypothesis was that there may 

H3K4me1 H3K4me3 H3K27me3 H3K36me3 H3K9me3 H3K27ac H3K122ac DNase

m
ed

ia
n 

C
hI

P/
In

pu
t

1.6

45.3

1.9

1050.2

0.3

1.7

3.8

26.8

0.4

37.2

0.1

1.9

3.7

295.8

1.7

9.5

a b c d e f g h

+2
kb

-2k
b

+2
kb

-2k
b

+2
kb

-2k
b

+2
kb

-2k
b

+2
kb

-2k
b

+2
kb

-2k
b

+2
kb

-2k
b

+2
kb

-2k
b

C
hI

P/
In

pu
t (

lo
g2

)

high

low

Fig. 4  Epigenetic characteristics in transcription states in HepG2 cells. a–g Histone modification (ChIP/Input) shown as median profiles (top panel) 
and log-transformed values as heatmap (bottom panel). h DNase1-seq median profiles (top panel) and log-transformed raw counts (bottom panel). 
Arrangement of genes as in Fig. 1d. The reads are measured in 40 bins of size 100 bp forming a window of size 4000 bp centered around the TSSs, 
with an additional variable bin between the TSSs



Page 8 of 14Behjati Ardakani et al. Epigenetics & Chromatin           (2018) 11:66 

exist TFs that bind in the proximal region of a BP and 
influence gene expression as was observed in our tran-
scription states.

To test this, we defined a novel enrichment score tai-
lored to BPs (Additional file 1: Fig. S5A), which preserves 
the spatial distribution of the ChIP-seq signal along a BP. 
We applied the enrichment analysis for both cell lines 
(HepG2 in Fig. 5a and K562 in Additional file 1: Fig. S5B). 
As expected, states with higher expression showed more 
TF binding in general. However, we could not pinpoint 
distinct TF subsets that associate with only one of the 
states. Instead, the states BSD, BWD and BND showed 
enrichment for many of the TFs that we analyzed. We 
wondered whether the number of TFs that are regulat-
ing a BP differed in those states. Figures  5b,c represent 
the number of positively enriched TFs per BP for each 
state in both cell lines. The BND state showed the high-
est percentage of positively enriched TFs (t test, p ≤ 0.05) 
suggesting that more TFs are required to regulate gene 
expression in this state.

Next, we tested whether specific genomic regions, such 
as enhancers, are associated with these four transcription 

states. For this, we inspected the genome-wide seg-
mentation of HepG2 and K562 cells using an 18-state 
ChromHMM model [28] (Additional file 1: Fig. S6, Mate-
rials and Methods). For simplification we collapsed all 
TSS-related, enhancer-related, and repression-related 
ChromHMM states into TSS, Enhancer, and Repressed, 
respectively. We assigned all the remaining chromatin 
states to Others (data not shown). The results provided 
in Figs.  5d,e suggest that the enhancer-related regions 
are the most frequent among the BSD and BND states, 
reflecting their stronger expression profiles. In the case 
of HepG2 (Fig. 5d), this quantity is even higher than the 
number of TSS regions. Concurrent with Fig.  4 most 
of the repressed regions belong to the BLE state, where 
genes were lowly expressed.

Discussion and conclusions
In this work we compared single-cell expression of genes 
at BPs. Currently, we only have access to single-cell pro-
tocols for RNA-seq, and other techniques for quantifica-
tion of transcription start sites cannot be used [4, 6, 29]. 
Thus, other effects on the mRNA steady-state level, e.g., 
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post-transcriptional regulation, may influence the gene 
clustering produced. Here, we have used two high-quality 
single-cell datasets for ENCODE cell lines allowing us to 
benefit from a plethora of epigenomic datasets, which are 
available or have been produced in this work. We found 
that 88% of the BPs have the same transcription state in 
scRNA-seq data despite the difference in origin of HepG2 
and K562 cells, which suggests that the majority of these 
configurations may be stable for many cell types.

In previous work that has analyzed BP regulation, anal-
yses were often limited to a certain configuration at the 
BP, e.g., a non-coding gene upstream of a coding gene, 
therefore care has to be taken when comparing to pre-
vious studies. Here, we have limited our results to anno-
tated protein- or non-coding genes that originate from a 
bidirectional promoter. We found that the BPs that show 
similar expression for both genes are mostly restricted 
to a configuration with two protein-coding genes. It was 
shown previously that core promoter strength differs for 
genes with bidirectional expression and unidirectional 
promoters [5]. However, we observed that the number 
of TF regulators that bind to BPs with high bidirectional 
expression was largest compared to all other expression 
states we investigated. For this analysis, we used several 
ChIP-seq datasets for TFs and developed a BP-specific 
enrichment analysis approach that measures spatial dif-
ferences in read coverage along the BP regions compared 
to the median background, unified in a single quantity 
for each BP and TF. This is different to other studies 
that have compared TF-ChIP-seq data at BPs, e.g. [14], 
where the background often were unidirectional promot-
ers rather than all BPs. Thus, to find enrichment in the 
observed states we properly adjust for the fact that there 
are two genes, which are regulated by TF binding.

We observed that the BND state shows the largest 
(although not strong) single-cell correlation values and 
that there is a trend with correlation at BP genes being 
inversely proportional to TSS distance (Fig.  2a, b). A 
similar observation was recently made for BPs in the 
rice genome with correlation measured over several bulk 
RNA-seq datasets [30]. Small distance between the two 
TSSs may ease the coupled regulation of transcription 
from both, for example, through a shared or co-regulated 
Mediator complex [31].

We also found that the transcripts span, the genomic 
region covered by all transcripts that start in the vicinity 
of the TSS, was imbalanced for the BSD and BWD states, 
with the shorter span linked to the highly expressed gene 
at the BPs. One possibility is that shorter regions of elon-
gation lead to faster transition cycles for Pol2, assuming 
similar elongation rate of both genes at a BP. This could 
be a mechanism by the cell to create imbalanced expres-
sion output from a shared regulatory region of two BP 

genes. We also showed that these two states posses the 
highest percentage of stable and unstable genes inferred 
by our outlier detection approach. We found out that in 
these two states only lowly expressed genes were inferred 
as unstable. As 3’UTR length is found to be associated 
with regulation of mRNA stability [32], we investigated 
the 3′UTR length between the lowly and highly expressed 
genes in the stable and unstable categories (Additional 
file 1: Fig. S4C). However, the results showed no apparent 
significant trend. This probably means that different sets 
of post-transcriptional regulators are involved in individ-
ual bidirectional gene regulation.

Anecdotally, we investigated bulk GRO-cap data for 
K562 cells [4] and found that the amount of capped nas-
cent transcripts is more similar for both genes at a BP in 
our states (Additional file  1: Fig. S2E), compared to the 
amount of fully processed RNAs expressed (CAGE and 
RNA-seq). Even though the nascent RNA amount is sim-
ilar, we get significantly different steady-state transcript 
expression, which could be explained by the difference 
in length of the genomic region to be elongated, here 
referred to as transcripts span. Once single-cell measure-
ments of nascent transcription are available, one could 
investigate the difference in elongation and transcrip-
tional initiation in these BPs.

Taken together, we observed three different genomic 
and epigenomic architectures underlying single-cell tran-
scription states in BPs. We propose a model depicted in 
Fig.  6 to describe these architectures. This model sup-
ports distinct characteristics of the BLE state, where the 
bidirectional genes were lowly expressed. They mostly 
exhibited large TSS distance and more prevalence of 
repression associated HMs, fewer regions of accessible 
DNA, and less TF binding. The BSD and BWD states, on 
the other hand, had reduced TSS distance in comparison 
with BLE and more abundance of activation associated 
HMs as well as higher rate of TF binding. Interestingly, 
the transcripts span associated to the H gene of BPs in 
these states was observed to be shorter than the L one. 
Lastly, BND showed strongest single-cell co-expression 
and smallest TSS distance among the states. Further-
more, we observed the widest accessible regions of DNA, 
the largest number of binding TFs and highest amount of 
activation related HMs.

Although the transcription state definition was based 
on the single-cell data, several bulk datasets showed 
consistent and matching patterns for those states. Our 
results suggest that novel statistical methods can be 
developed to deconvolute masked subpopulations of cells 
measured with different bulk epigenomic assays with 
the help of single-cell RNA-seq data. Further advances 
in single-cell sequencing technologies [33] are necessary 
such that we can measure not only RNA expression, but 
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also TF binding and histone modifications in single cells 
to understand the hidden complexity, in particular, in BP 
regulation.

Methods
Datasets and pre‑processing
Single‑cell RNA‑seq
Single HepG2 cells were manually picked to prepare 
poly-A enriched cDNA libraries using Smart-seq  2 as 
described by [34] with modifications. Briefly, 65 single-
cell samples were supplemented with 0.5 μl of a 1:40,000 
dilution of the Ambion ERCC RNA Spike-In Mix 1 
(Thermo Sientific, #4456740). After cell lysis polyade-
nylated mRNA was reverse transcribed using a bioti-
nylated template switch oligo (5′-Biotin-AAG​CAG​TGG​
TAT​CAA​CGC​AGA​GTA​CATrGrG+G-3′) with two ribo-
guanosines (rG) and one LNA-modified guanosine (+G) 
at the 3′ end. Preamplified cDNA (18 PCR cycles) was 
purified with Agencourt Ampure XP Beads (Beckman 
Coulter, #A 63881) in a 1:1 ratio. cDNA quality of 8 ran-
dom samples was assessed on the Agilent 2100 Bioana-
lyzer (Agilent Technologies, #G2938C) using the Agilent 
high-sensitivity DNA kit (Agilent Technologies, # 5067- 
4626). Sequencing libraries were prepared using the 
Nextera XT DNA Sample Preparation Kit (Illumina, #FC-
131- 1024) with approximately 480 pg of cDNA in a 4 μl 
tagmentation reaction followed by a dual indexing PCR 
with 9 cycles. Individual single-cell libraries were pooled 

and purified with 0.8 × Agencourt Ampure XP Beads. 
The library pool was sequenced on a HiSeq  2500 (Illu-
mina) using the TruSeq SBS Kit v3-HS (Illumina, #FC-
401- 3001) in a single read run with 90 bp read length.

Single‑cell transcript expression
The TPM values for transcript isoforms of each Ensembl 
gene (GRCh37) were computed using RSEM [35]. To 
attribute the transcription expression to each bidirec-
tional gene, we summed the isoform TPM values of 
transcripts that had their annotated TSS within a 2  kb 
window downstream of the most 5′ TSS of that gene.

HepG2 and K562 datasets
Epigenomic data for the HepG2 cell lines have been pro-
duced by the DEEP consortium and are deposited at the 
European Genome-Phenome Archive under the acces-
sion number EGAS00001001656. The rest of the data, 
K562 (HM-ChIP-Seq, TF-ChIP-seq, CAGE), and HepG2 
(TF-ChIP-seq, CAGE) were obtained from the ENCODE 
portal.

Bidirectional promoter (BP) gene set
The BP dataset contained 1242 divergent promoters with 
two core promoter elements, obtained from annotated 
ENSEMBL genes (GRCh37.75), such that the distance 

small TSS dist.

Transcription 
factors

High expression

Low expression

shorter transcripts spanlarger transcripts span

large TSS dist.

activation associated HMs
repression associated HMs largest TSS dist.

BND

BSD/BWD
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Fig. 6  Hypothetical model of three different genomic architectures underlying epigenetic regulations of BPs. BPs that drive single-cell expression 
patterns observed in the BLE state show large TSS distance and higher abundance of repression associated marks and depletion of most TFs. BSD 
and BWD, on the other hand, exhibit smaller TSS distance and more TF binding compared to BLE. In addition, the transcripts span of the H gene 
is observed to be significantly smaller compared to the L gene. BPs categorized in BND show the smallest TSS distance with the most TF binding 
events that require more accessible DNA to regulate both the L and H genes
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between TSSs of each BP does not exceed 500  bp. This 
set excludes loci overlapped by any other annotated gene 
region (± 2 kb from the TSS).

Clustering BPs into four states
Hierarchical clustering (TPM values) using the complete 
linkage method with Euclidean distance as distance met-
ric was applied on the swapped BP matrix using R.

Constructing the single‑cell TPM matrix for BPs
For a particular BP, BPi = (gcrick,i, gwatson,i) , we compute 
the sum of TPM values across single cells as following:

where N denotes the number of single cells, and TPM(gcj,i) 
returns the TPM value for gene j ∈ {crick, watson} of BPi 
in cell c. The orientation of genes at a BP is not specific 
to the DNA strand, but the lower expressed gene of a 
BP is always swapped to the left and higher expressed 
gene to the right. In this way, without loss of generality, 
all analyses correctly adjust for differences of expression. 
Precisely, we define gH ,i denoting the gene of BPi having 
higher expression as follows:

Similarly, we define gL,i denoting the gene of BPi having 
lower expres-

sion:gL,i =
{

gwatson,i, if Sum(gwatson,i) < Sum (gcrick,i)
gcrick,i, else.

 

After defining gH ,. and gL,. for each BP, we form the sin-
gle-cell matrix for BPs, scBP, as follows:

Imputation of dropouts
To address the bias caused by dropouts, we performed 
the most recent and accurate dropout imputation tool 
called scImpute [36], which aims to improve the single-
cell data quality by removing the effects of dropouts with-
out introducing new biases to the data. scImpute has two 
parameters. K denotes the number of existing cell types 
in the data, which we set to 1, as we work on the cell 
lines. The second parameter t controls the dropout prob-
abilities. The authors show that their results are robust 

Sum(gj,i) =

N
∑

c=1

TPM(gcj,i),

gH ,i =

{

gwatson,i, if Sum(gwatson,i) ≥ Sum(gcrick,i)
gcrick,i, else.

scBP =











g1L,1 g2L,1 gNL,1 g1H ,1 g2H ,1 . . . gNH ,1

g1L,2 g2L,2 gNL,2 g1H ,2 g2H ,2 . . . gNH ,2
...

...
...

. . .
...

. . .
...

g1L,M g2L,M gNL,M g1H ,M g2H ,M . . . gNH ,M











to different parameter values; therefore, we carried on 
with the default of 0.5 for this parameter. The compari-
son between raw and imputed read counts performed on 
the bidirectional genes is shown in Additional file 1: Fig. 
S1A for both HepG2 and K562. The Pearson correlation 
between imputed and raw data in both cell lines is ~ 1.

Quality of scRNA‑seq
Imputed expression of bidirectional genes averaged over 
single cells was compared with their corresponding bulk 
RNA-seq expression. For both, HepG2 and K562, the 
single-cell expression agrees well with bulk measure-
ments (Spearman correlation coefficient of ~ 0.8, Addi-
tional file  1: Fig. S1B). Additionally, the imputed TPM 
values were divided into three intervals, 1 < TPM < 10, 
10 ≤ TPM ≤ 100, TPM > 100 to account for the number of 
genes falling in those intervals per cell (Additional file 1: 
Fig. S1C, and similarly for the imputed read counts in 
S1D).

Prediction of RNA stability from histone data
In order to investigate the potential effects of post-tran-
scriptional regulation on our four transcription states, 
we exploited the approach proposed by [22], where they 
predict the RNA expression level using different histone 
modification ChIP-seq datasets. Similar to their work, 
we trained an ordinary least squares (OLS) model on 
all bidirectional genes to predict the average single-cell 
RNA expression values from the six histone modification 
datasets we introduced in this manuscript. We designed 
the input features for the regression such that each his-
tone modification is represented by two bins, one 2  kb 
upstream of the TSS and the other 2 kb downstream (12 
features in total). We then fit a linear regression model 
on our dataset with feature matrix of size 2484 × 12 and 
response vector of size 2484 using the lm function in R, 
where 2484 is the number of BPs considered. The stu-
dentized residuals were computed between the measured 
average transcript expression values and the predicted 
values. As suggested by [22], the genes with studentized 
residuals above 1 or below − 1 were annotated as stable 
or unstable, respectively, and the rest as neutral (Addi-
tional file  1: Fig. S4A). We computed the percentage of 
genes being classified into stable, unstable, or neutral for 
each state. To assess the enrichment of the stable and 
unstable mRNAs in each state, we computed the hyper-
geometric test on the three categories of stable, unstable, 
and neutral for each state and used the p ≤ 0.05 as signifi-
cance cutoff.

Bidirectional gene signature: concordant or discordant
We define two types of signatures to address the changes 
in bidirectional gene expression. Intuitively, if the two 
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genes are mostly expressed in a consistent manner across 
the single cells, for example one is always higher than the 
other, this would be considered as concordant signature. 
However, if the expression of these two genes flips across 
cells, we refer to this case as discordant. To analytically 
differentiate between both signatures for each pair of 
genes in a BP, we performed the Wilcoxon signed rank 
test on their imputed single-cell expression (BPs where 
both genes had zero expression in all cells were removed 
for the test). If the p value after using Benjamini–Hoch-
berg multiple testing correction is smaller than or equal 
to 0.05, the gene pair is considered to be concordant. 
The number of concordant BPs normalized by the total 
number of BPs in a given cluster is defined as concordant 
ratio.

Enrichment of gene products categorized according 
to transcription states
We categorized the gene product annotations into two 
groups, protein-coding (PC) and the rest as non-coding 
(NC). In the context of BPs, we introduce a new notation, 
gp ∈ {NC → NC,NC → PC, PC → NC, PC → PC} , rep-
resenting the gene products of a pair of genes. We meas-
ured the occurrences of each of the above four categories 
for the gene pairs of our transcription states as shown in 
Figs.  1f and Additional file  1: Fig. S2C. To compute the 
enrichment of such occurrences, we applied a hypergeo-
metric test on their contingency table, C ∈ Z

4×4 , where 
Ci,j represents the frequency of the jth gene product cat-
egory in the ith state. Precisely, let h(x;N , n, k) be the 
hypergeometric distribution, where N denotes the popu-
lation size, n denotes the sample size, k is the frequency 
of successes in the population, and x represents the fre-
quency of successes in the sample. To apply this distri-
bution to each entry Ci,j of the contingency matrix C, we 
used the following setup:

The p value derived from this test was used to quantify 
the significance of enrichment of a gene product category 
in a particular state.

Enrichment of TF‑ChIP‑seq data
To preserve the spatial distribution of the TF-ChIP-
seq signal around the promoter, the ChIP-seq reads are 
counted in bins of size 100  bp forming a window start-
ing at the TSS of each bidirectional gene and extending 
up to 2000  bp downstream of each of two TSSs (Addi-
tional file  1: Fig. S5A). An additional bin with variable 
size is allocated to count the reads falling within the 

h(Ci,j;

4
∑

r=1

4
∑

s=1

Cr,s,

4
∑

r=1

Cr,j ,

4
∑

r=1

Ci,r).

region between the TSSs of the two bidirectional genes. 
The 20 bins from the L gene, the bin for region between 
both TSSs, and the 20 bins from the H gene are all com-
bined into one vector of size 41 that represent the binned 
ChIP-seq signal per BP for a particular TF. To compute 
the enrichment score of the ith TF at a particular BP, we 
define:

where TFi is the signal measured for ith TF (for HepG2, 
i ∈ {1, . . . , 44} and for K562, i ∈ {1, . . . , 50} ) at the given 
BP. TFij denotes the read counts measured at the jth bin 
of TFi signal and BGi

j denotes the median of TFi signal 
measured at the jth bin across all BPs.

Definition of transcribed regions
For each gene, we consider all the annotated tran-
scripts that start within 2  kb downstream of the most 
5′ TSS of the gene. We measured the length of the 
exonic region encompassed by these transcripts, which 
we refer to as transcript length. For instance, consider 
the exonic coordinates of the two transcripts of a gene 
that start within 2  kb downstream of the most 5′ TSS, 
T1 = {(E1

start : 0,E
1
end : 500), (E2

start : 600,E
2
end : 1000)}, 

T2 = {(E1
start : 0,E

1
end

: 100), (E2
start : 400,E

2
end

: 600), (E3
start :

1500,E3
end

: 3000)}, where E(.)
start and E(.)

end are relative coor-
dinates to the most 5′ TSS. Then the transcripts length 
would be equal to 2500  bp; the length of the region cov-
ered by exons E1 and E2 from both transcripts, 1000 bp, 
plus the length of the exon E3 of transcript T2, 1500  bp. 
Similarly, the exonic and intronic region spanned by those 
transcripts is referred to as transcripts span. Referring 
back to the example above, the transcripts span would be 
equal to (start: 0, end: 3000), where start and end are rela-
tive coordinates to the most 5′ TSS. Note that all regions 
in this interval are considered, regardless of their exonic 
or intronic annotations. Also note that other transcripts of 
the gene that would start outside of the 2 kb region are not 
considered for the definition of transcripts span or tran-
script length.

Chromatin state segmentation score
We acquired the 18-states ChromHMM [28] annotation 
for both cell lines, for HepG2 produced by DEEP, and for 
K562 downloaded from Roadmap [37]. For simplicity, we 
collapsed all TSS-related states to one state called, TSS. 
Similarly, we defined Enhancer and Repressed states and 
assigned all the remaining states to Others, yielding four 
summarized states in general. Later, for each gene g we 
defined a window, Wg, starting at the TSS of the gene and 

Enrich(TFi) =

41
∑

j=1

log2

(

TFij + 1

BGi
j + 1

)

,
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extending up to the size of the transcripts span, see above. 
We then computed the average number of bases having a 
particular chromatin state, s, overlapping in that window. 
We called this value ChromScoresg , described as follows:

where R defines a region in the genome, |R| designates 
the size of this region, and state(R) denotes the chroma-
tin state assigned by ChromHMM to region R. It should 
be noted that since the ChromHMM state annotation is 
continuous across the genome, the following equation 
holds:

and thus ChromScore is properly normalized to account 
for a difference in transcripts span per gene. To assign 
ChromScore to a cluster of genes, C, (defining the four 
transcription states introduced earlier), we formulated 
the following:

Later, as the last step, we convert the ChromScoresC 
into percentages to make the scorecomparable across dif-
ferent clusters of genes with different gene sizes: 

Additional file

Additional file 1. Supplementary methods and results.
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