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Abstract 

Background:  There is increasing evidence for inter-individual methylation differences at CpG dinucleotides in the 
human genome, but the regional extent and function of these differences have not yet been studied in detail. For 
identifying regions of common methylation differences, we used whole genome bisulfite sequencing data of mono‑
cytes from five donors and a novel bioinformatic strategy.

Results:  We identified 157 differentially methylated regions (DMRs) with four or more CpGs, almost none of which 
has been described before. The DMRs fall into different chromatin states, where methylation is inversely correlated 
with active, but not repressive histone marks. However, methylation is not correlated with the expression of associ‑
ated genes. High-resolution single nucleotide polymorphism (SNP) genotyping of the five donors revealed evidence 
for a role of cis-acting genetic variation in establishing methylation patterns. To validate this finding in a larger cohort, 
we performed genome-wide association studies (GWAS) using SNP genotypes and 450k array methylation data from 
blood samples of 1128 individuals. Only 30/157 (19%) DMRs include at least one 450k CpG, which shows that these 
arrays miss a large proportion of DNA methylation variation. In most cases, the GWAS peak overlapped the CpG posi‑
tion, and these regions are enriched for CREB group, NF-1, Sp100 and CTCF binding motifs. In two cases, there was 
tentative evidence for a trans-effect by KRAB zinc finger proteins.

Conclusions:  Allele-specific DNA methylation occurs in discrete chromosomal regions and is driven by genetic varia‑
tion in cis and trans, but in general has little effect on gene expression.

Keywords:  DNA methylation, Haplotype, Genome-wide association study, Differentially methylated regions,  
Inter-individual variability, Allele-specific methylation, Whole genome bisulfite sequencing, SNP genotyping, 
Methylation array
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Background
Allele-specific DNA methylation occurs at distinct 
regions of the mammalian genome: (1) at imprinted loci 
as a result of genomic imprinting in the germline, (2) at 
gene promoters on the silent X chromosome in females 

as a result of X inactivation during early embryogen-
esis and (3) at non-imprinted autosomal loci as a conse-
quence of genetic variation in cis (haplotype-dependent 
allele-specific methylation, hap-ASM [1–5]). In con-
trast to genomic imprinting and X inactivation, which 
always result in methylation of one allele in each cell of 
an individual, hap-ASM can be present on both alleles, 
on just one allele or on none of the alleles, dependent 
on the individual’s genotype. In practice, however, most 
often DNA methylation levels other than 100, 50 or 0% 
are observed. This is because of extensive cell-to-cell 
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heterogeneity (epigenetic mosaicism) as well as tissue 
heterogeneity. Epigenetic mosaicism means that even 
in a pure, isogenic cell population, cells differ from each 
other with respect to DNA methylation at a given locus, 
probably because the two alleles of a single nucleotide 
polymorphism (SNP) do not always dictate or prevent 
methylation of their genomic environment, but only 
increase or decrease the possibility that methylation 
occurs. This probability may even vary across tissues and 
may also be affected by environmental factors. As a con-
sequence of this, a given genotype can be associated with 
multiple epigenotypes.

It has been suggested that hap-ASM may contrib-
ute to phenotypic variation, although there is no direct 
evidence for this to date. Indirect evidence comes from 
methylation quantitative trait loci (mQTL) studies, 
expression quantitative trait loci (eQTL) studies and 
genome-wide association studies (GWASs) [2, 6, 7]. 
These investigations have shown correlations between 
DNA sequence, methylation levels, gene expression lev-
els and phenotypic traits, but it remains to be determined 
whether hap-ASM mediates the effect of DNA sequence 
variation on gene expression levels and phenotypic traits 
(active role), whether it stabilizes gene expression levels 
that have been brought about by SNP-sensitive transcrip-
tion factors (passive role), or whether it occurs on certain 
haplotypes without having a function (no role).

Most mQTL studies were performed with methyla-
tion sensitive microarrays such as the Illumina 450k array. 
Owing to the low probe density of this array (it assays only 
450,000 CpGs (1.6%) out of 28,000,000 CpGs), only single 
CpG sites or a combination of CpGs scattered over regions 
with poorly defined borders have been studied. Most hap-
ASM studies used bisulfite sequencing (Sanger sequencing 
of subcloned bisulfite PCR products), which provides base-
pair resolution, but were targeted at a few candidate regions 
only. A vast improvement in the field are techniques which 
enrich for all genomic regions known to impact gene reg-
ulation (hybrid capture kits; see for example [2]) or for all 
highly methylated regions (antibody-based approaches; 
see for example [8]). An unbiased survey of all differen-
tially methylated regions, however, requires whole genome 
bisulfite sequencing (WGBS). WGBS has recently become 
the gold standard of genome-wide methylation analysis, 
but owing to the high costs involved, most often only a 
small number of samples are studied with this technique. 
However, one advantage of using allele-specific analysis 
compared to the QTL approaches is the smaller sample size 
requirements [9]. Nevertheless, sophisticated bioinformatic 
tools are necessary to reliably detect differentially methyl-
ated regions (DMRs) in a limited number of datasets, and 
candidate DMRs have to be validated by array-based tech-
niques and/or targeted approaches.

Hap-ASM can seriously confound comparative methy-
lome analyses in humans, if the samples are from differ-
ent individuals. We have recently observed that DNA 
methylation differences between individuals may be 
larger than between distinct cell types [10], which has 
prompted us to identify and characterize inter-individual 
differences in DNA methylation in a more systematic 
way. For identifying regions showing common allele-
specific DNA methylation, we have searched for blocks of 
co-varying CpGs (COMETs; [11]) that occur in only two 
states/epialleles (mainly methylated or mainly unmeth-
ylated) in each cell. At such a DMR, any individual has 
one of three epigenotypes: methylated/methylated, 
methylated/unmethylated, or unmethylated/unmeth-
ylated. To reduce the number of possible confounders 
in the DMR discovery phase, we restricted our analysis 
to a single cell type (monocytes) and used cells isolated 
by the same procedure (elutriation) from donors of the 
same sex (males). Based on epigenomic datasets gener-
ated by the same laboratory and bioinformatics pipeline 
according to standards set by the International Human 
Epigenetic Consortium (IHEC), this approach has ena-
bled us to identify a significant number of high-confident 
DMRs and to link them to chromatin states and genetic 
variation.

Results
Identification of differentially methylated regions (DMRs)
Our previous DNA methylation analysis [10] had been 
performed in human monocytes and macrophages from 
two male donors (Hm03 and Hm05; for a cluster analy-
sis see Additional file 1). For identifying inter-individual 
DNA methylation differences in human monocytes in a 
systematic way (see Fig. 1 for an overview of our study), 
we included three additional WGBS datasets produced 
by our laboratory (M55900 and Hm01 [12] as well as 
Hm02 (this study; for quality parameters of the methyl-
omes see Additional file 2). In addition, we downloaded 
five publicly available IHEC WGBS datasets on human 
monocytes from other male donors, two from the BLUE-
PRINT consortium and three from the Canadian Epige-
netics, Environment and Health Research Consortium 
(CEEHRC). A principle component analysis (PCA; Addi-
tional file 3), however, revealed that the data are very het-
erogeneous: While our five methylomes fall right on top 
of each other, the other methylomes are very different 
from each other and from our methylomes. The differ-
ences are probably due to the use of different cell puri-
fication methods, WGBS library preparation protocols, 
sequencing chemistries and bioinformatics pipelines. 
Therefore, we proceeded only with our five methylomes.

For identifying regions of common inter-individ-
ual DNA methylation differences, we devised a novel 
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bioinformatic strategy: We created two synthetic meth-
ylomes, one with the highest methylation value of each 
CpG in the five samples and one with the lowest meth-
ylation value (Fig.  2a). We then used a modified ver-
sion of Bsmooth [13] to detect differentially methylated 
regions (DMRs) between the two synthetic methylomes 
(see “Methods” section). Defining a DMR as a region of at 
least 4 CpGs with a methylation level difference of at least 
0.8, we identified 157 DMRs (p < 0.001; Additional file 4). 
The threshold of 0.8 implies that a DMR is homozygously 
methylated in at least one individual and homozygously 
unmethylated in at least another individual, i.e., methyla-
tion differences in this region are very common.

The DMRs cover 1165 CpGs, have a size range of 9 to 
1495  bp and encompass 4 to 44 CpGs (Additional files 
4 and 5). The region with the highest number of CpGs 
is shown in Fig.  2b. Five DMRs have previously been 
reported by others: Two regions (DMR87 and DMR134) 
overlap previously designated hap-ASM DMRs [2], 
two DMRs contain a previously reported SNP mQTL 
(DMR25—rs6760544 [5], and DMR104—rs11158727 [6]), 

and one DMR contains a previously reported ASM–SNP 
(DMR24—rs1530562 [14]). The majority of the DMRs 
are either intergenic (79/157) or intronic (57/157), while 
13/157 span over an exon–intron boundary and 7/157 
are located within an exon (Additional file 4). In compari-
son with randomly chosen regions, intergenic DMRs are 
highly overrepresented, whereas intragenic and exonic 
DMRs are highly underrepresented (Additional file 6).

Since non-imprinted autosomal CpG islands (CGIs) are 
typically unmethylated, we find it surprising that 29/157 
DMRs overlap a CpG island (CGI), although in general 
CGI-DMRs are also underrepresented (Additional file 6). 
Most of these CGI-DMRs (19/29) are intragenic (either 
intron (n =  8), exon (n =  5) or intron–exon boundary 
(n = 6)). In 24 of these CGI-DMRs, all CpGs are within a 
CGI, in 4 cases there is a partial overlap with at least 50% 
of the CpGs belonging to a CGI, and in one case, the CGI 
is within the DMR. In some cases, closely linked DMRs 
affect the same CGI, probably because the DMR detec-
tion algorithm separated a large DMR into two or more 
DMRs. In total, 19 CGIs overlap a DMR, 11 of which are 
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intragenic. Some of the CGIs are orphan CGIs, i.e., they 
are not associated with an annotated transcription start 
site [15].

We analyzed five samples, and our stringent settings 
allowed us to detect regions with common methylation 
differences. We expect that increasing the sample num-
ber could lead to the discovery of additional DMRs with 

rarer epialleles. Thus, we asked how many DMRs with a 
minor epigenetic allele frequency >0.05 might be present 
in the human population. Assuming that DNA methyla-
tion is allele-specific in these regions (for validation see 
below) and that the Hardy–Weinberg equilibrium applies 
in this situation, we estimate that there are 692 such 
DMRs. Of these, we have detected 23%.

Hm01

Hm02

Hm03

Hm05

M55900

b

a

Fig. 2  Detection of DMRs. a Scheme of the generation of synthetic methylomes. b Representative example of an inter-individual DMR (DMR128, 
chr17:6558143-6558981) visualized in the IGV browser. Only a subset of reads is shown for each individual (Hm01, Hm02, Hm03, Hm05 and 
M55900). Red methylated CpG; blue unmethylated CpG
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Genomic environment of the DMRs
Since WGBS provides DNA methylation levels of all 
CpGs, we could investigate whether certain haplotypes 
(see below) act to decrease DNA methylation in a highly 
methylated domain or act to increase DNA methylation 
in a lowly methylated domain. For this, we compared the 
mean methylation level of the DMRs in the five donors 
to that of their flanking regions. In order to avoid bor-
der effects, we ignored the next three CpGs on each side 
of the DMRs and analyzed the following 10 CpGs. We 
observed that the mean methylation level of the DMRs 
is 0.49, which is close to the expected methylation level if 
on average methylated and unmethylated alleles occur at 
a similar frequency in the five donors. In contrast, both 
upstream and downstream flanking regions have a much 
higher level of methylation (average 0.72), which is highly 
significant (p  =  4.86  ×  10−20 and p  =  1.71  ×  10−21, 
respectively, Wilcoxon rank-sum test) (Additional file 4). 
Indeed, the vast majority of DMRs (107) have mean 
methylation levels lower than the two adjacent regions, 
while only 7 have higher methylation than both sur-
rounding sequences (Fig.  3). In 40 DMRs, the methyla-
tion is intermediate from that of both flanking regions. 
For the remaining 3 DMRs, data are lacking for one of the 
flanks.

Chromatin states of the DMRs
For investigating the functional significance of the DMRs, 
we looked at six histone modifications (H3K4me1, 
H3K4me3, H3K27ac, H3K36me3, H3K27me3 and 
H3K9me3), which had been determined in the same 

monocyte samples from donors Hm03 and Hm05 [10]. 
Using the k-means algorithm (with k  =  5 classes) to 
cluster 2  kb sequences centered on the DMRs accord-
ing to the ChIP signal across all six histone marks, we 
found that the DMRs have different histone modifica-
tions patterns (Fig.  4a). Clusters 1 and 4 are enriched 
for H3K27ac (albeit weakly in cluster 4) and H3K4me1, 
cluster 1 also for H3K4me3. These marks are indicative 
of active enhancers and promoters. Cluster 2 is strongly 
enriched for the repressive mark H3K27me3 and weakly 
enriched for the repressive mark H3K9me3. Cluster 3 is 
weakly enriched for H3K27ac and strongly enriched for 
H3K36me3, suggesting that these DMRs are transcribed 
elements. Cluster 5 is weakly enriched for the repressive 
mark H3K27me3. In summary, approximately 50% of 
the DMRs (84/157 in Hm03 and 82/157 in Hm05) carry 
strong or weakly repressive histone marks (clusters 2 and 
5). The same is true for the subset of the 29 CGI-DMRs: 
11/29 CGI-DMRs belong to cluster 2 in both donors, and 
5/29 CGI-DMRs belong to cluster 2 in one of the two 
donors (Additional file 4). Most of the DMRs belonging 
to histone cluster 1 are intragenic (14/22 Hm03, 14/19 
Hm05). On the other hand, most of the DMRs belonging 
to histone cluster 5 are intergenic (35/56 Hm03, 37/52 
Hm05).

Independent clustering was performed for Hm03 and 
Hm05, since the two donors differ in the DNA methyl-
ation values of the DMRs. When we looked at the cor-
relation between differences in DNA methylation levels 
and differences in histone modification levels between 
the two donors, we found that DNA methylation was 
inversely correlated with the active histone marks (linear 
regression), although the differences in histone modi-
fications were small, but it was not correlated with the 
repressive histone marks (Fig.  4b and Additional file  7). 
In summary, this analysis suggests that the DMRs have 
different chromatin states and are more correlated to 
active than to repressive histone marks.

Based on the combination of the different histone 
marks in Hm03 and Hm05 monocytes, we segmented the 
genome into 18 chromatin states with the help of Chrom-
HMM [16] and investigated whether certain chromatin 
states are over- or underrepresented (Additional file  8). 
We found that in both datasets 1_TssA, 5_Tx and 17_
ReprPCWk were underrepresented and that 16_ReprPC 
and 2_TssFlnk or 4_TssFlnkD were overrepresented. 
Next, we investigated whether DMRs having (1) the same 
chromatin states in Hm03 and Hm05, or (2) different 
states in both donors, have similar distributions of abso-
lute methylation differences between the two donors. 
In fact, the distribution is significantly different: In the 
DMRs that have different chromatin states in the two 
donors, methylation differences are higher compared to 

Fig. 3  Differences in DNA methylation of the DMRs and the 
upstream and downstream flanking regions. Most of the DMRs are 
flanked by regions with higher methylation levels (quadrant at lower 
left)
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the others (p = 2.33 × 10−5, Wilcoxon rank-sum test). As 
shown by the violin plots in Additional file  9, there are 
many DMRs with the same chromatin state and the same 
level of DNA methylation in the two donors (methylation 
difference <0.1), but there are very few DMRs with dif-
ferent chromatin states and the same DNA methylation. 
The relative abundance of DMRs with different chroma-
tin states and methylation differences around 0.4 may 
be explained by homozygosity for a state in one donor 
and heterozygosity in the other donor, while differences 
around 0.8 may occur in DMRs where the two donors are 
homozygous for opposite states. In summary, these find-
ings show that there is a correlation between DNA meth-
ylation and active chromatin states.

Location of the DMRs and putative target genes
The analysis of the 157 DMRs with Genomic Regions 
Enrichment of Annotations Tool (GREAT), which iden-
tifies cis-regulatory elements and their target genes, 
showed that 155/157 DMRs are associated with at least 
one gene and that in the majority of cases these are far 
away (see Additional files 4 and 10). In total, 240 different 
genes were identified. There was no significant enrich-
ment of GO terms. The expression levels of these genes 
in donors Hm03 and Hm05 were not different from 
those genes that are not associated with a DMR (17,544; 
p = 0.45, Wilcoxon rank-sum test) (Additional file 11). As 
shown in Fig. 5a, there is no correlation between the dif-
ferences in gene expression levels and the differences in 
methylation levels in these donors. The same is also true 
for the subset of genes that are associated with a DMR 
belonging to the histone modification clusters 1, 3 or 4 
(active and transcribed DMRs), the subset of genes that 
are associated with a DMR which has a different chro-
matin state in donors Hm03 and Hm05, or the subset of 
genes that harbor a DMR (data not shown).

Since DNA methylation might affect alternative tran-
script initiation or splicing without changing total mRNA 
levels [17], we further investigated the genes harboring a 
DMR. As shown in Fig. 5b, there was no significant cor-
relation between differences in methylation levels of the 
77 intragenic DMRs and differences in transcript isoform 
expression of the host genes (r2 = 0.006, p = 0.085).

Due to the fact that the gene list used by GREAT does 
not include all long non-coding RNA genes, we queried 
the database for annotated human lncRNAs (LNCipedia) 

to identify lncRNA genes overlapping the DMRs. We 
found nine such genes (Additional file  4), and the two 
genes that are expressed in monocytes have equal RNA 
levels in both donors.

Correlation of DMR methylation levels with nearby SNPs
Next, we asked whether DNA polymorphisms within 
the DMRs or close by could be responsible for the 

(See figure on previous page.) 
Fig. 4  Histone modifications of 2 kb regions centered on the 157 inter-individual DMRs. a Heatmaps of histone modification signals for Hm03 (left) 
and Hm05 (right). Heatmaps show log2 ratio ChIP signal over input for six different histone modifications. b Scatter plots showing difference in 
histone modification signals between Hm05 and Hm03 as a function of methylation differences between the two donors. Active histone marks are 
inversely correlated with DNA methylation (linear regression)
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inter-individual differences in DNA methylation. We 
genotyped the five donors for 2.5 million SNPs and found 
that 82/157 (52%) DMRs have a methylation level that is 
highly correlated (score > 0.9; see Methods) with the gen-
otype of at least one nearby SNP (±6 kb from the center 
of the DMR; Additional file 12; for details see Methods). 
In 21/157 DMRs, that SNP is located within the corre-
sponding DMR, and in 18/157 it is located <200 bp from 
the corresponding DMR border.

Validation of selected DMRs
We selected seven DMRs for validation that matched 
each of the following criteria: (1) SNP correlation score 
>0.9, (2) at least one CpG present on 450k arrays and 
(3) a methylation level of 33–67% in at least one of the 
five donors. Validation was performed by targeted deep 
bisulfite sequencing of four monocyte samples used for 
WGBS (Hm01, Hm02, Hm03 and Hm05) as well as two 
additional samples (Hm06 and Hm10), whom we geno-
typed for the 13 SNPs highly correlated with those DMRs 
(Additional file 12). For 6/7 DMRs, we observed a corre-
lation between the DMR methylation levels and the gen-
otype of at least one of the correlating SNPs (Additional 
file  13). In these cases, the homozygotes showed either 
the highest or lowest DMR methylation level, depend-
ing on the SNP allele, while the heterozygotes presented 
intermediate levels of methylation. For DMR12, which 
was no longer correlated with SNP rs692963 when two 
additional individuals where analyzed, it is possible that 
a correlating SNP lies >6 kb from the center of the DMR 
(as shown below, it is indeed). Regarding DMR128, in 
which the correlating SNP (rs9911968) is located within 
the DMR, we further analyzed heterozygotes for this SNP 
and calculated the methylation levels for reads containing 
the A or the G allele. We observed a significant difference 
in the methylation levels depending on the SNP allele 
present in the read, with the vast majority of the A allele 
containing reads being methylated, while the reads con-
taining the G allele were unmethylated (Fig. 6a and Addi-
tional file 14). This demonstrates that DMR128 is subject 
to allele-specific methylation.

To verify that the same is true for other DMRs, we 
selected 11 regions that matched the criteria (1) and (3) 
above and the criterion that the correlating SNP locates 
within the DMR or in close vicinity (<200  bp from the 
corresponding DMR border). We performed targeted 
deep bisulfite sequencing of samples heterozygous for 
the corresponding correlating SNPs. For 8/11 DMRs, 
there are statistically significant differences between the 
two alleles (p  <  0.05, two-tailed paired Student’s t test), 
proving on the read level that allele-specific methylation 
occurs in these DMRs (Fig.  6a and Additional file  14), 
and validating the methodology we used to discover 

the DMRs. For 2/3 DMRs that fail to reach statistical 
significance (DMR97 and DMR103), we had only one 
sample. We also observed that the difference in meth-
ylation between the methylated and the unmethylated 
allele diminishes with the distance to the correlated SNP 
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Fig. 6  Allele-specific DNA methylation. a Allele-specific DNA meth‑
ylation for 14 DMRs (16 SNPs) performed by targeted deep bisulfite 
sequencing and sorting of reads by SNP allele. Average CpG methyl‑
ated fractions in reads containing one or the other allele. Results are 
mean ± SD from 1 to 4 independent donor samples heterozygous 
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the absolute differences in methylation between reads containing 
one or the other SNP allele as a function of the absolute distance to 
the SNP. Each dot represents one CpG
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(Fig. 6b), reassuring the relevance of these SNPs genotype 
on the methylation levels.

Genome‑wide association studies (GWAS)
To validate the association between SNP genotypes and 
DNA methylation states in an independent and larger 
cohort, we investigated SNP and DNA methylation data 
of 1128 probands from the Heinz-Nixdorf Recall Study 
[18, 19]. In this cohort, DNA methylation levels had been 
determined in blood DNA with the help of Illumina 450k 
microarrays. Only 30/157 (19%), DMRs include one or 
more Illumina 450k CpGs (total: 50 CpGs), which shows 
that these arrays miss a large proportion of DNA methyl-
ation variation. In at least 29/50 cases, the distribution of 
the methylation levels showed three distinct peaks, sug-
gesting that there are two epialleles (high and low meth-
ylation) (Fig. 7a and Additional file 15).

First, we checked whether monocyte and whole blood 
methylation levels were correlated. For this, we analyzed 
previously published Illumina 450k microarray data gen-
erated for whole blood and CD14+ monocytes samples 
from six healthy male donors [20]. The comparison of 
monocyte and whole blood methylation levels for the 50 
CpGs revealed a high correlation (>0.92) in all individuals 
(Additional file 16).

For each of the 50 CpGs, we performed a GWAS with 
~500,000 SNP, in which CpG methylation was treated 
as a quantitative trait. In 47/50 cases, there was a single 
correlation peak, which overlapped the CpG position 
(Fig.  7b, c; Additional files 17 and 18). For the CpG in 
DMR94 on chromosome 12, there was a correlation peak 
at the CpG position (p =  1.59 ×  10−15) and at a locus 
on chromosome 19 (p =  1.40 ×  10−41). For the CpG in 
DMR53 on chromosome 6, there was a single correlation 
peak on chromosome 7 (p = 6.01 × 10−11). We did not 
find any evidence for misannotation or cross-hybridisa-
tion of the array probes in these cases, but noted that the 
two GWAS peaks located on different chromosomes than 
the DMRs overlapped with genes coding for KRAB zinc 
finger transcription factors (ZNF573 and ZNF92, for the 
DMR94 and DMR53 GWAS peaks, respectively). Since a 
p value threshold of 5 × 10−8 has become a standard for 
genome-wide significance in GWAS, the extremely low p 
values at the ZNF573 and ZNF92 loci point to a trans-
acting effect.

For each GWAS, the SNP at the CpG locus with lowest 
p value (in most cases p < 10−2000) was designated as lead-
SNP (total n =  30). Using this genome-wide approach, 
we were able to confidently detect correlating SNPs out-
side the 12-kb window, e.g., in DMR12, for which the 
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putatively correlated SNP detected in a 12-kb window 
failed validation in six individuals, the lead-SNP is actu-
ally located 40 kb from the DMR (Additional file 18). We 
used HaploReg [21] to retrieve SNPs in high linkage dise-
quilibrium (LD, r2 > 0.8) to the lead-SNPs (total n = 471), 
which are located within the corresponding DMR or up 
to ~116 kb from it, and mainly in intronic or intergenic 
regions (Additional file 19). For three of the DMRs vali-
dated previously, we confirmed the occurrence of ASM 
at the read level at SNPs in high LD with the lead-SNPs 
(Fig. 6a). These findings validate and extend the explora-
tory study described above.

Analysis of transcription factor‑binding sites in and 
around the DMRs
Next, we analyzed whether the lead-SNPs and the highly 
correlated SNPs (total n = 501) might affect transcription 
factor-binding sites. Exploration of SNP annotation data 
from HaploReg database revealed that 23% of known 
protein binding events (Encode ChIPseq data) occur 
within the DMRs or <100  bp away (Additional file  20). 
The remaining events occur over a region up to 57  kb 
away from the DMR. The top five proteins found to bind 
within the DMRs or in close vicinity (<100 bp) are CTCF, 
CMYC, CEBPB, RAD21 and SMC3 (Additional file 19).

TRANSFAC analysis showed that the SNP regions 
are enriched for CREB group, NF-1, Sp100 and CTCF 
binding motifs (Additional file  21), and further analy-
sis of their HaploReg annotations revealed that most of 
the SNPs are likely to alter regulatory motifs (Additional 
file 19).

Discussion
The use of whole genome bisulfite sequencing in human 
monocytes as part of full IHEC epigenomes and a novel 
bioinformatic approach has enabled us to identify and 
characterize regions of common inter-individual dif-
ferences in DNA methylation at base-pair resolution, 
where allele-specific methylation is mainly caused by cis-
acting genetic variation in transcription factor-binding 
sites. In two cases, we have obtained tentative evidence 
for trans-acting genetic variation in KRAB zinc finger 
genes. High-resolution WGBS has also allowed us to 
determine the methylation level of the genomic environ-
ment of these regions: Most of them are flanked by highly 
methylated DNA, which shows that certain haplotypes 
act to decrease DNA methylation in a highly methylated 
domain. Almost none of the DMRs described here has 
been identified before, and unexpectedly some overlap 
with a CpG island (CGI). Overall, however, gene promot-
ers are underrepresented among the DMRs. Differences 
in DNA methylation are correlated with differences in 
active histone modifications and chromatin states, but 

in general not with differences in expression levels of the 
putative target genes, suggesting that other regulatory 
mechanisms are preponderant over DNA methylation in 
maintaining expression levels.

It is not possible to determine the exact number of 
DMRs, because this number obviously depends on the 
criteria used for DMR detection. Using WGBS data 
from five individuals and stringent thresholds, we have 
detected 157 inter-individual DMRs in monocytes and 
estimate that there are 692 regions with a minor epiallele 
frequency >0.05 in the human population. Interestingly, 
Do et  al. arrive at similar figure (n =  792), but there is 
hardly any overlap between their DMRs and ours (only 
two). Most probably, the DMRs identified by us are not 
targeted by the Agilent SureSelect Methyl-seq capture kit 
used by Do et  al. [2], which queries only 3.7/28 million 
CpGs (13.2%). Since this kit focuses on regions where 
methylation is known to impact gene regulation, our 
DMRs appear to lie in regions of unknown function (see 
also below). On the other hand, we may have missed the 
DMRs identified by Do et al., because they did not pass 
our stringent criteria for significance and/or different tis-
sues were used.

By defining a DMR as a region with a methylation dif-
ference between the two synthetic methylomes of at least 
0.8, we have identified regions of common methylation 
differences which are characterized by allele-specific 
DNA methylation in the majority of cells. Regions which 
show allele-specific DNA methylation in only a fraction 
of cells would not have passed the 0.8 threshold. This is 
one reason why the number of hap-ASM regions iden-
tified in this way is much smaller than the number of 
loci typically identified in mQTL studies (see for exam-
ple [7]). In mQTL studies, where the genotype of each 
tested SNP is correlated with the methylation level of 
each tested CpG, CpGs often have normalized methyla-
tion values on a continuous scale between 0.0 and 1.0. At 
the level of individual cells, however, DNA methylation 
(unlike mRNA levels, for example) cannot be a quantita-
tive trait, because a given CpG in a DNA molecule can 
only be methylated or unmethylated, allowing for three 
discrete epigenotypes per cell only. Therefore, mQTLs 
studies primarily measure the proportion of cells with 
one or two methylated alleles or—in other words—the 
probability that a CpG becomes methylated, rather than 
allelic methylation differences per se. Mean methylation 
values across a region with several CpGs could be a quan-
titative trait, if the methylation of the individual CpGs 
were poorly correlated. In our validation studies based 
on deep bisulfite sequencing, we have not observed such 
heterogeneous patterns.

We note, similar to Do et al. [2], that most of the hap-
ASM regions are not covered by the Illumina 450k array. 
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In our case, the array missed 80% of the DMRs. For 
almost all of the tested DMRs that did not have a CpG 
on the 450k array, allele-specific methylation was proven 
to occur on the read level at SNPs within or in the close 
vicinity to the DMR. Thirty of the 157 DMRs could be 
studied in a large cohort on 450k methylation arrays. In 
many of these cases, we saw a trimodal distribution of 
the methylation values, reflecting the three possible epig-
enotypes and indicating low epigenetic mosaicism. In the 
other cases, the CpG tested may not be representative for 
the DMR, because it is close to the border of the DMR, 
for example.

In our GWAS studies, we found that the methylation 
levels were significantly correlated with the genotype of 
nearby SNPs, often with p values <10−2000, which also val-
idates these DMRs. In two cases (DMR53 and DMR94), 
we obtained tentative evidence for the existence of trans-
acting loci. Interestingly, in both cases the GWAS peak 
was over KRAB zinc finger transcription factors genes, 
namely ZNF92 and ZNF573. Unfortunately, the two 
proteins are poorly characterized, but KRAB zinc fin-
gers are known to interact—among other proteins—with 
TRIM28, which plays a role in maintaining DNA meth-
ylation [22–24]. This finding certainly requires valida-
tion in another cohort as well as more detailed molecular 
studies.

For investigating the possible role of the DMRs, we 
made use of the histone modification and gene expres-
sion data that we have on the Hm03 and Hm05 mono-
cytes as part of the full IHEC epigenomes. We find that 
the DMRs lie in regions with different chromatin states 
including active and repressive chromatin and that they 
are enriched for regions flanking transcription start 
sites (TssFlnk), but depleted for strong transcription 
(Tx), active transcription start sites (TssA) and weakly 
repressed sites (ReprPCwk). With regard to active chro-
matin, we note that McClay et al., Do et al. and Cheung 
et al. also observed that mQTLs are enriched for TssFlnk 
regions [1, 2, 7]. The correlated SNP regions are bound 
by CTCF, CMYC, CEBPB, RAD21, SMC3 and other tran-
scription factors. Enrichment of CTCF- and RAD21-
binding sites in TssFlnkD regions has also been observed 
by the Epigenome Roadmap Consortium [25]. CTCF, 
RAD21 and SMC3 play an important role in chromatin 
architecture [26]. The relevance of CTCF binding for 
hap-ASM in other DMRs has previously been reported 
[2, 14, 27]. Together, these data suggest that SNPs cause 
hap-ASM through affecting the binding of transcription 
factors to the DNA, most likely mediated through chro-
matin looping in the case of SNPs located far away from 
the DMR. However, which SNP and which transcription 
factor affect DNA methylation is difficult to pinpoint, 
since genetic variants are often in linkage disequilibrium 

and may have either a direct influence on transcription 
factor binding by disrupting the recognition motif, or 
indirect by affecting cooperative and collaborative tran-
scription factor binding, or altering the chromatin state 
or conformation affecting the stability of interactions 
between transcription factors and with DNA [28].

There is a significant inverse correlation between DNA 
methylation and active histone marks, although the dif-
ferences in histone modifications are small, but no cor-
relation with repressive histones marks. It is not possible 
to decide whether the SNPs cause differences in certain 
histone modifications that favor or hinder DNA meth-
ylation, or whether the SNPs cause differences in DNA 
methylation that affect the recruitment of histone modi-
fying enzymes. Based on what is known about the inter-
play between DNA and histone modifications [29, 30], we 
tend to believe that the first scenario is true.

Surprisingly, differences in DNA methylation and his-
tone modifications do not appear to affect gene expres-
sion levels. It could be argued that these differences poise 
the genes for expression in response to external stimuli, 
which we did not test, but then we would expect that the 
genes were related to monocyte and macrophage func-
tion, which we did not find in our gene ontology analy-
sis. Another possibility is that the methylation differences 
affect other gene features such as alternative transcript 
initiation or splicing, which may be true for the subset 
of intragenic DMRs. Overall, however, there was no cor-
relation between the levels of transcript isoforms and 
DNA methylation, although it remains possible that in a 
few exceptional cases the methylation level does affects a 
transcript isoform. This needs to be investigated further 
by a series of detailed molecular studies. Still another 
possibility is that GREAT did not identify the real tar-
get genes, which may encode long non-coding RNAs 
expressed at low levels, especially in large introns and 
intergenic regions. However, only very few DMRs overlap 
a lncRNA gene, and most of these are not expressed in 
monocytes. In summary, we conclude that the majority of 
the DMRs do not seem to have a strong gene regulatory 
function under the tested conditions. While this hypoth-
esis may not be welcomed by everybody in the epigenetic 
field, it is in line with other observations. Gibbs et  al. 
found that only 4.8% of significant mQTLs were also an 
eQTL [6], and McClay et al. suggested that many mQTLs, 
especially those located in repressive chromatin, lack 
functional consequence [7]. Do et  al. have also recently 
hypothesized that only a minority of hap-ASM DMRs 
are likely to have important effects on gene expression by 
being located in crucial regulatory regions [9]. However, 
although some of our DMRs are located in regions with 
signatures of active enhancers and promoters, they do 
not seem to affect the expression of target genes. Overall, 
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these results question a major role of hap-ASM in pheno-
typic variation.

Unexpectedly, a significant fraction of the DMRs over-
lapping a CGI (see below) carry the repressive histone 
mark H3K27me3, irrespective of whether they are meth-
ylated or not, and there is no correlation with the expres-
sion levels of the putative target genes. In imprinted DNA 
methylation, silent X-associated DNA methylation and 
cell-type-specific DNA methylation (for the latter see for 
example [10]), specific DNA sequences are subject to sta-
ble transcriptional silencing even in the presence of all of 
the factors required for their expression [31]. In contrast, 
a significant proportion of hap-ASM appears to occur 
in regions where certain haplotypes fail to keep them 
methylation-free in the presence of the DNA methylation 
machinery, without affecting gene expression levels.

Since CGIs are almost exclusively unmethylated in all 
tissue types, regardless of state of expression [31], the 
observation that 29/157 (~20%) of our DMRs overlap a 
CGI was unexpected. Assuming that there are 692 such 
DMRs (see “Results” section) and that a similar frac-
tion of the undetected DMRs overlaps with a CGI, we 
estimate that ~100/~30,000 CGIs might be affected by 
hap-ASM in human monocytes. Since hap-ASM shows 
considerable tissue heterogeneity [2], which substanti-
ates the notion that transcription factors are instrumen-
tal in setting up hap-ASM patterns, more than 100 CGIs 
may be affected. Although the total number of such CGIs 
is probably small, we find it surprising that hap-ASM 
affects CGIs at all. It remains to be determined what 
makes certain CGIs susceptible to hap-ASM. It is prob-
ably a combination of transcription factor-binding sites 
(or a lack thereof ) that—on certain haplotypes—fails to 
protect a CGI against the invasion of methylation from 
the surrounding region. This is probably true also for 
other hap-ASM regions. The finding that most of these 
regions are flanked by highly methylated DNA on both 
sides suggests that in general DNA-binding factors pre-
vent DNA methylation. In only few cases, the flanking 
DNA is lowly methylated, and here DNA-binding factors 
may attract DNA methylation.

Conclusions
We have identified novel regions of common inter-indi-
vidual DNA methylation differences in human mono-
cytes. Our study supports and extends the observation 
that allelic DNA methylation differences can be caused 
by genetic variation in cis. Interestingly, DNA methyla-
tion at some loci may also be affected by genetic variation 
in trans, namely at KRAB zinc finger genes. In general, 
hap-ASM, especially hap-ASM in repressive chromatin 
domains, appears to have little functional consequences.

Methods
Monocytes isolation
Primary human monocytes were isolated from healthy 
normolipidemic volunteers (Hm02, Hm06 and Hm10) by 
leukapheresis and counterflow elutriation as described 
previously [32].

DNA extraction from monocytes and tissues
DNA was isolated from monocytes using QIAamp col-
umns (Qiagen, Germany) and quantified with a Nan-
odrop 100 spectrophotometer (Peqlab, Germany).

Whole genome bisulfite sequencing and analysis
Generation of whole genome bisulfite sequencing data 
from monocytes obtained from donor Hm02 was per-
formed as described previously [10, 12].

Detecting DMRs
We used the WGBS datasets from Hm02 and four addi-
tional donors (Hm01, Hm03, Hm05 and M55900; see 
Data retrieval and deposition) to generate two synthetic 
methylomes, one with the highest methylation level of 
each CpG in the five samples and one with the lowest 
methylation level. We modified BSmooth [13] to iden-
tify differentially methylated regions with a minimum 
difference of 0.8 between the two synthetic methylomes. 
BSmooth is designed to compare a group of multiple 
cases against a group of multiple controls. Because we 
have no class labels, our data consist of two single syn-
thetic methylomes (min, max) and therefore of case and 
control groups of one sample each. The main formula of 
the BSmooth algorithm

calculates a signal-to-noise statistic t(c) for each CpG c 
with Δ(c) referring to the mean methylation differences 
of both groups.

In our case, we reduced this formula to t(c) 
:=  (max(c) − min(c)) for each CpG c. The terms max(c) 
and min(c) simulate the process of creating synthetic 
methylomes by selecting the maximum and minimum 
methylation level of a CpG over all samples. DMRs are 
formed by consecutive groups of CpGs with t(c)  >  v or 
t(c) < −v with a threshold v > 0. We use v = 0.5 as param-
eter for the DMR calling.

A DMR’s border may differ in shape, and DMR call-
ing algorithms often cannot identify them exactly. In 
contrast to BSmooth, we calculate a DMR’s methyla-
tion level by building a weighted average methylation 
level

t(c) =
�(c)

[

σ(c)
√

1

n2
+

1

n2
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for DMR d, its set of CpGs C(d), the methylation levels 
mi(c) and standard deviation over all samples σ(c) of CpG 
c ∈ C(d) in sample i. We call μi(d) the core methylation of 
d in sample i. The core methylation is less influenced by 
the inaccurate DMRs borders. We only keep DMRs with 
high (core) mean methylation differences ≥0.8 and suffi-
ciently long DMRs consisting of 4 CpGs or more.

To test the DMRs for statistical significance, we cal-
culated an empirical p value by simulating 1000 sets of 
five samples according to the null model that there is no 
methylation difference as follows:

Let ns,c be the coverage and ms,c the methylation count 
for observed sample s at CpG c. First, we calculate the 
average methylation

value for each CpG c.
For each of the five observed samples s, we simulate a 

corresponding null sample o.
We set the coverage of CpG c in sample o to no,c = ns,c.
The methylation count Mo,c for each c is randomly cho-

sen with binomial probability

Therefore, the coverage of each CpG in the null sample 
is equal to the coverage in the corresponding observed 
sample, while differences in methylation are only caused 
by finite sampling size. Per definition, there exist no 
DMRs for the null samples, and every detected DMR is a 
false positive. We applied our algorithm for DMR detec-
tion to the null samples. We repeated the process 1000 
times.

The algorithm did not detect any DMRs. This leads to 
an empirical p value <0.001 for each DMR.

Calculation of the DMR detection rate
We assume that a single SNP is responsible for the meth-
ylation of a DMR and that the probability of being a 
causative SNP is independent of its allele frequency. We 
further assume that the epigenotypes follow the Hardy–
Weinberg equilibrium with P(AA) = p2, P(aa) = q2 and 
P(Aa or aA) = 2pq with some frequencies p and q such 
that p + q = 1. Our approach is only able to detect DMRs 
where at least one out of n samples is fully methylated 
and at least one sample is unmethylated.

The probability of obtaining such an event can be 
derived from an urn model with three different types of 
balls. Two types with probabilities p2 and q2 =  (1 − p)2, 

µi(d) =
1

∣

∣C(d)
∣

∣

∑

c∈C(d)

σ (c)mi(c)

pc =

∑

ms,c
∑
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P
(

Mo,c = m
)

=

(
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m

)

· pmc · (1− pc)
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respectively, represent the two different homozygous 
SNP states, and the third type with probability 2pq rep-
resents the heterozygous SNP state. For n samples, the 
probability to draw at least one ball of each of the first two 
types is P(p, q) = 1 −  [(1 − p2)n +  (1 − q2)n −  (2pq)n],  
where we have applied the inclusion–exclusion principle 
to the complementary event.

We used the known allele frequencies of all SNPs with a 
minor allele frequency >0.05 contained in dbSNP [33] to 
estimate the fraction of detectable DMRs. For n = 5, we 
estimate that we can detect 23% of DMRs with a minor 
epigenetic allele frequency >0.05.

SNP genotyping
For donors Hm01, Hm02, Hm03, Hm05 and M55900, 
2.5 million SNPs were genotyped using Illumina’s 
Omni2.5Exome Bead Array. For donors Hm06 and 
Hm10, SNP genotypes were inferred from the targeted 
bisulfite sequencing data (see below), or by Sanger 
sequencing regions amplified with primers listed in Addi-
tional file 22.

DMR SNP correlation score calculation
The mean methylation level of a sample in a region with 
allele-specific methylation is expected to be either close 
to 0.0, close to 1.0 or about 0.5. Due to inaccurate DMR 
borders, finite sequencing coverage and noise, measured 
values may differ from this expectation. We assume three 
possible classes “full-methylated,” “half-methylated” and 
“unmethylated” for this epigenotype.

In order to compare these epigenotypes with SNP 
genotypes, we have to classify the methylation level of 
each sample for each DMR. To avoid fixed thresholds for 
class assignment, we calculate the posterior probabilities 
of mean DMR methylation level to fall into each of the 
classes. We consider the empirical distribution (histo-
gram) of 157 × 5 = 768 core methylation levels μi(d) of 
each sample i and DMR d, which contains data from all 
three classes. This empirical distribution can be decom-
posed into a three-component mixture of beta distribu-
tions. A beta distribution is a continuous probability 
distribution on the unit interval [0, 1] that is frequently 
used to model data that naturally takes values between 
0 and 1 [34] such as methylation levels. Each compo-
nent beta distributions have two parameters α and β that 
determine the shape of the beta distribution. We used the 
betamix software [35] to robustly fit a three-component 
beta mixture model to the observed histogram.

Let αi and βi be the beta distribution parameters and πk 
the mixture coefficient of component k € {0, 1, 2} after fit-
ting. For a single sample, a DMR with a core methylation 
level μ and one SNP genotype g € {0, 1, 2}, the posterior 
probability of g given μ is given by
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To calculate a score based on multiple samples, we extend 
the formula. Let gi(s) € {0, 1, 2} be the genotype and μi(d) 
be the core methylation level (see “Detecting DMRs” sec-
tion) for DMR d, sample i and SNP s. The joint posterior 
probability

is given by the product of the single posterior probabili-
ties over all samples. We use this posterior probability as 
a score to assess whether DMR d and SNP s are co-var-
ying. The scores are separately calculated for each DMR 
and each SNP within a range of ±6 kb of the DMR’s loca-
tion. For n = 5 samples, we used 0.9 as a threshold to call 
an SNP correlated with a DMR.

GWAS analysis
The SNP array data were produced with three dif-
ferent SNP array types: Omni1_Quad_v1 (334 
probands), OmniExpress_12v1.0 (627 probands) and 
OmniExpress_12v1.1 (170 probands). The data were 
normalized and CpG methylation levels extracted using 
RnBeads v1.2.2 [36].

We filtered each array separately by removing SNPs 
that failed the Hardy–Weinberg test at a significance 
threshold of 0.001, having a minor allele frequency less 
than 0.01 or a missing rate greater than 0.1 using plink 
v1.07 [37]. The arrays were merged by plink and the data 
again filtered by plink using the previously described 
parameters. This merged data served as genotypes for the 
GWASs.

The Spearman correlations and p value calculation 
between methylation levels and SNP genotypes were per-
formed using NumPy v1.11.0 and SciPy v0.14.0 [38].

For the imputation, a region was chosen that includes 
all SNPs with a p value <5 × 10−8 but to a maximum of 
±1 Mb of the CpGs position. The arrays were then con-
verted to ped-format using gtool v0.7.5 [39] and sepa-
rately imputed using impute2 [40] for the determined 
regions with the phase 3 data of the 1000 genomes pro-
ject [41]. The imputed data were reconverted to bed-for-
mat again using gtool and merged under the previously 
given filter parameters by plink.

DMR validation by targeted deep bisulfite sequencing
Bisulfite-converted DNA was obtained using 500  ng 
of monocytes DNA (Hm01, Hm02, Hm03, Hm05, 
Hm06 and Hm10) and the EZ DNA Methylation-Gold 
Kit (Zymo Research) according to the manufacturer’s 
instructions. Locus-specific bisulfite amplicon libraries 

L
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g ,µ
)

=
πgbαg ,βg (µ)

∑

k πkbαk ,βk (µ)
.

score(s, d) =
∏

i

L
(
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)

were amplified by PCR employing bisulfite tagged prim-
ers (Additional file  22) designed using the MethPrimer 
[42] and BiSearch [43, 44] tools and HotStarTaq Master 
Mix (Qiagen). Sample-specific barcode sequences (MID, 
multiplex identifiers) and universal linker tags (454 adap-
tor sequences) were added by performing a second PCR. 
Samples were prepared and sequenced on a Roche/454 
GS Junior system (Roche Diagnostics) with special filter 
settings applied to increase the yield of reads [45]. Auto-
mated CpG methylation analysis was performed using 
the Amplikyzer software [46] with minimum bisulfite 
conversion rate set to 95%, leading to an average of 2450 
reads per sample (minimum 187).

Histone modification ChIPseq heatmaps
Heatmaps visualizing the ChIP log2-ratio between signal 
and input across six histone modifications in two biologi-
cal replicates were generated using deepTools [47] as pre-
viously described [10], except that we plotted data from 
2-kb regions centered on the middle of 157 DMRs and 
clustered them using k = 5 clusters in the k-means algo-
rithm. Independent clustering was performed for Hm03 
and Hm05, since the two donors differ in the DMRs DNA 
methylation values.

Chromatin segmentation by chromatin states
Chromatin segmentation of samples Hm03 and Hm05 
was performed with ChromHMM [16]. We estimated 
the p value for over- and underrepresented chromatin 
states by simulating 1 million datasets, consisting of 151 
regions each and equal size distribution compared to 
our DMRs. Each of the simulated regions was selected 
from non-repetitive regions covering at least 4 CpGs. 
For each of our 157 DMRs and each region of the simu-
lated datasets, the overlap between its coordinates and 
the chromatin states of each sample (Hm03, Hm05) was 
calculated. We then compared the count of overlapping 
chromatin states of a sample for our DMRs and each 
random set. The empirical p value for overrepresenta-
tion for state x is the fraction of random sets that have a 
higher count for x than the DMRs. The empirical p value 
for underrepresentation for state x is the fraction of sets 
that have a lower count for x than the DMRs. We par-
titioned the absolute methylation differences between 
Hm03 and Hm05 into (1) a set for the DMRs with differ-
ent chromatin states in the two donors and (2) another 
set for the DMRs with the same states. We consider a 
state as different in the two donors, if the intersection of 
the DMR overlapping chromatin states is empty. The two 
sets of methylation differences were then compared by 
applying the Wilcoxon rank-sum test to determine if the 
methylation differences are independent from a chroma-
tin state difference.



Page 15 of 18Schröder et al. Epigenetics & Chromatin  (2017) 10:37 

GREAT analysis
The bioinformatic tool GREAT was used to predict 
DMR functions by analyzing the annotations of nearby 
genes [48], under species assembly GRCh37 with whole 
genome background and choosing the “Basal plus exten-
sion” association rule setting with default parameters of 
5.0 kb upstream, 1.0 kb downstream and up to 1000.0 kb 
distal.

Distribution of gene expression levels
To obtain the gene expression rates for each gene, we 
summed the transcript per million (tpm) values as cal-
culated by kallisto with default parameters [49]. Since 
GREAT uses only the extremely high-confidence genes 
prediction subset of the UCSC Known Genes, we 
reduced the kallisto gene list to this subset (n = 17,784). 
We then partitioned the mean expression rates of Hm03 
and Hm05 for each gene into two groups: genes that are 
associated with a DMR as identified by GREAT (n = 240) 
and genes that are not associated (17,544). We compared 
the expression rates of these two groups by applying a 
Wilcoxon rank-sum test to test for differences.

Identification of transcription factor‑binding motifs
We used the TRANSFAC database (professional version, 
release 2015.3, [50]) to determine, if certain motifs were 
enriched in the SNP regions (501 regions: SNP ± 100 bp). 
Example regions as provided by TRANSFAC served as 
background, and the parameters were set to default.

Differential transcript expression
We ran Tophat 2.0.11 [51], with Bowtie 2.2.1 [52] and 
NCBI build 37.1 using the following parameters: –
library-type fr-firststrand and –b2-very-sensitive setting, 
to generate the mapping files from total-RNA of Hm03 
and Hm05 samples. Subsequently, StringTie [53] with 
NCBI build 37.1 was run in -e -b -G mode to generate 
files for analysis with Ballgown [54]. Differential tran-
script expression analysis was performed using Ballgown, 
and an FDR cutoff of 0.05 was chosen to extract the dif-
ferentially expressed transcripts.

Long non‑coding RNAs
LNCipedia 4.0 [55, 56] (GRCh37/hg19) was used to 
extract high-confidence lncRNA regions. Bedtools was 
subsequently run in “intersect” mode to get the overlap 
of the differentially methylated regions with the lncRNA 
regions.

Data retrieval
The full epigenome data from Hm03 and Hm05 mono-
cytes (Study Accession ID: EGAS00001001595, Dataset 

Accession ID: EGAD00001002201) as well as the meth-
ylome data from M55900 (ENA PRJEB5800) and Hm01 
(EGAS00001000719) have previously been produced 
by our group [10, 12]. The BLUEPRINT and CEEHRC 
WGBS datasets on human monocytes from other male 
donors were retrieved from the IHEC Data Portal (http://
epigenomesportal.ca/ihec/grid.html; [57]). In addition, 
450k array data of monocytes and whole blood DNA 
obtained from six individuals were downloaded from the 
gene expression omnibus (GSE35069) [20].

Additional files

Additional file 1. Cluster analysis of Hm03 and Hm05 monocytes and 
macrophages of the 1000 most variable CpGs. CpG SNPs were excluded 
from the analysis. The difference between donors is greater than between 
cell types.

Additional file 2. Quality parameters of WGBS datasets.

Additional file 3. Principal component analysis (PCA) of ten monocyte 
methylomes from males generated by three IHEC consortia: DEEP (red, 
our datasets), BLUEPRINT (green) and CEEHRC (blue).

Additional file 4. Annotated list of DMRs including environment and 
GREAT target genes.

Additional file 5. Histogram of DMR sizes.

Additional file 6. Enrichment and depletion of DMRs for gene features.

Additional file 7. Correlation between differences in DNA methyla‑
tion and histone modifications. Scatter plots showing, for each of the six 
histone marks, the difference in histone signals at the DMRs between 
Hm05 and Hm03 as a function of methylation differences between the 
two donors.

Additional file 8. Under- and overrepresentation of chromatin states.

Additional file 9. Methylation differences vs. changes in chromatin state. 
Distribution of DNA methylation differences between donors Hm03 and 
Hm05 in DMRs that have the same (left) or a different (right) chromatin 
state in both donors as determined by ChromHMM.

Additional file 10. DMRs target genes identified by GREAT. Number of 
DMR target genes (a) and their distance from the DMR (b).

Additional file 11. Expression levels of DMR related genes (240) vs. 
genes not associated with a DMR (17,544). tpm transcripts per million.

Additional file 12. List of DMRs with correlated SNPs in 12 kb window. 
SNPs within the same haplotype block are separated by a comma. Differ‑
ent haplotype blocks are separated by a slash.

Additional file 13. Validation of SNP correlations in seven DMRs using 
monocytes from six independent donor samples. Graphs showing rela‑
tionship between the methylation levels as quantified by targeted deep 
bisulfite sequencing and the genotype of nearby SNPs. Hm01, Hm02, 
Hm03, Hm05, Hm06 and Hm10: donors.

Additional file 14. Amplikyzer comparative methylation plots. Plots 
show CpG methylation averages for 14 DMRs after sorting reads by 
allele of the correlated SNPs (16 SNPs). Each plot shows data from 1 to 4 
independent donor samples heterozygous for the correlating SNPs. The 
two alternative alleles are defined with respect to the forward strand. 
SNPs rs1996180, rs13130981 and rs7925175 are A/C SNPs, but the C is 
converted to a T after bisulfite conversion. Asterisks mark CpGs that are 
outside the DMR borders.

Additional file 15. Histograms of 450k methylation levels in the 1128 
probands.

http://epigenomesportal.ca/ihec/grid.html
http://epigenomesportal.ca/ihec/grid.html
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2


Page 16 of 18Schröder et al. Epigenetics & Chromatin  (2017) 10:37 

Abbreviations
ASM: allele-specific methylation; CGI: CpG island; ChIP: chromatin immunopre‑
cipitation; DMR: differentially methylated region; eQTL: expression quantitative 
trait loci; GO: gene ontology; GREAT: Genomic Regions Enrichment of Annota‑
tions Tool; GWAS: genome-wide association study; H3K27ac: histone H3 lysine 
27 acetylation; H3K27me3: histone H3 lysine 27 tri-methylation; H3K36me3: 
histone H3 lysine 36 tri-methylation; H3K4me1: histone H3 lysine 4 mono-
methylation; H3K4me3: histone H3 lysine 4 tri-methylation; H3K9me3: histone 
H3 lysine 9 tri-methylation; IHEC: International Human Epigenome Consor‑
tium; LD: linkage disequilibrium; mQTL: methylation quantitative trait loci; SNP: 
single nucleotide polymorphism; WGBS: whole genome bisulfite sequencing.

Authors’ contributions
BH conceived and supervised the study and wrote the first draft. CS per‑
formed DMR detection, GWAS and correlation analyses, was involved in the 
bioinformatic and statistical analyses and wrote the first draft. EL performed 
the targeted methylation analyses, was involved in the bioinformatic and 
statistical analyses and wrote the first draft. SW provided samples. GS pro‑
vided samples. LKH performed next generation sequencing. AS performed 
RNA analysis. KHJ provided samples. SHH performed the microarray analy‑
ses. PH performed the microarray analyses. MMN performed the microarray 
analyses. MS was involved in the bioinformatic and statistical analyses. PE 
was involved in the bioinformatic and statistical analyses. SR supervised the 
bioinformatic and statistical analyses. All authors read and approved the 
final manuscript.

Author details
1 Genome Informatics, Institute of Human Genetics, University of Duisburg-
Essen, University Hospital Essen, Essen, Germany. 2 Institute of Human Genet‑
ics, University of Duisburg-Essen, University Hospital Essen, Hufelandstraße 
55, 45147 Essen, Germany. 3 Institute for Clinical Chemistry and Laboratory 
Medicine, University Hospital Regensburg, Regensburg, Germany. 4 Institute 
of Cell Biology, University Hospital Essen, Essen, Germany. 5 Institute of Clinical 
Molecular Biology, Kiel University, University Hospital, Kiel, Germany. 6 Institute 
of Medical Informatics, Biometry and Epidemiology, University Hospital 
Essen, Essen, Germany. 7 Institute of Human Genetics, School of Medicine, 
University Hospital of Bonn, University of Bonn, Bonn, Germany. 8 Depart‑
ment of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany. 
9 Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, 
Switzerland. 10 Human Genomics Research Group, Department of Biomedi‑
cine, University of Basel, Basel, Switzerland. 11 Research Division, Federal 
Institute for Drugs and Medical Devices (BfArM), Bonn, Germany. 12 Max Planck 

Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany. 
13 Saarbrücken Graduate School of Computer Science, Saarland Informatics 
Campus, Saarbrücken, Germany. 

Acknowledgements
We thank Thomas Wienker, Michael Zeschnigk and Thomas Manke for helpful 
discussions, Claudia Haak, Sabine Kaya and Claudia Mertel for expert technical 
assistance, and Giedion Zipprich for uploading the data to EGA. This study 
makes use of data generated by the Blueprint Consortium. A full list of the 
investigators who contributed to the generation of the data is available from 
www.blueprint-epigenome.eu. Funding for the project was provided by the 
European Union’s Seventh Framework Programme (FP7/2007–2013) under 
grant agreement no 282510 BLUEPRINT. This research used data shared by the 
McGill Epigenomics Mapping Centre.

Competing interests
The authors declare that there is no competing interests.

Availability of data and materials
The data of the present study including the WGBS data of the Hm02 mono‑
cytes as well as the 450k methylation data of the 1128 blood samples have 
been deposited at the European Genome-phenome Archive (EGA, http://
www.ebi.ac.uk/ega/), which is hosted at the EBI, under the Study Accession 
Number EGAS00001002265. To receive access to these controlled data, appli‑
cations can be addressed to the DEEP Data Access Committee (http://www.
deutsches-epigenom-programm.de/data-access/).

Ethics approval and consent to participate
The methylome study was approved by the ethics committee of the Univer‑
sity Hospital Regensburg, and donors gave their written consent (Reference 
Number 08/119). The Heinz-Nixdorf Recall study was approved by the ethics 
committee of the University Hospital Essen, and donors gave their written 
consent (Reference Number 99-69-1200).

Funding
This research was funded by the Federal Ministry of Education and Research 
under the Project Number 01KU1216 (Deutsches Epigenom Programm, DEEP).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 5 April 2017   Accepted: 20 July 2017

References
	1.	 Cheung WA, Shao X, Morin A, Siroux V, Kwan T, Ge B, Aissi D, Chen L, 

Vasquez L, Allum F, et al. Functional variation in allelic methylomes 
underscores a strong genetic contribution and reveals novel epigenetic 
alterations in the human epigenome. Genome Biol. 2017;18:50.

	2.	 Do C, Lang CF, Lin J, Darbary H, Krupska I, Gaba A, Petukhova L, Vonsattel 
JP, Gallagher MP, Goland RS, et al. Mechanisms and disease associations of 
haplotype-dependent allele-specific DNA methylation. Am J Hum Genet. 
2016;98:934–55.

	3.	 Hellman A, Chess A. Extensive sequence-influenced DNA methylation 
polymorphism in the human genome. Epigenet Chromatin. 2010;3:11.

	4.	 Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, Hod E, Li K, Murty VV, Schupf 
N, Vilain E, et al. Genomic surveys by methylation-sensitive SNP analysis 
identify sequence-dependent allele-specific DNA methylation. Nat 
Genet. 2008;40:904–8.

	5.	 Schalkwyk LC, Meaburn EL, Smith R, Dempster EL, Jeffries AR, Davies MN, 
Plomin R, Mill J. Allelic skewing of DNA methylation is widespread across 
the genome. Am J Hum Genet. 2010;86:196–212.

	6.	 Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL, 
Arepalli S, Dillman A, Rafferty IP, Troncoso J, et al. Abundant quantitative 
trait loci exist for DNA methylation and gene expression in human brain. 
PLoS Genet. 2010;6:e1000952.

Additional file 16. Scatter plots of monocyte vs. whole blood correlation 
of DNA methylation. Plots show the correlation between monocyte and 
whole blood methylation levels in six healthy male individuals for the 50 
CpGs that are included in the Illumina 450k array. Analysis performed with 
Illumina 450k array data previously published [20].

Additional file 17. Manhattan plots of GWASs. Dashed vertical line DMR 
position. Horizontal line GWAS significance threshold.

Additional file 18. Zoom-ins with imputed SNPs. Blue lead-SNP. Dashed 
vertical line DMR position. Horizontal line GWAS significance threshold.

Additional file 19. HaploReg annotations of the 30 lead-SNP and SNPs 
in the corresponding haplotype blocks. Haplotype block: SNPs in high 
linkage disequilibrium, r2 > 0.8. SNP positions were converted to hg19 
coordinates.

Additional file 20. Distance of SNPs with known binding proteins to 
the corresponding DMR border. Number of known proteins binding to 
lead-SNPs or to SNPs in high LD with the lead-SNPs vs. their distance to 
the corresponding DMR border. Data from Encode ChIPseq obtained via 
the HaploReg database.

Additional file 21. TRANSFAC motif enrichment in 501 SNP regions 
(SNP ± 100 bp). Yes and No denote the relative number of sites for the 
selected matrix in the DMRs as compared to the background dataset.

Additional file 22. Primer sequences and PCR conditions for targeted 
bisulfite sequencing and genotyping 13 SNPs.

http://www.blueprint-epigenome.eu
http://www.ebi.ac.uk/ega/
http://www.ebi.ac.uk/ega/
http://www.deutsches-epigenom-programm.de/data-access/
http://www.deutsches-epigenom-programm.de/data-access/
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2
http://dx.doi.org/10.1186/s13072-017-0144-2


Page 17 of 18Schröder et al. Epigenetics & Chromatin  (2017) 10:37 

	7.	 McClay JL, Shabalin AA, Dozmorov MG, Adkins DE, Kumar G, Nerella S, 
Clark SL, Bergen SE, Swedish Schizophrenia C, Hultman CM, et al. High 
density methylation QTL analysis in human blood via next-generation 
sequencing of the methylated genomic DNA fraction. Genome Biol. 
2015;16:291.

	8.	 Illingworth RS, Gruenewald-Schneider U, De Sousa D, Webb S, Merusi C, 
Kerr AR, James KD, Smith C, Walker R, Andrews R, Bird AP. Inter-individual 
variability contrasts with regional homogeneity in the human brain DNA 
methylome. Nucleic Acids Res. 2015;43:732–44.

	9.	 Do C, Shearer A, Suzuki M, Terry MB, Gelernter J, Greally JM, Tycko B. 
Genetic-epigenetic interactions in cis: a major focus in the post-GWAS 
era. Genome Biol. 2017;18:120.

	10.	 Wallner S, Schroder C, Leitao E, Berulava T, Haak C, Beisser D, Rahmann S, 
Richter AS, Manke T, Bonisch U, et al. Epigenetic dynamics of monocyte-
to-macrophage differentiation. Epigenet Chromatin. 2016;9:33.

	11.	 Libertini E, Heath SC, Hamoudi RA, Gut M, Ziller MJ, Czyz A, Ruotti V, 
Stunnenberg HG, Frontini M, Ouwehand WH, et al. Information recovery 
from low coverage whole-genome bisulfite sequencing. Nat Commun. 
2016;7:11306.

	12.	 Rademacher K, Schroder C, Kanber D, Klein-Hitpass L, Wallner S, 
Zeschnigk M, Horsthemke B. Evolutionary origin and methylation status 
of human intronic CpG islands that are not present in mouse. Genome 
Biol Evol. 2014;6:1579–88.

	13.	 Hansen KD, Langmead B, Irizarry RA. BSmooth: from whole genome 
bisulfite sequencing reads to differentially methylated regions. Genome 
Biol. 2012;13:R83.

	14.	 Paliwal A, Temkin AM, Kerkel K, Yale A, Yotova I, Drost N, Lax S, Nhan-
Chang CL, Powell C, Borczuk A, et al. Comparative anatomy of chromo‑
somal domains with imprinted and non-imprinted allele-specific DNA 
methylation. PLoS Genet. 2013;9:e1003622.

	15.	 Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr AR, James KD, 
Turner DJ, Smith C, Harrison DJ, Andrews R, Bird AP. Orphan CpG islands 
identify numerous conserved promoters in the mammalian genome. 
PLoS Genet. 2010;6:e1001134.

	16.	 Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and 
characterization. Nat Methods. 2012;9:215–6.

	17.	 Lev Maor G, Yearim A, Ast G. The alternative role of DNA methylation in 
splicing regulation. Trends Genet. 2015;31:274–80.

	18.	 Erbel R, Mohlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang 
A, Dragano N, Gronemeyer D, Seibel R, Kalsch H, et al. Coronary risk 
stratification, discrimination, and reclassification improvement based on 
quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf 
Recall study. J Am Coll Cardiol. 2010;56:1397–406.

	19.	 Schmermund A, Mohlenkamp S, Stang A, Gronemeyer D, Seibel R, Hirche 
H, Mann K, Siffert W, Lauterbach K, Siegrist J, et al. Assessment of clinically 
silent atherosclerotic disease and established and novel risk factors for 
predicting myocardial infarction and cardiac death in healthy middle-
aged subjects: rationale and design of the Heinz Nixdorf RECALL Study. 
Risk factors, evaluation of coronary calcium and lifestyle. Am Heart J. 
2002;144:212–8.

	20.	 Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE, Greco D, 
Soderhall C, Scheynius A, Kere J. Differential DNA methylation in purified 
human blood cells: implications for cell lineage and studies on disease 
susceptibility. PLoS ONE. 2012;7:e41361.

	21.	 Ward LD, Kellis M. HaploReg v4: systematic mining of putative causal 
variants, cell types, regulators and target genes for human complex traits 
and disease. Nucleic Acids Res. 2016;44:D877–81.

	22.	 Li XJ, Ito M, Zhou F, Youngson N, Zuo XP, Leder P, Ferguson-Smith AC. A 
maternal-zygotic effect gene, Zfp57, Maintains both maternal and pater‑
nal imprints. Dev Cell. 2008;15:547–57.

	23.	 Messerschmidt DM, de Vries W, Ito M, Solter D, Ferguson-Smith A, 
Knowles BB. Trim28 is required for epigenetic stability during mouse 
oocyte to embryo transition. Science. 2012;335:1499–502.

	24.	 Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner 
S, Baglivo I, Pedone PV, Grimaldi G, Riccio A, Trono D. In embryonic stem 
cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect 
chromatin and DNA methylation of imprinting control regions. Mol Cell. 
2011;44:361–72.

	25.	 Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen 
A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, et al. Integrative 
analysis of 111 reference human epigenomes. Nature. 2015;518:317–30.

	26.	 Merkenschlager M, Nora EP. CTCF and cohesin in genome folding 
and transcriptional gene regulation. Annu Rev Genomics Hum Genet. 
2016;17:17–43.

	27.	 Kaplow IM, MacIsaac JL, Mah SM, McEwen LM, Kobor MS, Fraser HB. A 
pooling-based approach to mapping genetic variants associated with 
DNA methylation. Genome Res. 2015;25:907–17.

	28.	 Deplancke B, Alpern D, Gardeux V. The genetics of transcription factor 
DNA binding variation. Cell. 2016;166:538–54.

	29.	 Cedar H, Bergman Y. Linking DNA methylation and histone modification: 
patterns and paradigms. Nat Rev Genet. 2009;10:295–304.

	30.	 Rose NR, Klose RJ. Understanding the relationship between DNA meth‑
ylation and histone lysine methylation. Biochim Biophys Acta Gene Regul 
Mech. 2014;1839:1362–72.

	31.	 Bestor TH, Edwards JR, Boulard M. Notes on the role of dynamic DNA 
methylation in mammalian development. Proc Natl Acad Sci USA. 
2015;112:6796–9.

	32.	 Ecker J, Langmann T, Moehle C, Schmitz G. Isomer specific effects of 
conjugated linoleic acid on macrophage ABCG1 transcription by a 
SREBP-1c dependent mechanism. Biochem Biophys Res Commun. 
2007;352:805–11.

	33.	 Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin 
K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 
2001;29:308–11.

	34.	 Ji Y, Wu C, Liu P, Wang J, Coombes KR. Applications of beta-mixture mod‑
els in bioinformatics. Bioinformatics. 2005;21:2118–22.

	35.	 Schröder C, Rahmann S. A Hybrid parameter estimation algorithm for beta 
mixtures and applications to methylation state classification. In: Frith M, Storm 
Pedersen CN, editors. Algorithms in bioinformatics: 16th international work‑
shop, WABI 2016, Aarhus, August 22–24, 2016 Proceedings. Cham: Springer; 
2016. p. 307–19.

	36.	 Assenov Y, Muller F, Lutsik P, Walter J, Lengauer T, Bock C. Comprehen‑
sive analysis of DNA methylation data with RnBeads. Nat Methods. 
2014;11:1138–40.

	37.	 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller 
J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-
genome association and population-based linkage analyses. Am J Hum 
Genet. 2007;81:559–75.

	38.	 van der Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for 
efficient numerical computation. Comput Sci Eng. 2011;13:22–30.

	39.	 Freeman C, Marchini J. GTOOL. Wellcome trust centre for human genet‑
ics. Oxford: University of Oxford; 2007.

	40.	 Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype 
imputation method for the next generation of genome-wide association 
studies. PLoS Genet. 2009;5:e1000529.

	41.	 Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang 
HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR. A 
global reference for human genetic variation. Nature. 2015;526:68–74.

	42.	 Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. 
Bioinformatics. 2002;18:1427–31.

	43.	 Aranyi T, Varadi A, Simon I, Tusnady GE. The BiSearch web server. BMC 
Bioinform. 2006;7:431.

	44.	 Tusnady GE, Simon I, Varadi A, Aranyi T. BiSearch: primer-design and 
search tool for PCR on bisulfite-treated genomes. Nucleic Acids Res. 
2005;33:e9.

	45.	 Beygo J, Ammerpohl O, Gritzan D, Heitmann M, Rademacher K, Richter 
J, Caliebe A, Siebert R, Horsthemke B, Buiting K. Deep bisulfite sequenc‑
ing of aberrantly methylated loci in a patient with multiple methylation 
defects. PLoS ONE. 2013;8:e76953.

	46.	 Rahmann S, Beygo J, Kanber D, Martin M, Horsthemke B, Buiting K. 
Amplikyzer: automated methylation analysis of amplicons from bisulfite 
flowgram sequencing. PeerJ PrePrints. 2013;1:e122v2.

	47.	 Ramirez F, Dundar F, Diehl S, Gruning BA, Manke T. deepTools: a flex‑
ible platform for exploring deep-sequencing data. Nucleic Acids Res. 
2014;42:W187–91.

	48.	 McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, 
Bejerano G. GREAT improves functional interpretation of cis-regulatory 
regions. Nat Biotechnol. 2010;28:495–501.

	49.	 Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-
seq quantification. Nat Biotechnol. 2016;34:525–7.

	50.	 Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter 
I, Chekmenev D, Krull M, Hornischer K, et al. TRANSFAC and its module 



Page 18 of 18Schröder et al. Epigenetics & Chromatin  (2017) 10:37 

TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic 
Acids Res. 2006;34:D108–10.

	51.	 Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: 
accurate alignment of transcriptomes in the presence of insertions, dele‑
tions and gene fusions. Genome Biol. 2013;14:R36.

	52.	 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat 
Methods. 2012;9:357–9.

	53.	 Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. 
StringTie enables improved reconstruction of a transcriptome from RNA-
seq reads. Nat Biotechnol. 2015;33:290–5.

	54.	 Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expres‑
sion analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. 
Nat Protoc. 2016;11:1650–67.

	55.	 Volders PJ, Helsens K, Wang X, Menten B, Martens L, Gevaert K, 
Vandesompele J, Mestdagh P. LNCipedia: a database for annotated 
human lncRNA transcript sequences and structures. Nucleic Acids Res. 
2013;41:D246–51.

	56.	 Volders PJ, Verheggen K, Menschaert G, Vandepoele K, Martens L, 
Vandesompele J, Mestdagh P. An update on LNCipedia: a database for 
annotated human lncRNA sequences. Nucleic Acids Res. 2015;43:4363–4.

	57.	 Bujold D, Morais DA, Gauthier C, Cote C, Caron M, Kwan T, Chen KC, 
Laperle J, Markovits AN, Pastinen T, et al. The international human epig‑
enome consortium data portal. Cell Syst. 2016;3(496–499):e492.


	Regions of common inter-individual DNA methylation differences in human monocytes: genetic basis and potential function
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Identification of differentially methylated regions (DMRs)
	Genomic environment of the DMRs
	Chromatin states of the DMRs
	Location of the DMRs and putative target genes
	Correlation of DMR methylation levels with nearby SNPs
	Validation of selected DMRs
	Genome-wide association studies (GWAS)
	Analysis of transcription factor-binding sites in and around the DMRs

	Discussion
	Conclusions
	Methods
	Monocytes isolation
	DNA extraction from monocytes and tissues
	Whole genome bisulfite sequencing and analysis
	Detecting DMRs
	Calculation of the DMR detection rate
	SNP genotyping
	DMR SNP correlation score calculation
	GWAS analysis
	DMR validation by targeted deep bisulfite sequencing
	Histone modification ChIPseq heatmaps
	Chromatin segmentation by chromatin states
	GREAT analysis
	Distribution of gene expression levels
	Identification of transcription factor-binding motifs
	Differential transcript expression
	Long non-coding RNAs
	Data retrieval

	Authors’ contributions
	References




