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Abstract 

Background:  Genome organization into subchromosomal topologically associating domains (TADs) is linked to 
cell-type-specific gene expression programs. However, dynamic properties of such domains remain elusive, and it is 
unclear how domain plasticity modulates genomic accessibility for soluble factors.

Results:  Here, we combine and compare a high-resolution topology analysis of interacting chromatin loci with fluo-
rescence correlation spectroscopy measurements of domain dynamics in single living cells. We identify topologically 
and dynamically independent chromatin domains of ~1 Mb in size that are best described by a loop-cluster polymer 
model. Hydrodynamic relaxation times and gyration radii of domains are larger for open (161 ± 15 ms, 297 ± 9 nm) 
than for dense chromatin (88 ± 7 ms, 243 ± 6 nm) and increase globally upon chromatin hyperacetylation or ATP 
depletion.

Conclusions:  Based on the domain structure and dynamics measurements, we propose a loop-cluster model for 
chromatin domains. It suggests that the regulation of chromatin accessibility for soluble factors displays a significantly 
stronger dependence on factor concentration than search processes within a static network.

Keywords:  Chromatin structure, Polymer model, Chromatin conformation capture carbon copy (5C), Targeted 
chromatin capture (T2C), Fluorescence correlation spectroscopy (FCS), Quantitative microscopy
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Background
The three-dimensional organization of chromosomes of 
eukaryotic interphase cells is emerging as an important 
parameter for the regulation of genomic function [1–4]. 
Beyond the mere storage of genetic information, the spa-
tial structure fosters its compaction, replication and tran-
scription on all scales ranging from the single base pair 
(bp) to  ~100 Mbp of a whole chromosome. Chromatin 
interaction maps obtained by the chromatin conforma-
tion capture (3C) assay [5, 6] and derived methods like 
5C, Hi-C [7] or T2C [8] provide detailed genome-wide 
information on the three-dimensional organization of 
the mammalian genome for cell ensembles [9–12] or 
even single cells [13]. These analyses suggest that the 

genome is organized into distinct topologically asso-
ciating domains (TADs) [3, 11, 14]. They partition the 
genome into repressive and active chromatin regions, 
also referred to as subchromosomal domains [15, 16] and 
as concluded from a number of microscopy studies on 
the topology of active gene clusters [17–19] or the tim-
ing differences between early- and late-replicating DNA 
loci [20]. Notably, the spatial segregation of the genome 
into chromatin regions with different gene expression 
status is not simply the result of transcriptional activity. 
Rather, spatial chromatin organization actively partici-
pates in shaping cellular functions [4, 21–24]. Yet, details 
of the folding of the nucleosome chain into subchromo-
somal domains or TADs and entire chromosomes remain 
largely elusive. For the chromatin fiber, a variety of mod-
els covering a broad range from unordered and less com-
pact to regular and more compacted states have been 
suggested [25–27], and likewise, for the higher-order 
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folding of the fiber there is experimental evidence for 
both more ordered loop- or rosette-like [12, 28–31] and 
less ordered, e.g., fractal globule-like topologies [10].

Despite the impressive advancements in the field, 
details on the organization and dynamic properties of 
chromatin in single living cells are elusive. However, the 
plasticity of chromatin organization is a central determi-
nant of genome function as it modulates access of fac-
tors to the genome and targets them to biologically active 
subcompartments [32]. In addition to large-scale chro-
mosomal movements [33], local chromatin dynamics are 
mostly studied by tracking of few genomic loci and chro-
matin-associated or chromatin-embedded molecules and 
particles as reviewed previously [34–37]. The resulting 
translocation data can be quantified as mean-squared 
displacement (MSD) versus time curves to extract appar-
ent velocities or diffusion coefficients. These studies 
revealed spatially confined movements of tagged chroma-
tin loci as intuitively evident for a segment of a polymer 
without center-of-mass translocation [38–40]. How-
ever, extending this approach to a systematic analysis of 
endogenous chromatin loci faces a number of limitations. 
Imaging-based techniques typically require the labeling 
of specific genomic regions using repetitive, e.g., lacO 
operator arrays integrated into the genome at random 
or defined positions [41]. These arrays are big compared 
to the dimensions of the structures under investigation 
and potentially alter their architecture. Furthermore, this 
approach is limited in its time resolution to the image 
acquisition time, which is typically in the range of 50 ms 
or higher. At the molecular level, methods like fluores-
cence recovery after photobleaching (FRAP), continu-
ous photobleaching (CP) and fluorescence correlation 
spectroscopy (FCS) provide information on the binding 
of proteins to chromatin and on their mobility within the 
chromosomal environment on the microsecond to min-
ute time scale [42, 43]. However, with these methods no 
information on the dynamics of nucleosome chains and 
higher-order domains has yet been obtained. While bio-
physical polymer models have been widely used to quan-
titatively describe and directly or inversely compare 3D 
chromatin structure to experimental data as reviewed 
recently [44, 45], they mostly do not include dynamics. 
Thus, our current knowledge is lacking both experimen-
tal information and theoretical treatment of the confor-
mational dynamics of chromatin in vivo that is important 
for the understanding of the differential readout of DNA 
sequence information or interactions between different 
genomic loci.

In a number of studies, intramolecular dynamics 
have been investigated by FCS [46, 47]. By uncoupling 
the center-of-mass diffusion from higher-order relaxa-
tion modes via trapping or tracking [48, 49], a series 

representation of relaxation modes was obtained to 
describe the internal dynamics of double-stranded DNA 
in vitro [49–51]. In this manner, the MSD of polymer seg-
ments can be described as confined diffusion relative to 
the center of mass. When taking into account hydrody-
namic interactions, molecules like long DNA chains with 
a sufficiently large ratio of contour to persistence length, 
i.e., ‘soft’ polymers, show Zimm relaxation behavior [52].

Here, we combine for the first time the topological 
interpretation of 3C-derived data from large ensembles 
of fixed cells with the measurement of mesoscale chro-
matin dynamics in individual living cells. We confirm 
the formation of loop clusters in TADs from contact 
probability maps (5C, T2C) from other studies ([11, 53], 
NCBI GEO accession GSE35721) pointing to rosettes 
as a prominent structural feature of such topologically 
independent domains. By applying FCS, we measured 
chromatin dynamics extracted from fluorescence inten-
sity fluctuations by exploiting the linker histone variant 
H1.0 tagged with EGFP (H1-EGFP) as a proxy for chro-
matin movement. H1 is particularly suited for this pur-
pose since it decorates chromatin globally and reflects 
its density but binds only transiently [54, 55] such that 
photobleached molecules are constantly replaced by 
fluorescent ones. We found distinct chromatin relaxa-
tion times, hallmarking the presence of dynamically and 
topologically independent chromatin units with an aver-
age genomic content of ~1  Mb. Treatment of cells with 
trichostatin A (TSA) and azide-induced ATP depletion 
resulted in decelerated relaxations, revealing chroma-
tin decondensation and compaction, respectively, hence 
delivering insight into factors that change chromatin 
dynamics. Based on the experimental data, an analyti-
cal polymer model was developed. It correctly describes 
both the contact probability maps from 3C-based ensem-
ble analysis and the internal dynamics of chromatin 
domains observed by FCS. We hypothesize that these 
domains might be TADs. From the dynamic properties 
measured, we infer that the different time scales of struc-
tural reorganization and particle dynamics provide an 
additional regulatory layer for targeting soluble nuclear 
factors to chromatin subcompartments.

Results
A loop‑cluster substructure domain model shows good 
agreement with experimental 5C and T2C data
To gain insight into the topological organization of 
chromatin, we applied a simple domain and peak detec-
tion approach to 5C data of a 4.5-Mb region containing 
the Xist gene crucial for X inactivation in female mouse 
embryonic stem cells [11] and T2C data of a 2.2-Mb 
region of the IGF/H19 locus in human HB2 cells [8]. Fig-
ure  1a shows the analysis of the experimental 5C data 
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set for which we confirmed the existence of TAD-like 
domains such as the highlighted ~1.1-Mb region that 
emerged as square-shaped regions of increased internal 
contact probability as expected [7, 11, 14, 56]. A one-
dimensional projection over the whole domain region 
yielded primary peaks corresponding to genomic sites 
involved in loop formation (Additional file  1: Fig. S1). 
Orthogonal local projections around each so-determined 
peak revealed all partner sites with which it interacts to 
form loops. We obtained 17 primary peaks within this 
domain (Additional file  1: Fig. S2). Most of them also 
emerged in the local projections, strongly indicating 
that this domain consisted to a significant extent of an 

branched loops [29, 30, 58, 59] under theta-solvent con-
ditions. Fourth, the same topology was used, but under 
so-called good-solvent conditions where the excluded 
volume interaction between segments dominates and the 
structure appears swollen as compared to theta-solvent 
conditions. The physical contour length L of the chro-
matin fiber contained in the domain is directly related 
to DNA content and density, and the persistence length 
lp is a measure for the fiber flexibility. Together with the 
number of contained loops f, these parameters determine 
the radius of gyration Rg, which characterizes the volume 
effectively occupied by the domain—Additional file 1: Eq. 
S14, S20, S22, S24—according to Eq. 1:

intricately tied loop cluster such as a rosette. We followed 
the same procedure for an experimental T2C data set 
from Knoch et al. [53] (Fig. 1b). Again, we found domains 
such as the highlighted ~0.95-Mb region and 15 primary 
peaks within this domain (Additional file 1: Fig. S3), most 
of which also emerged in the local projections, again 
indicating a rosette-like loop-cluster organization of the 
domain.

Domain configurations are well described with a 
quantitative polymer model
While these examples support the notion of loop-induced 
domain formation, also less ordered crumpled, globular 
or ordinary domain structures were suggested previously 
[10, 12, 44]. Accordingly, we derived a quantitative poly-
mer model that describes 4 different domain topologies 
to comprehensively cover the previously proposed fea-
tures of chromatin domain organization (Fig.  1c; Addi-
tional file  1: Fig. S4): Scaling laws from polymer theory 
[57] suggest that chromatin adopts the shape of a chain 
of topologically and dynamically independent domains 
under the semi-dilute conditions met in mammalian 
interphase nuclei (see Additional file  1: Supplementary 
Text for more details). Thus, we first assumed the for-
mation of such blobs, i.e., globular subchains of the full 
chromosome that are significantly shorter and behave like 
independent, almost self-penetrating molecules (so-called 
theta-solvent conditions where repulsive and attractive 
segment–segment interactions compensate each other), 
connected with a linker. Second, the formation of space-
filling fractal or crumpled globules [10, 44] was evaluated. 
Third, we assumed the formation of single or rosette-like 
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An estimation of stochastic contact probabilities—
Additional file  1: Eq. S25—directly allowed to compute 
5C-/T2C-like contact probability maps. Figure  1d, e 
shows such maps for both the theta-solvent loop-cluster 
and the globular conformation (Additional file  1: Sup-
plementary Text), i.e., for a 5-Mb stretch comprising 4 
rosette-like loop clusters and 4 globular domains, respec-
tively, linked with a relaxed chromatin stretch. Here too, 
domains emerged as square-shaped regions of increased 
internal contact probability. The highlighted rosette 
domain in Fig.  1d was computed assuming 10 loops 
(three with positional noise). Applying the same analysis 
as above allowed us to quantitatively retrieve the topolog-
ical details used for the simulation: Some ties were found 
in both projection directions, others, especially those 
with positional noise, less reliably in only one direction. 
Using the topology retrieved, we performed Monte Carlo 
(MC) simulations of the domain (with one example visu-
alized, Fig. 1d) to yield its radius of gyration of ~240 nm. 
The globular domain model yielded a smaller radius of 
gyration of 210 nm but was incompatible with the exper-
imental data since no peaks were detected (Fig.  1e). To 
further validate the analysis and simulation pipeline, we 
used the topology obtained from the experimental 5C 
and T2C data to re-calculate the experimental contact 
probability maps, which were in good agreement with the 
initial ones (Additional file 1: Figs. 5, 6). From MC simu-
lations, we found a radius of gyration of ~240 nm for the 
domain highlighted in the 5C data set and of ~220 nm in 
the T2C data set (Fig. 1a, b). In summary, a much better 
agreement with the experimental data was found for the 
loop-cluster model than for the globular domain model.
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Chromatin fiber dynamics can be evaluated with FCS 
of transiently bound linker histone
5C and T2C analyses yield structural information from 
large ensembles of fixed cells. However, the dynamic 
properties of the observed domains remain elusive. 
Therefore, we measured chromatin dynamics with FCS 
using the approach depicted in Fig.  2. The dynamics of 
linker histone H1-EGFP were determined in the cyto-
plasm, in less chromatin-dense areas in the nucleus 
referred to as ‘euchromatin’ and in denser chromatin 
regions in the nuclear and in the nucleolar periphery 
referred to as ‘heterochromatin’ in the following [60] 
(Fig. 2a; Additional file 1: Supplementary Text, Fig. S7 for 
details on classification). In the cytoplasm, we obtained 
a fast decay with a characteristic diffusion coefficient of 
D ≈ 20 µm2 s−1 that we assigned to free diffusion of H1.0 
(Fig.  2b). Inside the nucleus, the autocorrelation func-
tions (ACFs) decayed bimodally. The first component 
decayed within 1 ms owing to a freely diffusive fraction. 
The second, slower decaying contribution was about two 
magnitudes slower between ~90 and ~160 ms depending 
on the previously defined nuclear subcompartments used 
for the measurement. We assigned these slower decays 
to chromatin-associated movements (Fig.  2c): Distinct 
relaxation times of chromatin measured by FCS clearly 
indicated the existence of topologically and dynami-
cally independent chromatin units of a certain scale. The 
detailed analysis of H1.0 chromatin interactions with 
FRAP and FCS experiments as well as FCS measure-
ments of H2A and H2B core histones (see below) further 
corroborated this. Processes that occur at times above 
1  s like photobleaching or cellular movements were not 
detected in FCS due to the short effective measurement 
time (Additional file  1: Supplementary Text, Fig. S8). 
Thus, combining FCS measurements with hydrodynamic 
polymer models should enable us to extract the size of 
these domains as well as their topologies and physical 
properties (Fig. 1c).

Both transient chromatin‑binding modes of H1.0 are 
slower than fluctuations seen by FCS
To further rule out that the relaxations in FCS were 
association–dissociation events, we precisely quantified 

transient chromatin binding of H1.0 labeled with EGFP 
with fluorescence recovery after photobleaching (FRAP) 
experiments. We bleached a strip through the cell nucleus 
(Fig. 3a) in non-, TSA- and azide-treated cells. The mobil-
ity of H1-EGFP was analyzed by fitting the bleach profile 
(Fig. 3b; Additional file 1: Fig. S11) with Additional file 1: 
Eq. S91 to follow its broadening as given by its width σ. 
From linear regressions of σ2 plotted versus time, appar-
ent diffusion coefficients of Dapp = (10 ± 5)·10−3 µm2 s−1, 
(12 ±  4)·10−3  µm2  s−1 and (10 ±  3)·10−3  µm2  s−1 were 
derived (non-, TSA- and azide-treated; Fig.  3c). These 
values were at least two orders of magnitude smaller 
than those for free H1-EGFP (D ≈  20  µm2  s−1) and at 
least one order of magnitude larger than the apparent 
diffusion coefficient of chromatin loci obtained by track-
ing [35]. Thus, the apparent diffusion process represents 
coupled diffusion and binding as reported previously 
[61]. Inspecting the integrated fluorescence intensity in 
the bleached region over time revealed that the expected 
intensity change calculated for diffusive redistribution 
using these Dapp values differed significantly from the 
experimentally observed behavior (Fig.  3d; Additional 
file 1: Fig. S12). Therefore, at least two different binding 
states must be present, with Dapp comprising the kinetics 
of the faster one. Accordingly, the intensity change was 
fitted with the uncoupled diffusion and binding model 
given in Additional file 1: Eq. S92. It includes fast free dif-
fusion for which recovery is already complete at the first 
postbleach time point. The second term covers fast bind-
ing and diffusion, while slow dissociation was taken into 
account separately [62, 63]. This yielded free diffusive 
fractions of 6 ± 3, 11 ± 4 and 18 ± 12 % and slow disso-
ciation rates of (8.8 ± 2.6)·10−3 s−1, (13.7 ± 6.3)·10−3 s−1 
and (12.2  ±  2.3)·10−3  s−1 for non-, TSA-, and azide-
treated cells, respectively.

As an independent confirmation of the above results 
and to extract also the faster dissociation rate, we 
conducted a continuous photobleaching (CP) analy-
sis (Fig.  3e). The much higher spatial resolution of CP 
allowed to address local differences in H1-EGFP mobil-
ity. Fitting CP curves with Additional file  1: Eq. S93 
confirmed the existence of two chromatin-binding 
states. The analysis yielded fast dissociation rates of 

(See figure on previous page.) 
Fig. 1  5C and T2C analysis and polymer modeling. a Genomic contact probability matrix for experimental 5C data [11]. The black square highlights 
a domain that is further studied. The dashed profile shows how the non-redundant triangular representation was extracted. We could identify loop 
bases (circles) with higher (black) or smaller (gray) significance. The 1D plot represents the global projection of the highlighted domain. Arrows 
indicate identified loop bases. The extracted loops allowed to simulate and visualize an exemplary configuration and to compute the Rg. b Same as 
a, but for experimental T2C data [53]. c The different chromatin domain conformations probed in this study to model the FCS data: blob, globule, 
loop and loop cluster. The radius of gyration Rg(gray circle) of domains depends on physical parameters, solvent conditions and the topology of the 
underlying chromatin fiber. It determines the characteristic time constants of internal relaxation kinetics observed in this study. d Same as a, but for a 
model configuration of the loop-cluster conformation under theta-solvent conditions (see Additional file 1: Supplementary Text). e Same as a, but for 
a model configuration of the globular conformation
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1.05 ± 0.13 s−1 in heterochromatin and 0.76 ± 0.21 s−1 
in euchromatin of non-treated cells and fractions of 
18 ± 2 and 31 ± 9 %, respectively, of the molecules in this 

association state. Point FRAP (Fig.  3f ) confirmed these 
results by performing series of experiments acquired at 
single spots in euchromatin with different lengths of the 
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bleach segment [43]. The resulting dissociation rates 
of (8.2 ±  3.5)·10−3  s−1 and 0.83 ±  0.20  s−1 for the two 
binding states were in good agreement with the above 
findings.

Using this and the previously reported presence of 
two DNA binding domains in H1 [64], we suggest the 
following model (Fig. 3g): One binding domain of H1.0 
interacts with the entry–exit site of DNA at the nucleo-
some and either dissociates quickly or engages the sec-
ond domain to form a longer-lived binding state, from 
which it dissociates again later. Deriving the rate equa-
tions for the different binding states allowed us to calcu-
late the remaining parameters in differently treated cells 
[65] and in euchromatin and heterochromatin (Addi-
tional file  1: Eq. S95; Table  1): The residence time of 
H1.0 in the short-lived binding state was ~1 s, whereas 
the average residence time on chromatin was ~4  s. 
Thus, the fluctuations observed with FCS with relaxa-
tion times of ~100 ms did not result from association/
dissociation events but rather from chromatin dynam-
ics. Despite our purely intensity-based distinction of 
euchromatin and heterochromatin, we found a higher 

effective affinity of H1.0 to heterochromatin as expected 
[66].

FCS measurements of core histones H2A and H2B confirm 
chromatin fluctuations with ~100 ms relaxation times
To confirm that the ~100  ms relaxation times indeed 
represent chain dynamics and not unbinding events or 
photophysical effects of the fluorescent protein domains, 
we repeated the measurements in HeLa cells stably 
expressing histone H2B–mCherry fusions and transiently 
expressing H2A–EGFP fusions at a ratio of ~5  % to the 
corresponding endogenous protein [60]. As expected, 
both the spatial chromatin distribution and the relaxation 
times were virtually the same for both histones (Fig. 4a). 
The measured values for nuclear relaxation times were 
in excellent agreement with H1.0 measurements, which 
are elucidated in detail in the following section. Fitting 
the ACFs with model functions for chromatin relaxa-
tion based on the comprehensive set of 4 polymer mod-
els (Eq. 3) allowed us to quantify the differences between 
the intranuclear positions studied: In heterochroma-
tin, we obtained 83±7 and 94±6  ms for H2A–EGFP 

Table 1  Properties of histone H1.0 binding to chromatin obtained with FRAP and CP

(mean value ± standard deviation)

ffree—free fraction, fshort—shortly bound fraction, flong—long-bound fraction, kon—association rate, koff—dissociation rate, kswitch—switching rate, TSA—Trichostatin A, 
ATP—adenosine triphosphate

ffree [%] fshort [%] flong [%] kon (s−1) koff,1 (s−1) kswitch [10−3s−1] koff,2 [10−3s−1]

Untreated

 Heterochromatin 6 ± 3 18 ± 2 76 ± 4 3.3 ± 1.7 1.05 ± 0.13 33 ± 12 8 ± 3

 Euchromatin 6 ± 3 31 ± 9 63 ± 9 4.0 ± 2.5 0.76 ± 0.21 16 ± 8 8 ± 3

TSA-treated 11 ± 4 89 ± 4 2.1 ± 1.2 0.89 ± 0.22 31 ± 11 12 ± 4

ATP-depleted 18 ± 12 82 ± 12 1.3 ± 1.0 0.89 ± 0.22 27 ± 13 12 ± 2

(See figure on previous page.) 
Fig. 3  Photobleaching analysis of H1.0-chromatin binding. a Imaging FRAP experiment of H1-EGFP expressed in an MCF7 cell. Strip B (red) is 
bleached into the nucleus. The redistribution is followed over time and analyzed in different ways. b Averaging along the direction of the long strip 
dimension A (blue in a), plotting the profile perpendicularly in direction P and normalizing to the prebleach distribution (Additional file 1: Fig. S11) 
provided time-dependent profiles. They were fitted with Additional file 1: Eq. S91 to yield the MSD over time. c From a linear fit, apparent diffusion 
coefficients around 10−3 µm2 s−1 were extracted. d However, the apparent diffusion model, already comprising a fast reaction–diffusion scheme, did 
not explain exhaustively the intensity time trace obtained by averaging over the bleach region B in a. It required additional fast diffusive, transiently 
binding and immobilized fractions of the molecules for comprehensive modeling of the recovery data. However, a closed expression for a full reac-
tion–diffusion scheme with two immobilization states cannot be derived. e We used continuous fluorescence photobleaching (CP), for which a 
closed expression with two bound states existed and which also allowed to address more specifically the localization types used in this study. This 
yielded a short-lived (residence time ~1 s) and a long-lived (~2 min) type of immobilization, whose fractions and detailed properties depended on 
localization and treatment of the cells with ATP or azide. f Globally fitting point FRAP experiments featuring bleach times series confirmed the CP and 
imaging FRAP results. g Resulting model of H1.0 binding: molecules bind to the DNA entry–exit sites of nucleosomes with rate kon. Either they rapidly 
dissociate again with rate koff,1, or they engage with rate kswitch to the longer-lived conformation, from which they dissociate eventually with rate koff,2
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Fig. 4  FCS analysis of chromatin dynamics. a HeLa cell expressing H2A–EGFP (transient) and H2B–mCherry (stable). The correlation plots show 
H2A–EGFP ACFs (green), H2B–mCherry ACFs (red) and their CCF (black) acquired in the nucleus (euchromatin—3) and in the cytoplasm (4), reveal-
ing significant cross-correlation in the nucleus, but not in the cytoplasm. Fitting them with a relaxation model for loop-rosette-structured polymers 
under theta-solvent conditions yielded a significant difference in relaxation time distribution between hetero-(1/2) and euchromatin (3) both for 
H2A (ch1) and H2B (ch2). b Untreated MCF7 cell expressing H1-EGFP. At the three positions (nuclear periphery—1, blue; nucleolar periphery—2, 
purple; euchromatin—3, orange), the corresponding ACFs were acquired. Fitting them like in a (res—residuals) yielded a significant difference in 
relaxation time distribution between hetero- (1, 2) and euchromatin (3). c Same as b, but cells were treated with TSA, resulting in globally increased 
relaxation times without significant differences between 1, 2 and 3. d Same as b, but cells were ATP-depleted, resulting in globally increased relaxa-
tion times without significant differences between 1, 2 and 3
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and H2B–mCherry, respectively, as first-order mode 
relaxation time under theta-solvent conditions (see 
next section for details and Table 2 for good-solvent and 
globular conditions). Corresponding values in euchro-
matin were approximately twofold slower with 165±11 
and 174±10 ms, respectively, in contrast to the expecta-
tion that in lower density regions, relaxations would be 
faster. Importantly, the fluctuations showed a pronounced 
cross-correlation due to the co-diffusion of H2A and H2B 
simultaneously integrated into nucleosomes and chro-
matin. In contrast, there was no cross-correlation in the 
cytoplasm as expected. These observations corroborate 
our conclusion that chromatin dynamics are the source of 
the observed fluctuations. It can be ruled out that they are 
due to blinking of fluorescent protein domains because 
this would not result in a cross-correlated signal. Further-
more, the cross-correlation cannot result from spectral 

cross-talk because this would yield high cross-correlation 
in the cytoplasm, too. 

Polymer relaxation modes seen by autocorrelation analysis 
reflect persistence length, mass density and topology 
of chromatin domains
To decompose the autocorrelation analysis into param-
eters that describe features of polymer domains, the 
Rouse–Zimm model was applied for a quantitative 
characterization of domain dynamics [52]. Independent 
relaxation modes represent distinct characteristic times 
τp and amplitudes ap = �X

2
p� that are observable in the 

FCS experiments. These parameters depend on topology, 
solvent conditions, viscosity ηs, temperature T, Boltz-
mann constant kB and radius of gyration Rg (see Addi-
tional file 1: Supplementary Text for more details):

Table 2  Dynamic and  structural parameters of  histone-FP-labeled chromatin domains obtained with  FCS at  different 
nuclear localizations

(mean value ± standard error; min. value–max. value)

τ1—decay time of the first polymer relaxation mode, Rg—radius of gyration of topologically and dynamically independent chromatin domain, gc—genomic content 
of topologically and dynamically independent chromatin domain
a  Relaxation times and radii of gyration are numerically identical for loop-rosette conformation under theta-solvent conditions and for blob conformation
b  Relaxation times are numerically identical for loop-rosette conformation under good-solvent conditions and for globular conformation

n Loop-rosette, blob; theta-solvent 
conditionsa

Loop-rosette; good-solvent condi‑
tionsb

Globularb

τ1 (ms) Rg (nm) gc (Mb) τ1 (ms) Rg (nm) gc (Mb) Rg (nm) gc (Mb)

H1-EGFP
untreated

Perinuclear 35 91 ± 6 245 ± 5 0.80–1.12 100 ± 6 289 ± 6 1.31–1.83 240 ± 5 0.75–1.05

Perinucleolar 34 78 ± 6 234 ± 6 0.70–0.98 94 ± 5 283 ± 5 1.23–1.73 235 ± 4 0.71–0.99

Euchromatin 62 161 ± 15 297 ± 9 0.83–1.16 191 ± 20 359 ± 12 1.47–2.05 298 ± 10 0.84–1.17

H2A-EGFP
untreated

Perinucle(ol)ar 84 83 ± 7 238 ± 4 0.73–1.03 90 ± 8 279 ± 4 1.18–1.65 232 ± 4 0.68–0.95

Euchromatin 84 165 ± 11 299 ± 9 0.85–1.19 188 ± 14 356 ± 13 1.43–2.00 297 ± 11 0.83–1.16

H2B-mCherry
untreated

Perinucle(ol)ar 84 94 ± 6 249 ± 4 0.84–1.18 102 ± 7 291 ± 4 1.34–1.88 242 ± 3 0.77–1.08

Euchromatin 84 174 ± 10 304 ± 9 0.89–1.25 195 ± 12 361 ± 12 1.49–2.09 300 ± 10 0.86–1.12

H1-EGFP
TSA-treated

Perinucle(ol)ar 25 292 ± 34 362 ± 14 1.65–2.31 366 ± 49 445 ± 20 3.07–4.30 370 ± 17 1.77–2.47

Nucleoplasm 18 307 ± 37 368 ± 15 1.74–2.43 384 ± 51 453 ± 20 3.24–4.54 377 ± 17 1.87–2.61

H1-EGFP
ATP-depleted

Perinucle(ol)ar 17 303 ± 51 367 ± 21 1.72–2.41 388 ± 74 454 ± 29 3.26–4.57 378 ± 24 1.88–2.64

Nucleoplasm 25 278 ± 43 356 ± 18 1.57–2.20 351 ± 59 439 ± 25 2.95–4.13 365 ± 21 1.69–2.37

(2)

τ1 ≈ 6.111
ηsR

3
g

kBT
, τp =

τ1

p3/ 2
, ap ≈ 0.152

R2
g

p2
,

loop-rosette conformation,

theta-solvent conditions,

τ1 ≈ 4.114
ηsR

3
g

kBT
, τp =

τ1

p17/ 20
, ap ≈ 0.172

R2
g

p9/ 4
,
loop-rosette conformation,

good-solvent conditions,

τ1 ≈ 7.151
ηsR

3
g

kBT
, τp =

τ1

p
, ap ≈ 0.236

R2
g

p5/ 3
, globular conformation,

τ1 ≈ 5.849
ηsR

3
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p3/ 2
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R2
g

p2
,

blob/linear conformation;

mode number p = 1, 2, 3, . . .
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These relaxations result in local concentration fluctu-
ations of segments even when the center-of-mass trans-
location is negligible. An obvious way to study such 
fluctuations is their evaluation by autocorrelation anal-
ysis as conducted for FCS measurements. Relaxation 
modes are independent of each other and have expo-
nentially decaying position correlation functions [52]. 
Thus, each mode is represented by a diffusion process 
in a harmonic potential, which is an Ornstein–Uhlen-
beck process, the simplest example of a stationary 
Markovian process with Gaussian probability distribu-
tion at all times [67]. To this theoretical framework, the 
FCS formalism was applied [68, 69] (Additional file  1: 
Supplementary Text), yielding the autocorrelation 
function

Here, υ = τD
/

τp is the ratio of diffusion correlation and 
relaxation time and κ = z0

/

w0 the structure param-
eter (Methods). Polymer relaxation was thus modeled 
by summing over p = 1, 2, 3, . . . of Eq. 3. The relaxation 
time τ1 from a fit of the model function to experimen-
tal data yielded the radii of gyration according to Eq. 2 
with the nuclear solvent viscosity determined inde-
pendently (Additional file  1: Supplementary Text). For 
known genomic content, a well-defined relationship 
between chromatin persistence length, mass density 
and domain topology such as the number of loops in a 
cluster/rosette can be established. Thus, the formalism 
links structural domain parameters from 3C-derived 
methods with dynamic features measured by FCS.

FCS measurements of chromatin dynamics reveal different 
states of domain organization in hetero‑ and euchromatin
Fitting the ACFs with the polymer models (Eq.  1–3) 
allowed us to quantitatively determine chromatin 
relaxations times and other polymer parameters at dif-
ferent intranuclear positions and conditions (Fig.  4b; 
Table  2): In heterochromatin, e.g., at the nuclear or the 
nucleolar periphery, we obtained 90 ± 6 and 78 ± 6 ms, 
respectively, as first-order mode relaxation time under 
theta-solvent conditions. In the rest of the nucleus, in 
euchromatin, we measured 161 ±  15  ms, i.e., approxi-
mately twofold bigger values. Independent of the actual 
topological conformation, this can only be explained 
with a weaker local confinement of euchromatin due 
to a lesser degree of domain compaction because a 

(3)

G(τ ) ∝ ap





�

1+
1− exp

�

−τ
�

τp
�

υ

�

−1

�
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�
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�
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�

κ2υ

�

−1/ 2

−

�
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1
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purely chromatin density-driven relaxation would be 
faster in euchromatin compared to heterochromatin. In 
other words, comparing the relaxation with the oscilla-
tion of a bead on a string, the oscillation time is longer 
for a weaker string. Thus, the more open and less com-
pact euchromatin can be compared to a weaker, more 
open string and the more compact heterochromatin to a 
stronger, more compact one.

After treatment of the cells with TSA, chromatin 
became hyperacetylated and adopted a decondensed 
state of the chromatin fiber [70, 71]. This process resulted 
in a homogeneous nuclear morphology and chromatin 
density distribution (Fig. 4c). The differences in chroma-
tin relaxation at different nuclear loci vanished. The relax-
ations slowed down to time constants of 292 ± 34 ms at 
peripheral and 307 ± 37 ms at central nuclear positions 
(under theta-solvent conditions; Fig.  4c; see Table  2 for 
a summary of the different conformations). These values 
were even higher than those measured for euchromatin 
of untreated cells and indicated a further reduction in 
local confinement and an increased genomic content of 
domains.

The dynamics changed numerically similarly upon ATP 
depletion after treatment of the cells with azide. Here, 
however, the chromatin distribution became more aggre-
gated with a less homogeneous morphology (Fig.  4d). 
The differences in chromatin relaxation vanished and the 
relaxations slowed down, resulting in time constants of 
303 ±  51  ms in peripheral and 278 ±  43  ms in central 
positions (theta-solvent conditions, Fig.  4d; see Table  2 
for a summary of the different conformations). This and 
the structural differences as seen in the images argue for 
increased sizes of domains due to agglutination effects. 
Interestingly, fundamentally different processes—decon-
densation and aggregation—result in the same effect of 
effective growth of independent domains. However, in 
the former case, the domains are distributed more and 
in the latter case less homogeneously than in untreated 
cells.

FCS measurements of chromatin dynamics identify 
1‑Mb‑sized dynamic domains
From the observed relaxation times, the radii of gyra-
tion of dynamic domains could be extracted according to 
Eq. 2 for loop-cluster topologies under theta-solvent con-
ditions, for the same under good-solvent conditions, for 
globular conformations and for blobs. For untreated cells, 
this resulted for heterochromatin in 240 ± 6 nm and for 
euchromatin in 297  ±  9  nm (theta-solvent conditions, 
Fig. 5a; see Table 2 for a summary of the different confor-
mations). Next, from fluorescence images we extracted 
chromatin densities in euchromatin of 91 ±  1 % and in 
heterochromatin of 156 ± 5 % of the mean nucleosome 



Page 12 of 20Wachsmuth et al. Epigenetics & Chromatin  (2016) 9:57 

concentration of 100–140  µM [60, 72, 73] (Additional 
file 1: Supplementary Text, Fig. S7). In combination with 
a nucleosomal repeat length of 191 bp [72, 74], this ena-
bled us to transform the domain volume determined 
from the radius of gyration into genomic content (Addi-
tional file  1: Eq. S10): We obtained 700–1120 and 830–
1160  kb for hetero- and euchromatin, respectively, for 
blobs and loop clusters under theta-solvent conditions, 
1230–1830 and 1470–2050  kb for loop clusters under 
good-solvent conditions, and 710–1050 and 840–1170 kb 
for globules.

For the good-solvent loop-cluster topology, the 
genomic content of domains was significantly larger 
than the previously observed 500–1000 kb for subchro-
mosomal domains/TADs [11, 14], i.e., the assumption 
of good-solvent conditions would lead to a pronounced 
overestimation of domain size. Accordingly, the 

loop-cluster conformation under theta-solvent con-
ditions was considered for further analysis. For this 
description, only minor excluded volume effects are 
present and thus a high structural flexibility on the level 
of the chain of nucleosomes. The blob and the globular 
polymer conformation would fit the TAD genome con-
tent but not the experimental interaction data from the 
5C and T2C analysis as discussed above.

The polymer models predict a confined movement 
of chromatin segments relative to the center of mass of 
a domain, which is stationary on the time scale under 
consideration. Using the relaxation times obtained for 
the theta-solvent model, we calculated the MSD curves 
of a genomic site in euchromatin and heterochromatin 
(Fig. 5b), which clearly showed confinement of transloca-
tions and agreed well with experimental ones extracted 
directly from ACFs of exemplary measurements in 
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euchromatin and heterochromatin according to Addi-
tional file 1: Eq. S83. Furthermore, the calculated MSDs 
corresponded well with previous studies of chroma-
tin translocations [38–40, 72] and thus confirm our 
approach.

Hyperacetylation and ATP depletion differentially affect 
chromatin dynamics and alter the radius of gyration 
of domains
Chromatin hyperacetylation due to TSA treatment of 
the cells slowed down chromatin relaxation, as apparent 
from a similarly increased radius of gyration at periph-
eral (Rg  =  362  ±  14  nm) and central nuclear positions 
(Rg = 368 ± 15 nm) under theta-solvent conditions (Fig. 5c; 
Table 2). With a homogeneous nucleosome concentration 
of 100–140  µM, the genomic size of dynamic domains 
was 1650–2610  kb (Table  2), i.e., twofold larger than in 
untreated cells. This corroborates the view that hypera-
cetylation induces a larger-scale rearrangement of chroma-
tin toward a more uniform conformation [70, 71] and the 
notion of discriminable compact and passive domains [56] 
whose differences vanish upon TSA treatment.

For ATP-depleted cells, radii of gyration increased 
to 367 ± 21 nm at peripheral and 356 ± 18 nm at cen-
tral nuclear positions (Fig.  5c; Table  2). We obtained 
2680–4100 and 1430–2160 kb for peripheral and central 
positions, respectively, when using the same mean nucle-
osome concentrations as for untreated cells. This sug-
gests that in contrast to hyperacetylation, ATP depletion 
affects euchromatin and heterochromatin differentially 
as reflected by the increased heterogeneity in the images 
possibly due to agglutination of domains and increased 
packing density of nucleosomes.

Local compaction of chromatin is determined by its 
flexibility, mass density and topology
To characterize the organization of the chromatin fiber 
into domains, a set of structural and physical param-
eters is required: the persistence length, the mass den-
sity and, in the case of looping, the number of loops per 
domain. We found that only certain combinations of the 
properties comply with the observed radius of gyration 
and genomic content. Figure  5d shows the relationship 
of number of loops per domain, chromatin persistence 
length and linear mass density computed for hetero- and 
euchromatin for loop clusters under theta-solvent con-
ditions using Eq.  1 and a nucleosomal repeat length of 
191  bp [72, 74]. The encircled area covers the param-
eter range compatible with previous knowledge [27, 
74–77], i.e., a mass density of 0.5–6 nucleosomes/11 nm, 
a persistence length of 10–200  nm and up to 20 loops. 
A possible chromatin conformation with 9 loops per 
domain has a mass density of 4.5 nucleosomes/11  nm 

and a persistence length of 110 nm for euchromatin and 
5.5 nucleosomes/11  nm and 100  nm for heterochro-
matin in very good agreement with Knoch et  al. [53]. 
For a globular domain structure, the relation of persis-
tence length and linear mass density computed for het-
ero- and euchromatin is depicted in Fig.  5e. Again, the 
marked area highlights the accessible part of parameter 
space and reveals a range of possible combinations, e.g., 
a mass density of 4.5 nucleosomes/11 nm and a persis-
tence length of 55  nm for euchromatin and 5.5 nucle-
osomes/11 nm and 45 nm for heterochromatin. For both 
examples, the heterochromatin fiber would be more 
compacted but also locally more flexible. In contrast, 
for a blob-like domain structure, the relation of persis-
tence length and mass density (Fig. 5e) does not overlap 
with previously obtained values, i.e., a purely generi-
cally formed chain-of-blob topology does not provide 
enough topological compaction. Thus, only the globule 
and the loop-cluster model agree with our observations 
for domain size and genomic content and only the latter 
with the 5C and T2C data.

Comparison of Fig. 5d with Fig. 1a, b showed that the 
large number of loops found for the ~1-Mb domains 
matched well with a persistence length of ~ 100 nm when 
assuming a mass density of ~4 nucleosomes/11  nm. 
Thus, FCS dynamics measurements allowed to detect 
dynamically independent subchromosomal domains, 
whereas 5C and T2C data allowed to detect topologically 
independent domains, and identifying them with each 
other enabled us to extract their size, genomic content, 
topology and average physical properties of the underly-
ing chromatin fiber.

Local chromatin dynamics determine genome accessibility
From the initial linear increase in the MSD (Fig. 5b), an 
apparent diffusion coefficient of ~0.1 µm2s−1 of chro-
matin segments could be extracted with a segment 
concentration of 104–105  µm−3 (Fig.  5d, e). From these 
parameters, a frequency of collisions with other sites 
could be estimated for a given genomic site inside a topo-
logical domain [78]: Intradomain collisions occur at a 
rates of ~100 collisions/s, whereas interdomain colli-
sions are at least 100-fold less frequent. Therefore, con-
tacts between genomic sites showing up in 3C-derived 
methods must be physically stable and long-lived enough 
to not be disrupted by the rapid local movements of the 
chromatin fiber, rendering stable looping a highly prob-
able mechanism of domain formation.

The confined diffusion of chromatin segments (Fig. 5b) 
translates into pronounced volume fluctuations of the 
domains on the time scale of the observed relaxation 
times. The volume fluctuations are of the same order 
of magnitude as the volume itself, i.e., in the order of 
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0.1 µm3 (Additional file 1: Eq. S9). The time it takes solu-
ble factors to cross a volume of the size of the domains 
by diffusion is around a few ms and much shorter than 
the relaxation time on the 100  ms time scale. Thus, the 
short-term accessibility of the domains for a single mol-
ecule is given by the statically occupied volume (Fig. 6). 
Many lacunae and corrals in the chromatin environ-
ment [42, 79] are devoid of scarce factors, so that locally, 
their effective concentration can be significantly smaller 
than the mean. For abundant molecules or complexes, 
however, it is defined by the fluctuation-induced maxi-
mum accessible volume. Thus, domains are adiabatically 
replenished to the mean concentration with molecules 
or complexes except for the net chromatin volume. 

Therefore, diffusion-limited reactions such as transcrip-
tion factor binding to DNA are expected to display a 
more than linear dependence on factor concentration, in 
contrast to the case of soluble binding partners [78].

We calculated the accessible volume fraction accord-
ing to Additional file 1: Eq. S74, S75 for euchromatin and 
heterochromatin as well as for TSA-treated cells, assum-
ing both static and fluctuating domain sizes (Fig. 6). The 
accessibility limit, i.e., the molecular radius, for which 
accessibility was reduced to 50  %, was approximately 
twofold larger for dynamic domains than for static ones. 
Assuming an effective chromatin fiber diameter of 14 nm 
and a mass density of 1.6 nucleosomes/11 nm, the limit 
was 5 and 10 nm for heterochromatin, 10 and 20 nm for 
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static conformation during the ms passage time. This effect is more pronounced for compact heterochromatin than for open euchromatin. On the 
time scale of domain reorganization (~100–200 ms), molecules can search different domain areas such that the effectively unaccessible volume 
decreases toward the net fiber volume (including ‘classical’ excluded volume effects). Accordingly, high-abundance molecules effectively sense a 
significantly higher accessible volume, i.e., accessibility depends on molecular concentration in addition to a binding reaction itself. Moreover, it is 
determined by the size of the molecule or complex (arrows in 1D plots), confirming previous findings on static chromatin accessibility. Thus, forma-
tion of domains consisting of dynamic loops provides an additional degree of freedom to differentially regulate chromatin accessibility. Chemical 
modifications and chromatin remodeling processes take place on significantly longer time scales so that access for required molecules can be 
regulated by domain and loop dynamics
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euchromatin, and 15 and 30  nm for TSA-treated cells 
for low- and high-abundance particles, respectively. This 
agreed well with previous results on chromatin accessi-
bility [42, 71, 80] and showed that the fluctuations of the 
domains provide differential genome access in nonlinear 
dependence on particle size and concentration.

Discussion
The results presented here provide a missing link 
between chromatin organization maps that reveal the 
subchromosomal domain structure at steady state from 
3C-type analyses and the dynamic properties of these 
compartments measured here by FCS. The 3C-derived 
methods such as 5C, Hi-C or T2C as well as light micros-
copy measurements by fluorescence in  situ hybridiza-
tion/FISH [1, 7, 11, 14, 29, 81] yield more or less direct 
information about the relation between genomic and 
spatial distance in steady state. These have been used to 
evaluate physical models of three-dimensional chromatin 
organization [5, 29, 75–77, 82–85]. By applying a simple 
peak detection algorithm to exemplary experimental 5C 
and T2C data, the presence of loops and loop clusters is 
apparent, corroborating previous models and findings. 
From our analysis, we conclude that the highly dynamic 
nature of domains observed in our study provides an 
additional constraint on three-dimensional modeling 
of chromatin structure for 3C-type data: A high contact 
probability can only result from sufficiently stable physi-
cal contact between two loci, otherwise the pronounced 
fluctuations would effectively segregate them. We esti-
mate that the lifetime of chromatin interactions must 
exceed a few seconds, i.e., significantly longer than the 
observed relaxation time, to be detected by chromosome 
conformation capture techniques. Moreover, the fre-
quently occurring intradomain collisions of genomic sites 
are not rate limiting for contact formation between them. 
So far, one could only conclude that the interactions per-
sisted for a significant fraction of the cross-linking incu-
bation time of a few minutes [86, 87]. To our knowledge, 
this aspect has not been considered previously for the 
interpretation of 3C-like data.

Chromatin dynamics have been studied mostly by 
time-lapse microscopy and tracking or bleaching of 
spatially defined loci [35, 36, 40, 41]. While the time 
dependence of the MSD derived in these experiments 
provides evidence for the existence of distinct topologi-
cal domains, it is difficult to draw quantitative conclu-
sions on the underlying chromatin structure, especially 
on the time scale below one second. On the other hand, 
with our FCS-based methods we detected characteris-
tic chromatin domain relaxation times in the order of 
100 ms from measurements of the nuclear H1-EGFP sig-
nal (as well as of chromatin-incorporated core histones 

H2A and H2B). Furthermore, we developed an analytical 
Rouse–Zimm-based model that allows to derive poly-
mer features from these data. Different conformations 
with topologies ranging from generically formed blobs 
via crumpled or fractal globules to loop-cluster/rosette 
formations can be represented to derive correspond-
ing physical properties like persistence length and fiber 
density. In conjunction with the 5C/T2C analyses, we 
conclude that the dynamics of topological domains are 
best described by a clustered loop model in a theta sol-
vent with radii of gyration of the domains of ~300  nm 
in euchromatin and ~240  nm in heterochromatin and 
a genomic content of ~0.8–1.2  Mb in the unperturbed 
state. We suggest to assign these domains to previ-
ously reported subchromosomal domains [15, 16] or 
TADs [11, 14], which have emerged as general pattern 
for chromatin organization in vertebrates [1, 3] and 
have been further confirmed by recent low-noise high-
resolution T2C data [53]. They feature a typical size of 
~1 Mb. Our data are in excellent agreement with previ-
ous studies that tracked chromatin foci [38–40, 72] and 
with persistence lengths and mass densities inferred 
from other studies [5, 27, 74–77]. We conclude that 
our observations are an independent and methodologi-
cally complementary quantitative evidence for dynami-
cally and topologically independent domains that define 
both structural and dynamic properties of chromatin on 
the 1  Mb scale. In TSA-treated cells, euchromatin and 
heterochromatin become indistinguishable and both 
domain volume and genomic content increase, indicat-
ing a significant rearrangement of domains possibly 
owing to alternative remodeling following transcription 
and replication. In ATP-depleted cells, however, chro-
matin becomes more aggregated and both domain vol-
ume and genomic content increase, here possibly due to 
arrested transcription and chromatin remodeling.

Physical interactions between genomic loci via chro-
matin loops are important for the repression and 
activation of genes in the three-dimensional nuclear 
environment [4, 21, 23]. While the stability of loops is 
crucial for the robustness of gene expression patterns, 
plasticity and potential of domains for reorganization 
are key for gene up- or down-regulation in response to 
cellular stimuli [24, 35]. The highly dynamic nature of 
chromatin on the size scale of up to 1 Mb observed here 
with a typical locus spatially fluctuating by ~100  nm 
within ~100  ms facilitates fast rearrangement of three-
dimensional topologies. In addition, as depicted in Fig. 6, 
it increases the effective chromatin accessibility, in good 
quantitative agreement with previous results: More com-
pact heterochromatic domains have a larger unaccessible 
volume fraction than more open euchromatic ones. This 
effect additionally depends on the size of the molecules 
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or complexes trying to access the genome [42, 71, 88]. 
Molecular diffusion is fast enough to roam a complete 
domain within few milliseconds, during which the 
domain itself appears static. Relaxation of domains in the 
100 ms range affects genome access in a nonlinear pro-
tein concentration-dependent manner: Highly abundant 
molecules at several 100 nM concentrations ‘fill’ the fluc-
tuating domain so that a larger volume fraction than for a 
static TAD becomes adiabatically accessible. In contrast, 
for low-abundance molecules encounters with specific 
loci within a domain are not only diffusion limited, but 
further impeded by transient occlusion of binding sites. 
They sense a higher inaccessible volume fraction. As a 
result, domain dynamics introduce an additional factor 
for nuclear target search. The concentration-dependent 
differential accessibility of this process leads to largely 
different search times as compared to a static chromatin 
network. Furthermore, it allows of locus-specific varia-
tions as relaxation times between heterochromatin and 
euchromatin are different and additionally dependent on 
reversible chromatin modifications like the TSA-induced 
hyperacetylation. Thus, by integrating the structural fea-
tures of chromatin domains with their dynamic proper-
ties we reveal an additional regulatory layer for target 
search processes in the nucleus that may contribute to 
establishing cell-type-specific gene expression programs.

Conclusions
In this study, we present a missing link between chroma-
tin organization maps that reveal the subchromosomal 
domain structure at steady state from 3C-type analyses 
and the dynamic properties of these compartments meas-
ured here by FCS. Both 5C/T2C and FCS results suggest 
that chromatin is organized into topologically and dynam-
ically independent domains of ~300 nm radius in euchro-
matin and ~240  nm in heterochromatin and a genomic 
content of ~0.8–1.2  Mb, confirming numerous previous 
results. Loops/loop clusters as domain-forming features 
are required to match the measured level of compac-
tion and the observed features of 5C/T2C data. In addi-
tion to the structural aspects, the dynamics of domains in 
different epigenetic states propose that the regulation of 
chromatin accessibility for soluble factors displays a sig-
nificantly stronger dependence on factor concentration 
than search processes within a static network.

Methods
Cell culture
The plasmid vector with the autofluorescent histone 
H1.0-GFP was constructed as described [89]. The human 
histone gene for H1.0 (Gene bank M87841) was ampli-
fied by PCR and inserted into the SalI–BamHI site of the 
promoterless plasmid pECFP-1 (Clontech, Mountain 

View, CA, USA). The HindIII fragment of simian virus 
40 (SV40) was inserted in reverse direction into the Hin-
dIII site of the multiple cloning site of pECFP-1, and the 
ECFP sequence was replaced with EGFP. The resulting 
construct pSV-HIII-H1.0-EGFP expresses a 440-amino-
acid fusion protein from the early SV40 promoter and 
consists of the human H1.0 gene, a 7-amino-acid linker 
and the C-terminal EGFP domain. This plasmid was 
introduced into MCF7 cells with Lipofectamin (Life 
Technologies, Carlsbad, CA, USA), and a stable mono-
clonal cell line was selected with 500  µg/ml G418 (Life 
Technologies). H1.0-expressing cells as well as non-trans-
fected MCF7 cells were grown in RPMI 1640 (Life Tech-
nologies) supplemented with 10  % FCS in a humidified 
atmosphere under 5 % CO2 at 37 °C. HeLa cells express-
ing H2B–mCherry stably and H2A–EGFP transiently 
were made as described elsewhere [90].

For microscopy, cells were allowed to attach for at least 
24  h in Nunc LabTek chambered coverglasses (Nalge 
Nunc, Rochester, NY, USA) or in MatTek glass-bottom 
dishes (MatTek, Ashland, MA, USA) before the experi-
ments. For TSA treatment, cells were allowed to attach 
for at least 24  h in chambered coverglasses and then 
incubated with 100 ng/ml TSA (Sigma-Aldrich, St. Louis, 
MO, USA) for 15–20 h before the experiments. For Na-
azide treatment, cells were allowed to attach for at least 
24 h in chambered coverglasses and then incubated with 
10 mM Na-azide for 20 min. Experiments were then per-
formed within 40 min.

Fluorescence microscopy
Confocal fluorescence microscopy images, FRAP image 
series, CP data, point FRAP data and FCS data were 
acquired with a Leica TCS SP2 AOBS FCS and with a 
Leica TCS SP5 AOBS FCS (Leica Microsystems, Man-
nheim, Germany) equipped with a 63×/1.2NA water 
immersion lens or with a Zeiss LSM 510 ConfoCor2 sys-
tem (Carl Zeiss AIM, Jena, Germany) equipped with a 
40×/1.2NA water immersion lens. For H1-EGFP, we used 
the 488  nm line of an Argon laser for excitation and a 
detection band-pass window of 500–550 nm. For imaging, 
photomultiplier tubes were used. For CP, point FRAP and 
FCS, avalanche photodiode single-photon counting detec-
tors were used. Live cells were maintained at 37 °C on the 
microscopes using either a PeCon stage heating system 
(PeCon, Erbach, Germany), a Life Cell Imaging stage heat-
ing system (LCI, Seoul, South Korea) or an EMBL incuba-
tion box (EMBL-EM, Heidelberg, Germany).

Imaging FRAP, point FRAP, CP
For imaging FRAP, a rectangular strip bleach region 
was defined. Acquisition of 10 prebleach images (time 
resolution 0.6  s) was followed by two bleach frames, 10 
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postbleach images (time resolution 0.6 s) and additional 
40 postbleach images (time resolution 6 s). The data were 
then processed as described elsewhere [91, 92] to yield 
the mean intensity recovery curve integrated over the 
bleach region. This was then fitted with Additional file 1: 
Eq. S92, resulting in three different fractions, a diffusion 
coefficient and a dissociation rate. Alternatively, an aver-
age projection along the direction of the longer dimen-
sion of the bleach strip was plotted as profile along the 
other direction for all time points studied. Appropriate 
normalization steps [64, 92] (Additional file  1: Fig. S11) 
yielded profile plots that were then fitted with Additional 
file 1: Eq. S91 to yield an apparent diffusion coefficient.

Point FRAP and CP data were acquired as described 
elsewhere [43, 93, 94]. CP data were fitted with Addi-
tional file  1: Eq. S93 to yield two independent dissocia-
tion rates and corresponding fractions. Point FRAP data 
were fitted as described in Im et  al. [43], however with 
two binding states.

Fluorescence correlation spectroscopy
FCS data were acquired at cellular positions selected in 
confocal images for 30–60  s. A frequently encountered 
problem of FCS, especially in living samples, is slow but 
pronounced signal fluctuations, e.g., due to bulk pho-
tobleaching [43, 93–95] (Additional file 1: Fig. S8). Fluc-
tuations contribute to the resulting correlation function 
(CF) weighted with the square of their brightness so that 
often slow fluctuations obscured completely the contri-
butions from single diffusing molecules and rendered a 
further evaluation impossible. To overcome this obstacle, 
raw fluorescence intensity traces were saved to disk and 
then processed using the FluctuationAnalyzer software 
[90] written in our laboratory in C++ and LabVIEW 
(National Instruments, Austin, TX, USA) that used a 
local average approach where the CF is calculated over a 
small time window Θ and subsequently averaged over the 
complete length T according to

Here, k, l = 1, 2 represent the two available detection 
channels. For k =  l = 1, 2, the autocorrelation function 
(ACF) of channel 1, 2 is obtained, whereas k = 1,  l = 2 
yields the cross-correlation function (CCF). A good yet 
subjective criterion for a proper choice of the window 
size is a smooth transition of the CF to zero. In a more 
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systematic way, we fitted the data with appropriate model 
functions, Eq. 3, 5. When finding a range of window sizes 
where, e.g., the relaxation time obtained from the fit was 
independent of the window size, we selected a window 
size within the range. Otherwise, the data were not taken 
into consideration.

To fit FCS data of the diffusive fraction of histone mol-
ecules and of free EGFP, we used the standard fit func-
tion modeling free anomalous diffusion and fluorescent 
protein-like blinking [96]

where N is the number of molecules in the focal volume, 
ΘT the fraction of molecules in a non-fluorescent state 
with lifetime τT, τD = w2

0

/

4D the diffusion correlation 
time, α the anomaly parameter and κ = z0

/

w0 the ratio 
of axial and lateral focal radius. Fitting FCS data with a 
chromatin relaxation model is described above.

Numerical modeling of chromatin conformations
For the visualization and for the analysis of static physi-
cal properties of chromatin, we simulated chains as 
beads occupying sites on a three-dimensional cubic lat-
tice with a grid constant of a  =  30  nm. Neighboring 
sites were connected by chain segments, and neighbors 
could occupy any of the surrounding 26 sites, resulting 
in a mean distance or bond length of b =

√

2a = 42 nm 
corresponding to 2500  bp when assuming 60  bp/nm or 
3.5 nucleosomes/11 nm and 195 bp nucleosomal repeat 
length. The grid constant is set to an assumed fiber diam-
eter of 30  nm. Double occupancy of sites is suppressed 
to ensure self-avoidance of the chain. In general, chains 
were modeled as a sequence of loops and linear stretches. 
Properties such as radii of gyration were calculated 
according to the respective definition. Calculations were 
implemented in Python 3.3, and renderings were gener-
ated using the VPython module.

Calculation of genomic contact probability maps
We calculated genomic contact probability maps for 
simulated chromatin conformation using Additional 
file 1: Eq. S25 and the algorithm described in the Addi-
tional file  1: Supplementary Text. Data were saved as 
matrices with a resolution of 2.5 kb. For the configura-
tions used in Fig. 1d, e we used the following parameters:

Figure  1d: theta-solvent loop-rosette conformation; 
lin(x)—linear stretch of x kb; dom(y)—domain of y kb 
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consisting of a set of loops; loop(z)—looped stretch of 
z kb; loops with multiple numbers were varied synchro-
nously in length and then averaged to generate variation in 
loop length. lin(100) – dom (1000) [loop(166) – loop(167) 
– loop(166) – loop(167) – loop(166)] – lin(150) – dom 
(1300) [loop(100/125/150/175/200) – loop(95) – loop(90) 
– loop(85) – loop(120/145/170/195/220) – loop(150) 
– loop(125) – loop(115) – loop(160) – loop(150)] – 
lin(150) – dom(1000) [loop(185) – loop(120) – loop(95) – 
loop(120) – loop(235) – loop(245)] – lin(50) – dom(1100) 
[loop(138) – loop(160) – loop(95) – loop(170) – loop(160) 
– loop(183) – loop(128) – loop(68)] – lin(150)
Figure  1e: globular conformation; lin(x)—linear 
stretch of x kb; dom(y)—domain of y kb consist-
ing of a globular stretch; glob(z)—globular stretch 
of z kb. lin(100) – dom(1000) [glob(1000)] – lin(150) 
– dom(1300) [glob(1300)] – lin(150) – dom(1000) 
[glob(1000)] – lin(50) – dom(1100) [glob(1100)] – 
lin(150)

Analysis of genomic contact probability maps
To detect peaks in the two-dimensional contact prob-
ability maps, both experimental and simulated data were 
imported into a software module written in LabVIEW. It 
allowed to interpolate data to a resolution of 2.5 kb and 
to symmetrize them. After manually selecting a domain 
region easily recognizable as square area of increased 
contact probabilities (Fig.  1a, b, d, e), the diagonal and 
its vicinity of ±30–75 kb (±12–30 data points of 2.5 kb) 
were removed. A one-dimensional average of a maxi-
mum and a mean projection (Additional file  1: Fig. S1) 
yielded a one-dimensional profile, to which a peak detec-
tion algorithm was applied based on parabolic fitting to 
continuous stretches of 30 kb (12 data points). Maxima 
above 80 % of the profile average were accepted as peak 
locations.

Then, local average projections in a 25- to 30-kb vicin-
ity of each peak were calculated (Additional file  1: Fig. 
S1), to which the same peak detection algorithm was 
applied. Thus, for each peak detected in this way, a pair 
of genomic sites of high interaction probability could be 
obtained, corresponding to a loop base. Pairs detected in 
both directions featured higher recognition probability 
and were marked with black circles (Fig. 1a, b, d, e), and 
those detected with lower probability, i.e., only in one 
direction, were marked with gray circles. This approach 
corresponds to an effective thresholding of distances 
instead of using their values [97] justified by the dynamic 
nature of domains and is applied to non-corrected and 
smoothed data similar to Giorgetti et al. [28]. The bina-
rization is especially robust against bias effects, which are 
not completely known even though corrections can be 
applied [98, 99].
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