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Abstract

Background: DNA methylation is an epigenetic mark that balances plasticity with stability. While DNA methylation
exhibits tissue specificity, it can also vary with age and potentially environmental exposures. In studies of DNA
methylation, samples from specific tissues, especially brain, are frequently limited and so surrogate tissues are often
used. As yet, we do not fully understand how DNA methylation profiles of these surrogate tissues relate to the
profiles of the central tissue of interest.

Results: We have adapted principal component analysis to analyze data from the Illumina 450K Human Methylation
array using a set of 17 individuals with 3 brain regions and whole blood. All of the top five principal components in
our analysis were associated with a variable of interest: principal component 1 (PC1) differentiated brain from blood,
PCs 2 and 3 were representative of tissue composition within brain and blood, respectively, and PCs 4 and 5 were
associated with age of the individual (PC4 in brain and PC5 in both brain and blood). We validated our age-related PCs
in four independent sample sets, including additional brain and blood samples and liver and buccal cells. Gene
ontology analysis of all five PCs showed enrichment for processes that inform on the functions of each PC.

Conclusions: Principal component analysis (PCA) allows simultaneous and independent analysis of tissue composition
and other phenotypes of interest. We discovered an epigenetic signature of age that is not associated with cell type
composition and required no correction for cellular heterogeneity.
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Background
Epigenetics refers to modifications to DNA and chroma-
tin that regulate transcription without alteration of the
genetic code. The best-studied epigenetic mark is DNA
methylation, first defined as the addition of a methyl
group to a cytosine residue, most frequently in the context
of CG dinucleotides. CpGs are not uniformly distributed
in the genome and tend to be enriched in CpG islands
[1,2]. Most promoters in the genome have an associated
CpG island, and DNA methylation levels at these
promoter-associated islands associate with gene expres-
sion levels [2]. CpG density is commonly classed into four
categories: high-density CpG island (HC), intermediate
density CpG island (IC), intermediate density island shore
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(ICshore, meaning intermediate density regions found
flanking HC regions), and low-density CpG island (LC)
[2,3]. This CpG density is related to both DNA methy-
lation level and variability [1,2]. While the common
form of DNA methylation described above has been the
most extensively studied, many other related modifica-
tions have recently emerged. Chief among them is 5-
hydroxymethylcytosine, which exists as the oxidized
form of the canonical 5-methylcytosine mark of DNA
methylation. Catalyzed by the ten-eleven translocation
(TET) family of enzymes, DNA hydroxymethylation is
thought to exist as an intermediate in the process of active
DNA demethylation, although its exact functional role
remains enigmatic [4,5]. DNA hydroxymethylation in the
mammalian brain is typically 5 to 10 times higher than
any other tissue, and recent evidence has suggested that it
plays an important role in normal brain function [6-9].
Importantly, most sodium bisulfite-based methods of
measurement of DNA methylation cannot distinguish
between the different kinds of modifications.
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Epigenetics in general and DNA methylation in particu-
lar are associated with cell fate and differentiation. Land-
scapes of DNA methylation are highly divergent between
cell types, with cells from similar lineages showing more
similar DNA methylation profiles [10,11]. In the context of
DNA methylation, the main drivers of tissue-specific pat-
terns are located in areas of low CpG density outside of
islands and shores, and so differences between tissues are
often found in discrete locations in the genome [12,13].
Studies of the differences in DNA methylation between

cell types in humans pose two difficulties. First, since in
many cases the tissue of interest for a particular condition
may not be available, surrogate tissues are often employed.
In particular, studies of the brain necessarily require the
use of postmortem tissue, tissue from surgical resection,
or a surrogate tissue. Postmortem tissue has been useful
in many studies, but in general for large-scale studies, only
surrogate tissue is available [14,15]. In these cases, re-
searchers examine accessible peripheral tissues like buccal
cells or blood to examine associations with phenotypes
that are assumed to be manifested in central tissues. Since
different tissues show distinct epigenetic patterns, it is im-
portant to compare the DNA methylomes of peripheral
and central tissues. One area of particular interest is deter-
mining whether the variation between individuals in a per-
ipheral tissue resembles that in central tissues. Second,
when comparing a specific tissue across individuals, differ-
ences in the cellular composition of the tissue sample can
greatly affect DNA methylation pattern differences be-
tween the individuals [16]. This problem can be corrected
by either measuring the tissue composition of the sample,
by using the DNA methylation profiles themselves to pre-
dict the underlying cell composition of the tissue sample,
or by using methods that correct for underlying cell com-
position without the actual measurements [17-20]. It is
therefore important to develop a method that can assess
the concordance between a surrogate tissue and the cen-
tral tissue it represents while simultaneously controlling
for cell composition differences in both tissues.
Organismic aging is a major component of epigenetic

variation. Epigenetic aging consists principally of two dis-
tinct types of changes, termed ‘epigenetic drift’ and the ‘epi-
genetic clock’ [21-24]. Epigenetic drift refers to an increase
in inter-individual variability with age, while the epigenetic
clock refers to observations that specific sites in the gen-
ome show DNA methylation changes that are highly corre-
lated with age across individuals. All tissues examined show
an overall increase in DNA methylation with age, with
some sites showing loss in methylation [14,25-32]. These
changes tend to occur at genes related to developmental
processes. Sites that gain DNA methylation with age tend
to be located in islands, while sites that lose methylation
are less likely to be found in islands, indicating a trend to-
wards median levels of DNA methylation with age [11,14].
Studies of DNA methylation in cohorts present add-
itional challenges. Sample size is often limited when inter-
rogating precious primary human material from central
organs [33]. This issue results in statistical challenges due
to multiple testing controls when applying current high
dimensional methodologies to measure the methylation
status of a large number of CpGs. While correlational ana-
lysis with P values adjusted for multiple testing is com-
monly used, other methods are emerging that identify a
reduced number of common patterns of variation across
probes, lessening the impact of multiple statistical tests
[34]. In addition, since CpGs tend to show highly corre-
lated methylation profiles, especially CpGs situated in
proximity, statistical approaches that assume probe inde-
pendence are not ideally suited to the study of DNA
methylation. In contrast, principal component analysis
(PCA) is based on the cognizance that CpGs in an individ-
ual often share common patterns of DNA methylation
[10,20,35]. PCA is a technique that identifies correlations
among data points within a large multidimensional data
set and is useful at reducing the dimensionality of the
data. A given principal component (PC) describes a par-
ticular pattern of DNA methylation across samples. Each
sample in the data set is assigned a score for each princi-
pal component, indicating the relative contribution of
each PC-related pattern to the sample’s overall pattern.
Each PC is also linearly independent from the others and
accounts for a particular amount of variance within the
data. PCA has often been used to identify batch effects in
DNA methylation data, but has recently begun to be ap-
preciated for its potential in broader and more biological
aspects of epigenetic analysis [10,36-38].
We used a PCA approach to compare DNA methylation

in brain and blood samples from 17 individuals. This
matched design allows for rigorous assessment of DNA
methylation irrespective of inter-individual differences in
environment or genetic background. Given the large num-
ber of tests and the relatively small sample size, PCA,
which allows for the identification of dominant patterns of
variation in methylation between tissues and also across
individuals within a tissue, was an appropriate choice. We
found that PCA robustly identified patterns of DNA
methylation associated with known traits even in this
small cohort, two of which we validated in independent
larger cohorts. The results presented here identify a PCA-
based age predictor, as well as specific genomic locations
where DNA methylation is more or less variable in brain
and blood tissue.

Results and discussion
Blood and brain samples were obtained from the
Douglas-Bell Canada Brain Bank. A total of 17 partici-
pants were included in the study, ranging from 15 to 87
years of age, with 4 females and 13 males. Three cortical



Farré et al. Epigenetics & Chromatin  (2015) 8:19 Page 3 of 17
regions (Broadmann area 10 (BA10), prefrontal cortex;
Broadmann area 7 (BA7), parietal cortex; and Broadmann
area 20 (BA20) temporal cortex) were dissected from
postmortem brain as described previously [39], and whole
blood was collected postmortem from each subject by
venipuncture. We used the Infinium Human Methylation
450K array to determine the genomic DNA methylation
profiles of the three brain regions and matching peripheral
whole blood. It is important to note that this technique, as
currently applied, does not distinguish between DNA
methylation and DNA hydroxymethylation, so our reports
of DNA methylation in brain particularly are a composite
of both marks. We obtained all 4 tissues of interest for 15
of the 17 participants; BA20 was missing from one partici-
pant and whole blood sample from another. We removed
poorly performing probes, including those that overlapped
Figure 1 The first five principal components were associated with specific
Samples were sorted by their tissue of origin (background color) and order
variables that correlated with the first five PC patterns. Correlations are sho
which they are correlated. BA10, Broadmann area 10; BA20, Broadmann are
whole blood.
with SNPs or hybridized to multiple locations in the gen-
ome and those located on the X and Y chromosomes,
resulting in a total of 408,576 probes [3]. We applied PCA
to this dataset to identify the major patterns of variation
in DNA methylation.

The majority of variation in DNA methylation was
accounted for by tissue differences, cellular heterogeneity
within a tissue, and subject age
We first identified the distinct principal components and
determined their contribution to the total variance in
our dataset (Additional file 1: Figure S1A). The first 13
PCs accounted for more than 90% of the variance in the
data (Additional file 1: Figure S1A). Patterns of DNA
methylation across samples for each PC were quite dis-
tinct, as illustrated for the top five PCs (Figure 1A). Each
biological factors. (A) First five PCs and their associated variance.
ed by increasing age of the individual for each tissue. (B) Sample
wn in the gray boxes. Arrows connect PCs with the variables with
a 20, BA7, Broadmann area 7; PC, principal component; WB,
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panel was first ordered by tissue and second by increasing
subject age within each tissue. Both positive and negative
correlations with PCs indicate the same type of relation-
ship, since the sign of a particular PC score is arbitrary.
The majority of the variation (75%) was accounted for

by PC1, which clearly separated brain from blood tissue,
suggesting that the dominant difference in DNA methy-
lation across all samples was the difference between
blood and brain tissues (Figure 1A,B). Previous studies
reveal that between-tissue differences are the main pre-
dictors of DNA methylation variability [10,20,40]. This
PC likely included a contribution of hydroxymethylated
sites, since hydroxymethylation is significantly higher in
the brain than in the blood [8,9].
We also identified PCs with variability apparent only

in brain tissue (PC2 in Figure 1A), in blood only (PC3
in Figure 1A), or across all tissues (PC4 and PC5 in
Figure 1A, PC6 in Additional file 1: Figure S1D). The
observation that PCs 2 and 3 both showed variability in
only one of the two tissues raised the possibility that
cellular composition within each tissue was underlying
the pattern of variability observed. To test this hypothesis,
we used cellular composition prediction algorithms on
our DNA methylation data for each sample. This analysis
resulted in predicted proportions of white blood cell types
for the blood samples and a neuron/glia proportion for
the brain samples [41,42]. Using these predicted propor-
tions, we found that PC2, which was variable in all three
brain regions but not blood, was highly correlated with
the predicted proportion of neurons in the sample (r =
0.98, P = 2.4E−33, Figure 1B, scatter plot in Additional file
2: Figure S2). In contrast, PC3, which was variable in
blood, but not brain, was highly correlated with the pre-
dicted proportion of granulocytes in the whole blood sam-
ple, but no other white blood cell types (r = −0.90, P =
1.7E−6, Figure 1B, scatter plot in Additional file 2: Figure
S2). This finding was consistent with granulocytes being
the predominant white blood cell type and thus likely
contributing the majority of signal to a DNA methyla-
tion profile in whole blood. Collectively, these data
showed that after tissue identity, cellular heterogeneity
within a tissue was the major predictor of variation in
DNA methylation.
When the samples were plotted by age (Figure 1), a

trend was observed within the brain for PC4 and both
brain and blood for PC5 (Figure 1A). We thus correlated
the DNA methylation profiles for each PC with the age
of the individuals. PC4 showed a statistically significant
correlation with age for the three brain regions, but not
blood. In contrast, there was a significant correlation for
PC5 that included both brain and blood (Figure 1B,
scatter plots in Additional file 2: Figure S2). These data
suggest two distinct DNA methylation signatures of
aging, one specific for the brain and the other
encompassing both brain and blood. Interestingly, we also
observed an increase in the mean level of DNA methyla-
tion with age in the brain, but not in blood samples (r =
0.71, P = 6.3E−9, Additional file 1: Figure S1B).
We then determined the contribution of individual

CpG probes to a particular pattern of methylation vari-
ation across tissues and/or individuals by calculating the
projection of each CpG site to each PC. A projection indi-
cates either a positive or a negative contribution of the
given PC pattern to the methylation profile observed at
each CpG probe. Visualization of the distribution of CpG
projections on PC1, which differentiates brain tissues from
blood, clearly highlighted probes that had either a positive
contribution (more methylated in the blood compared to
the brain) or a negative contribution (more methylated in
the brain than in the blood) (Additional file 3: Figure S3).
Selecting probes by their projection score compared to
standard deviation of all projections revealed that larger
scores were reflective of greater similarities of the pattern
of the individual CpG site to the overall pattern of PC1
(Additional file 3: Figure S3). For example, the two probes
on the bottom left and bottom right, belonging to the
group of ≷ ± 3σ, respectively, showed sharp transitions in
DNA methylation between blood and brain, akin to PC1
(Additional file 2: Figures S2, Additional file 3: Figure S3
and 1A). This analysis illustrated that PC projections
could be used as a means to filter the data to highlight
specific traits in the classification approach used below.
Nevertheless, it is important to note that, although greater
projections imply greater associations with a PC, projec-
tions are not a measurement of statistical confidence.
Instead, they simply quantify in which CpG sites the corre-
sponding pattern of variation is the strongest. Mapping
projection values to a confidence test would suppose a bias,
as the PCs are obtained from the data, and, by definition,
they are the most dominant patterns of variation [43].

Variability of DNA methylation between brain and blood
was moderately concordant
Having identified biological variables that were correlated
with nearly 85% of the variability in our DNA methylation
data, we next addressed the degree to which methylation
varied across individuals, and whether this variability was
consistent across tissues. Examining the distribution of
M-value variance across all the samples of each tissue
(Additional file 4: Figure S4A), we found that blood is
significantly more variable than any of the brain tissues
(Kolmogorov-Smirnov (KS)-test of blood vs brain re-
gions >0.18; KS-test between brain regions <0.12; per-
centage of total variance in each tissue: BA10 26.5%,
BA20 19.3%, BA7 17.7%, whole blood (WB) 36.4%).
However, given the results in the previous section and
previously published findings, it is likely that part of the
inter-tissue differences in variance were due to differences
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in cell composition between tissues [16,20,44]. To account
for this, we subtracted the contribution of PC2 (neuronal
proportion) and PC3 (granulocyte proportion) from all
samples and repeated the analysis (Additional file 4: Figure
S4B). After removing this variance due to inter-individual
differences in cellular composition, we found that the vari-
ances of different brain regions became notably homoge-
nized (KS-test between brain regions <0.04) while the
difference between brain and blood increased (KS-test of
blood vs brain regions >0.27). We thus concluded that
blood was significantly more variable han brain regions
(percentage of total variance in each tissue: BA10 20.8%,
BA20 21.5%, BA7 20.3%, WB 37.3%) and that inter-
individual differences in cellular composition were an im-
portant contributor to variance in uncorrected data.
Our approach of using matched tissue samples allowed

us to determine the fraction of PCs for which the ob-
served pattern of variation was common in blood and
brain. This analysis compared the similarity in the DNA
methylation patterns between blood and cortical brain
cells, with the caveat that brain DNA methylation in-
cludes both DNA methylation and DNA hydroxymethy-
lation. Since PC1 to PC3 were identified as tissue- and
cell-type-associated PCs, they would not be informative
in determining concordance across tissues. For this ana-
lysis, we instead used the remaining PCs after PC3. We
first averaged the three different brain tissue PCs to-
gether since their patterns of methylation are overall
very similar. We next selected PCs for which the amount
of variation in each tissue was of comparable magnitude:
σ2blood−σ

2
brain

�� �� < 1
2 σ2blood þ σ2brain
� �

: Finally, we selected
the PCs showing a correlation P value of <0.01 between
DNA methylation patterns of the brain and blood. The
PCs that followed these criteria (19 PCs, 37.2% of vari-
ation after PC3) represented patterns of inter-individual
variation that were common between blood and brain
tissues (Additional file 5: Figure S5). The first eight of
the PCs identified by these criteria were positively corre-
lated between blood and brain and captured 74.5% of
the variation, whereas the remaining PCs were negatively
correlated between blood and brain and captured the
remaining 25.5%. Thus, overall 37.2% of the non-tissue-
specific variation was highly correlated between blood
and brain, 74.5% of which is positively correlated and
25.5% is negatively correlated (Additional file 6: Figure
S6). It is tempting to speculate that a portion of this
shared variation between blood and brain might repre-
sent shared tissue differences, genetic impacts, or envir-
onmental exposures. The negatively correlated variation
implies that high DNA methylation values in one tissue
are associated with low methylation in the other. These
sites may be those with important functions in either
brain or blood, where they are highly expressed and low
methylated in one tissue and not expressed and highly
methylated in the other. These hypotheses based on our
analysis of general patterns of DNA methylation will, of
course, need to be tested, particularly to determine the
possible contribution of hydroxymethylation to these
differences and similarities in variation.

Age-related PCs were more easily detected in the brain
than in blood
We next performed PCA on each of our brain and blood
tissues separately to see if the correlations with variables
of interest would persist in a smaller dataset. All the
brain tissues show a first PC that correlates with the
neuron composition of the samples (P values <2E−11,
Additional file 7: Figure S7A,B,C), followed by a second
PC that correlates with age (P values <8E−6, Additional
file 7: Figure S7E,F,G). Since both PC4 and PC5 in the
full dataset showed a correlation with age in the brain
tissue, all of these probes were found to strongly overlap
with the probes identified with the age PCs in the brain
tissues only. Interestingly, a PCA on the 16 blood sam-
ples revealed that the first two PCs both correlated with
blood cell composition (first PC P value 2E−4,
Additional file 7: Figure S7D; second PC P value 1E−2,
Additional file 7: Figure S7H), but we were unable to
identify a PC strongly correlated with age. This finding
implies that the epigenetic pattern associated with age is
not as strong in blood as it is in brain. Thus, PC5 in the
full dataset, which shows an age-correlated pattern of
methylation in blood as well as brain would not have
been observed in blood alone, and was apparent because
the presence of the pattern on brain reinforced power
across samples.
We next sought to evaluate the sample size for a cohort

required to detect an age-correlated PC in blood. We used
an independent, published blood dataset (GSE40279) con-
sisting of 656 individuals with an age range of 19 to 101
years [27]. First, we calculated the cell composition of the
samples and subtracted the associated variance [41]. Then,
we randomly subsampled the data into datasets with a
smaller number of individuals. We performed PCA on
each of the subsampled datasets and reported the percent-
age of times that we found an age-correlating PC for a
given sample size. We found that in datasets consisting of
16 blood samples such as ours, the likelihood of finding a
PC that correlates with age (P value <0.01) is approxi-
mately 41%. The chance of detecting an age-related PC in
blood improves to >60% when there are more than 22
samples (Additional file 8: Figure S8). Although blood
DNA methylation showed more variation than brain DNA
methylation, a greater number of samples are needed to
identify an age-related pattern of methylation, whereas in
brain, a small sample size seems effective at identifying
such a correlation.
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Age-associated PCs were replicated in independent
datasets
We took advantage of published datasets to evaluate the
reproducibility of our findings of tissue-concordant and
tissue-discordant DNA methylation signatures of aging.
We used the projections of each probe for the two PCs
(PC4 and PC5) associated with aging and reconstructed
these PCs on the larger published cohort. Beginning
with data from brain (n = 40; age range: 2 to 56 years,
GSE53162, [45]), we found a high correlation with age
for reconstructed PC4 and PC5, similar to our brain data
(Figure 2A). We next performed the same analysis on
blood data (n = 656; age range 19 to 101 years,
GSE40279, [27]) where we predicted that only the recon-
structed PC5 would be correlated with age, since the ori-
ginal PC5 was correlated with age in both brain and
blood tissue, while the original PC4 was correlated only
in brain. Indeed, while reconstructed PC4 had a poor
correlation coefficient with age (correlation: 0.11, P value
3.6E−3), reconstructed PC5 had very strong correlation
that was highly significant (correlation: 0.55, P value
1.81E−52, Figure 2B). To more broadly investigate the
tissue specificity of our aging signature, we performed
the same reconstruction on two other data sets, from
buccal epithelial cells (BEC) (n = 96; age range 1 to 28
years, GSE50759, [46]), and liver (n = 85; age range 23
to 83 years, GSE48325, [47]). Despite the younger and
more limited age range of the BEC cohort, both data sets
showed high correlation between both reconstructed
PC4 and PC5 and age (Figure 2 for details, correlations,
and P values). Collectively, these data suggested that at
least two independent DNA methylation signatures of
aging exist, one of which (PC5) is shared across all tis-
sues examined and the other (PC4) which is found in all
except blood. Inherently, these data also provided strong
evidence for replication of age-related DNA methylation
signatures between diverse datasets from different co-
horts and laboratories.

Hierarchical clustering of data using principal
components revealed further relationships between
samples
We used hierarchical clustering to further explore how
our PCs describe the relationships between samples. To
reveal the natural internal relationship between samples,
we first computed the nearest neighbor hierarchical
clustering similarities of the most highly variable probes
in the full dataset. These probes showed variance (>4σ)
across all samples (7,420 probes) (Figure 3A). The three
brain tissues from a given individual clustered together,
with BA10 and BA7 being closer to each other and
forming a node distinct from BA20. Blood from all indi-
viduals clustered separately, and the clustering distance
between individuals was generally larger than that in
brain (Figure 3A). These data suggested that individual
DNA methylation patterns in the three cortical brain re-
gions were more closely related between different indi-
viduals than between brain and blood in the same
individual, and that inter-individual differences in blood
DNA methylation were more pronounced than those in
brain DNA methylation. This conclusion is consistent
with our analysis of variance presented earlier where
blood variance was significantly higher than brain.
We performed clustering using the subset of probes

that PCA identified as being correlated with variables of
interest to further uncover similarities in DNA methyla-
tion between samples. For example, using only the
probes that had a projection score ≷ ± 4σ on PC1 (2,258
probes), hierarchical clustering separated blood from
brain with very few distinctions within the two groups.
This approach revealed tissue similarities as the only sig-
nificant relationship in PC1 regardless of the origin of
the individual sample (Figure 3B). This analysis thus
confirmed PC1 as a blood vs brain tissue classifier.
A different picture emerged when we performed the

hierarchical clustering using only the probes that had a
projection score ≷ ± 4σ on PC4 (1,993 probes), the PC
that showed age-dependent methylation in brain, buccal,
and liver, but not blood (Figure 3C). As with the previ-
ous examples, this clustering approach confirmed our
PCA association as it sorted individuals according to
age. In this case, however, brain and blood from the
same individual clustered together, with nuanced distinc-
tions within each individual revealing a first order of
similarity that encompassed BA10 and BA7, followed by
a second node of BA20, and finally a node that included
blood. In this case, the probes that contribute to the
age-related PC4 showed a stronger effect of individual
and a weaker effect of tissue. We previously saw that
PC4 was related to age in the brain tissue only, there-
fore, one may naively expect blood to cluster separately
here. However, probes that have strong projections on
PC4 can still have significant projections on other
individual-specific PCs, as we will show in the following
sections. This results in an increased similarity between
individuals for this probe subset.

Tissue and age-dependent methylation profiles were
enriched for specific CpG densities
Existing evidence suggests that age-related DNA
methylation changes occur at specific genomic locations
[14,27,35]. We tested whether the probes that contribute
significantly to our top five PCs, all of which were asso-
ciated with a biological variable, were enriched or de-
pleted for particular genomic regions and CpG island
classifications.
CpG loci associated with PCs 1, 2, and 3, which differ-

entiate tissues by its broad origin (blood vs brain for



Figure 2 Age-associated PCs validated in independent datasets. The projections of each CpG site onto PC4 and PC5 were used to reconstruct
these PCs in (A) 40 brain samples, (B) 656 blood samples, (C) 96 buccal swabs, and (D) 85 liver samples. r values and P values for each correlation
are shown. PC, principal component.
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Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 Hierarchical clustering of samples by PCs revealed distinct cluster patterns. Sample IDs indicate sample tissue, color tags (bottom) are
mapped to the age of the individual (red: young, green: old). (A) Clustering of samples from a selection of all CpG sites with > 4σ variance across
samples. The first cluster separated blood from brain. Inside the brain region, samples clustered by individual instead of tissue. (B) Clustering of
samples from a selection of CpG sites with ≷ ± 4σ projections in PC1. (C) Clustering of samples from a selection of CpG sites with ≷ ± 4σ
projections in PC4, an age-related PC. PC, principal component; BA10, Broadmann area 10; BA20, Broadmann area 20, BA7, Broadmann area 7; WB,
whole blood.
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PC1) or cellular heterogeneity within a tissue, (fraction
of neuron for PC2; fraction of granulocytes for PC3),
respectively, were primarily enriched in low-density CpG
(LC) regions and depleted in high-density CpG (HC)
contexts (Figure 4A,B,C). This finding was consistent
with previous reports that HC islands were less likely to
contain tissue-specific, differentially methylated regions
[40]. This was true for both positive and negative direc-
tions, meaning that the locations of differing DNA
methylation did not change depending on whether DNA
methylation was higher in one cell or tissue type or the
other. A different pattern emerged for CpGs associated
with age. CpGs predictive of age in all tissues except
Figure 4 PCs showed distinct CpG density category enrichments. Enrichm
with < − 1σ projections (left bar) and > 1σ projections (right bar) compared t
PC1 to PC3 showed an enrichment of LC probes and depletion of HC probes
present in all tissues checked except blood, showed an enrichment of HC
projections. (E) PC5, the age pattern present in all the tissues checked, was en
methylation with age) and was enriched in LC probes for negative projec
CpG island; IC, intermediate density CpG island; LC, low-density CpG islan
blood (PC4) were enriched for HC contexts and de-
pleted in LC contexts, irrespective of whether DNA
methylation was gained (negative projections) or lost
(positive projections) with age (Figure 4D). While HC
enrichment/LC depletion was also found for CpGs asso-
ciated with age in all tissues (PC5), it was limited to
those CpGs where DNA methylation increased with age
(Figure 4E). In contrast, CpGs where DNA methylation
was lost with age (negative projections) tended to be
enriched in intermediate and low CpG contexts and de-
pleted in HC (Figure 4E). This discordance in genomic
locations of gain or loss of DNA methylation between
the two signatures of age was interesting. The pattern
ent and depletion of CpG density categories in subsets of CpG sites
o the background total 450K CpG sites (central bar). (A-C) Tissue-related
irrespective of the sign of the projection. (D) PC4, the age pattern
probes and depletion of LC probes in both positive and negative
riched in HC probes for positive projections (CpGs show increased
tions (CpGs show decreased methylation with age). HC, high-density
d; PC, principal component.
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apparent in PC5 showing gain in DNA methylation at
HC regions and loss at LC regions was consistent with
published reports that HC islands lose DNA methylation
with age [14,25,26]. The finding that PC4 had a different
pattern, where high-density regions showed both gains
and losses in DNA methylation with age, first indicates
that the signatures delineated by PCs 4 and 5 were in-
deed occurring at different sites. Also, since PC4 was
not associated with age in blood, it suggested that this
pattern of gain of DNA methylation at HC regions may
be tissue specific. Together, these results reinforced the
idea that these were two independent signatures of age.
We next used a similar approach to address whether

subsets of probes are enriched for introns or exons. We
observed that probes associated with tissue differenti-
ation (PCs 1 to 3) are enriched for introns and depleted
in exons (Additional file 9: Figure S9A,B,C). PC4 showed
a slight tendency for the opposite pattern, enrichment
for exons and depletion for introns, while PC5 again
showed enrichment that was dependent on the sign of
the projection score. Positive PC5 scores (increased
DNA methylation with age) showed enrichment in exon
CpGs, while negative scores (decreased DNA methylation
with age) showed enrichment in intron CpGs (Additional
file 9: Figure S9D,E).

CH methylation was associated with specific tissue and
cell types
DNA methylation has also been observed at non-CpG
sites, sometimes referred to as CH sites [48,49]. Such
sites are especially prevalent in the brain. The 450K
array contains 3,091 non-CpG probes, thus allowing us
the opportunity to determine whether this alternative
form of DNA methylation was associated with our vari-
ables. In PC1, we observed an enrichment of non-CpG
sites for probes with negative projections (probes more
methylated in brain than blood, Additional file 10: Figure
S10A,F). For PC2, we observed that probes with positive
projections were enriched for non-CpG (methylation
increases with neuron fraction, Additional file 10: Figure
S10B,F). This strongly suggested that non-CpG methyla-
tion was not only higher in brain than in blood, but that
the brain enrichment was mostly due to neurons as
opposed to glia. These two findings were both supported
by previous studies, which also show more non-CpG
methylation in neurons than other tissues [28]. PC3
showed a general depletion of non-CpG for both pro-
jection signs, suggesting that non-CpG sites did not
play an important role in white blood cell composition
(Additional file 10: Figure S10C,F). The age-related
PCs, PC4 and PC5, showed a slight enrichment of non-
CpG sites in the probes where methylation increases
with age (positive projections in PC4 and negative in
PC5, Additional file 10: Figure S10D,F).
Distinct promoter DNA methylation signatures associated
with tissue differentiation and aging
Given the association between promoter DNA methyla-
tion and gene expression, we next explored whether dif-
ferences in promoter DNA methylation existed between
CpGs associated with either tissue differences or age. To
unambiguously associate only one promoter with a gene,
we focused this analysis on ‘lone genes’ (genes that have
no other promoters within 5 kb of the transcriptional
start site (TSS), n = 16,344). This approach resulted in
increased rigor by eliminating sites that might map to
more than one gene. We found 60,846 probes on the
450K array that were situated within 2.5 kb distance
from the transcription start site (TSS) of a ‘lone gene.’
By design, the content of the 450K array is biased to-
wards CpGs located within 1 kb up and downstream
from the TSS (Figure 5A). We used this as a background
distribution for evaluating the spatial enrichment of spe-
cific probe sets (Additional file 11: Figure S11).
Visualizing the statistically significant locations with

respect to the TSS of probes associated with our first five
PCs as a heatmap revealed several interesting differences
and distinct patterns (Figure 5B). First, tissue- and cell-
type-specific CpGs (PC1 to PC3) were generally enriched
in regions more than 500 bp away from the TSS. This pat-
tern was especially significant in the brain-related profiles
in PC1 and PC2. In PC3, the blood composition pattern,
the Z-scores were smaller in magnitude, but still showed
this overall trend. We further observed some direction-
dependent enrichment. In the neuron-composition PC
(PC2), we observed that CpGs where methylation de-
creases as neuron fraction increases (negative projections)
were enriched away from the TSS. For the CpGs where
methylation increases with neuron fraction, the Z-scores
were not as significant as in the negative projections, but
the under-enriched region extended further into the gene
itself, and we observed enrichment in proximity to the
TSS. These patterns were the same as those observed in
PC1 (brain–blood differential methylation). Negative PC1
projections, where the brain tissue was more methylated
than blood, showed the same type of enrichment as posi-
tive PC2 projections (where neurons are more methylated
than glia). This finding suggested that neurons constituted
an important source of differential DNA methylation pat-
tern observed in brain vs blood.
We also observed that CpGs predictive of age in all

tissues examined except blood (PC4) were generally
enriched around the TSS and depleted away from the
TSS. These CpGs showed subtle spatial differences de-
pending on a positive or a negative projection. CpGs for
which methylation decreases with age in the brain (posi-
tive projections) are located close to the TSS (<500 bp
away), while probes that increase with age (negative pro-
jections) are located further from the TSS (from −1,000



Figure 5 Distinct spatial enrichments of PC-associated CpGs. (A) Spatial distribution of CpG probes around the TSS of genes that do not have
any neighboring gene in 5Kbp. (B) Enrichment Z-scores of probes found at each distance for each PC projection threshold subset of probes, with
respect to the background distribution. PC1 to PC3 probes showed a general trend of depletion around the TSS, while they were enriched away
from it. PC4 probes were enriched around the TSS and depleted away from it. PC5 probes had a strong sign-dependent trend, positive projections
were enriched close to the TSS and negative projections were enriched away from the TSS. PC, principal component; TSS, transcriptional start site.
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bp to 1,500 bp from the TSS) and are under-enriched at
the TSS itself (Figure 5B). Thus, probes located close to
the TSS showed a decrease of methylation with age,
whereas probes that increase with age tended to be lo-
cated just upstream of the TSS or within the gene itself.
CpGs predictive of age in all tissues tested (PC5) had a

distinct pattern that was dependent on the direction of
their component score. CpGs for which DNA methylation
increased with age (positive scores) were enriched around
the TSS and in proximal regions of the gene body,
whereas those for which DNA methylation decreased
with age (negative scores) were depleted at the TSS and
enriched in upstream and downstream regions (Figure 5B).
We used our list of 60,846 probes in ‘lone genes’ and

determined the overlap in ‘lone genes’ between our
various PCs. Using only probes with ≷ ± 2σ projection
on each PC (an average of 22,221 probes per PC), we de-
termined the overlap of the ‘lone genes’ associated with
PCs 1, 2, and 3 and then PCs 1, 4, and 5 (Figure 6A,B). We
observed that the overlap between tissue-differentiation
genes and aging genes (PC1 ∩ PC4) and (PC1 ∩ PC5) is
significantly smaller than the overlap between the two
aging sets of genes (PC4 ∩ PC5) (Figure 6B).

PCs were enriched for biologically relevant gene ontology
terms
Lastly, we examined representations of functional categor-
ies that were associated with our first five PCs. Before
assessing functional enrichments, we examined overlap
between positive and negative projections within the same



Figure 6 Overlap of genes associated with specific PCs. (A) Overlap of genes associated to probes with ≷ ± 2σ projection on PCs 1 to 3. (B)
Overlap of genes associated to probes with ≷ ± 2σ projection on PC1 (blood–brain tissue related), PC4 (age in brain), and PC5 (age in brain and
blood). (C) Overlap of the set of genes that contained probes with > 2σ projection with the set of genes with < − 2σ projection, for each PC of
interest. PC, principal component.
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PCs to determine whether they should be examined to-
gether or separately. For each PC, we visualized the over-
lap of the set of genes that contained probes with scores >
2σ with the set of genes with score < − 2σ (Figure 6C).
Taking into account the number of lone genes that con-
tained probes, we calculated the overlap of genes with
positive and negative projections that is expected by
chance. We found that for the tissue-related PCs (PC1 to
3), the overlap is smaller than expected. This suggests that
methylation of tissue-specific probes within the same gene
tended to vary in the same direction with tissue or cell
type. In contrast, for the age-related PCs, we found an
overlap equal to (PC4) and larger (PC5) than expected by
chance. Thus, methylation of age-related probes within
the same gene can vary in opposite directions with age
(Additional file 12: Figure S12).
Gene ontology (GO) analysis using DAVID is pre-

sented in Additional file 13: Table S1 [50]. PC1 positive
projections referred to genes that were more methylated
in blood than in brain and were enriched for clusters in-
cluding neuron projection and axon morphogenesis and
macromolecule catabolism. Negative projections on
PC1, which represent genes that were more methylated
in brain than in blood, were enriched for clusters that
included defense response and response to wounding,
and rho signaling. PC2 positive projections had no
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significantly enriched clusters, while negative projec-
tions, representing sites that are more methylated in glia
than neurons had three significantly enriched categories,
including apoptosis, synaptic transmission, and protein
conjugation. For PC3, positive projections denote genes
more methylated in granulocytes than non-granulocytes,
and were associated with cell motility, inflammation and
defense, and secretion and transport. Negative projec-
tions, sites that were more methylated in granulocytes
than non-granulocytes, were associated with inflamma-
tion and defense and metabolism. In all cases, GO terms
associated with specific PCs reflect the underlying tissue
composition.
For the age-related PCs, PC4 negative projections,

reflecting sites that increased with DNA methylation in
age in all tissues examined except blood, included a
number of categories, including transcription, organ de-
velopment, neuron cell fate, adhesion, and differentiation.
PC4 positive projections had no significant associations.
For PC5 positive projections, representing sites for which
DNA methylation increased with age in all tissues, associ-
ated clusters included developmental processes and tran-
scriptional regulation. PC5 negative projections had no
enrichment. Thus, both age-related PCs had no functional
enrichment categories for sites that lost DNA methylation
with age, while both contained categories related to devel-
opment and differentiation in sites that gain DNA methy-
lation with age. This was consistent with previously
published reports [25,29].

Conclusions
Using matched tissues from different individuals, we
have shown that PCA is capable of simultaneously iden-
tifying independent DNA methylation signatures of a
number of variables of interest. This approach is particu-
larly helpful for those variables which are related to one
another, such as age and white blood cell composition
[16]. By testing the correlation of each variable with each
PC, it is possible to find PCs where one variable is corre-
lated, but the other is not. We were able to find PCs
associated with age that were not correlated with white
blood cell composition, which is known to be a major
difficulty in assessing age-related DNA methylation from
blood [16]. These results have implications for other
studies by indicating the relative contributions of factors
known to cause changes in DNA methylation pattern.
Our results indicated that tissue, cell type, and age, in
that order, all had very important effects on DNA
methylation. Future development of this method could
target clusters of CpGs rather than individual CpGs,
identifying broader regions of variable-associated differ-
ential methylation.
Principal component analysis has been extensively

used in gene expression studies. We show here that
PCA can provide functionally relevant insight into DNA
methylation variation as well. The use of a PCA-based
approach allowed us to overcome difficulties often asso-
ciated with epigenetic studies. The most common
method for analyzing DNA methylation data is linear
modeling. PCA complements from linear modeling, but
differs in two primary ways: first, PCA does not assume
a particular linear (or non-linear) relationship between
the variable of interest and the DNA methylation profile
and second, PCA uses a Z-score to assign a confidence
to how strongly a particular PC accounts for a given
CpG’s methylation pattern. These differences in many
cases can result in benefits to performing PCA. For ex-
ample, one potential caveat with our study was small
sample size, which might not be conducive to deriving
generally applicable relationships, particularly using
traditional methods such as linear modeling. However,
the reproducibility of PCs derived from only 17 subjects
in a much larger cohort suggests that our PCA approach
is an excellent tool to detect a meaningful association
between DNA methylation and biological variables even
when only small sample sizes are available. This work
then highlights the issue of statistical power calculations
in epigenetic research, which has practical relevance for
the design of epigenetic studies. It should also be noted
that both the white blood cell preparation and the brain
samples used here constitute heterogeneous mixtures of
cell types. Since we were able to use established methods
to predict the cellular composition of both tissues, we
could identify specific PCs that associated with cellular
composition and reassure ourselves that our aging signa-
tures in brain and brain–blood did not correlate with dif-
ferences in cellular composition. Finally, it is important to
note that PCs 1 and 3 might have a contribution of hydro-
xymethylation to the signal. We cannot unambiguously
determine whether hydroxymethylation contributes posi-
tively or negatively to these PCs, and ultimately how it
relates to CpG density, promoter spatial enrichment, or
pathway analysis. As hydroxymethylation is generally not
found at promoter regions; it likely has a smaller effect on
our determinations of promoter spatial enrichment [4,51].
Our analysis provides a map of broad patterns of DNA

methylation in two important tissues, and laid some im-
portant ground work on how these patterns were similar
and different across tissues. Future work will be required
to ferret out whether these broad patterns have func-
tional implications. Interestingly, our data provided evi-
dence for the existence of at least two independent DNA
methylation signatures associated with age. The first sig-
nature was observed in all tissues examined, while the
second was found in all except blood. More broadly, this
suggested that epigenetic signatures even for the same
variable could be both tissue specific and tissue inde-
pendent. This is particularly relevant as blood and brain
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originate from different germ layers. Future research in
larger cohorts with carefully ascertained cognitive vari-
ables might reveal potential linkages between these types
of DNA methylation signatures and cognition.

Methods
Data collection
DNA was extracted from samples from the Quebec Sui-
cide Brain Bank using the Qiagen DNAeasy DNA
extraction kit (Qiagen, Valencia, CA, USA). Brain tissue
was obtained from the Douglas-Bell Canada Brain Bank
(DBCBB; Douglas Mental Health University Institute,
Montréal, Québec). All subjects were psychiatrically
diagnosed by means of psychological autopsy, which is a
validated method to reconstruct psychiatric history by
means of extensive proxy-based interviews [52]. Individ-
uals were Caucasian and died suddenly, with no pro-
longed agonal period. Exclusion criteria were a lifetime
trauma exposure, a current DSM-IV axis I psychiatric
diagnosis including any form of substance abuse [53].
Brain tissue dissection was carried out as previously de-
scribed [39]. Briefly, tissues from the left hemisphere
were carefully dissected at 4°C after having been flash-
frozen in isopentene at −80°C. Brain tissue was dissected
and Brodmann areas (BA) identified using reference
neuroanatomical maps. The Research Ethics Board at
the Douglas Mental Health University Institute approved
the project. Signed informed consent was obtained for
each subject from next of kin.
DNA was treated with sodium bisulfite using the

Zymo EZ-DNA kit (Zymo Research, Orange, CA, USA)
according to manufacturer’s instructions. All samples
were randomized before bisulfite treatment, then ran-
domized again before beginning the Illumina array
protocol. DNA was processed and hybridized to a total
of six of the Illumina Infinium HumanMethylation 450
BeadChips (Illumina Inc., CA, USA) according to man-
ufacturer’s instructions, then scanned on an Illumina
HiScan (Illumina Inc., CA, USA). After scanning, data
was imported into Genome Studio and control probes
were examined to ensure data quality, after which data
was exported into R. Next, probes were filtered to re-
move any probes on the X and Y chromosomes
(11,648), probes for which any sample showed a detection
P value greater that 0.01 or fewer than three beads con-
tributing to the signal (27,541), the 65 SNP genotyping
probes, and probes that assess polymorphic CpGs or that
cross-hybridize to the X or Y chromosomes, leaving a total
of 408,576 probes remaining [3]. Background subtraction,
color correction, and quantile normalization were per-
formed on all samples together using the lumi R package,
and peak-based correction was used to normalize Type I
and Type II probes [54,55]. At this point, M values were
exported from R for further analysis using Python.
Principal component analysis
PCA is a mathematical approach that reveals the in-
ternal structure of variation in a data matrix. It calcu-
lates a set of principal components of variation, along
with a set of associated eigenvalues that quantify how
much variation is captured by each principal component
(Figure 1A and Additional file 1: Figure S1A).
We built an N×M matrix of M values, X, where each

row is a CpG from Illumina 450K Human DNA methy-
lation array, and each column is a collected sample.
The mean M-value of each column, �x; was subtracted
(Additional file 1: Figure S1B). Next, the M×M covariance
matrix was calculated from the data and was diagonalized,
getting the corresponding matrix of eigenvectors V
(principal components, PCs) and eigenvalues σ2

i (variance
associated to each PC). Each PC is an M-long vector.
M values are distributed bimodally over the entire col-

lection of CpG probes. This highlights that there are low
methylated probes and high ones. Since PCA calculates
the dominant contributions to the variance, this high-low
variation forms the zeroth PC. It is merely a constant off-
set that shifts the mean methylation from one probe to
the next (Additional file 1: Figure S1C) and accounts for
96% of the variation. We subtracted out this contribution
and considered only the variation in methylation across
samples after this constant offset was taken account of.
To assess potential batch effects, we performed a

Kolmogorov-Smirnov test to determine whether bead
chip or position on the bead chip affected distributions
of PC scores. After Bonferroni correction at a P value
cutoff of 0.01, no chip or position on the chip showed
significantly different scores for PCs 1 to 5, indicating
little contribution of batch in our variable-associated
PCs (Additional file 14: Figure S14).

Projection thresholding
The projection of each CpG site onto the eigenvector
matrix (P = XV) quantifies how much each PC con-
tributes to the pattern seen on the CpG site. Projec-
tion values are approximately normally distributed
with zero mean and variance equal to the associated
eigenvalue. The CpG sites with the largest positive
projections on a given PC represent the CpG sites
where the patterns resemble the PC profile. In con-
trast, large negative projections correspond to the pat-
terns described by the inverted PC (that is, each
component of the PC multiplied by −1) (Additional
file 3: Figure S3).
The selection of the subset of CpGs with the greatest

projections allows us to study the CpG sites responsible
for driving the pattern of interest. We consider a probe
to have a ± nσ contribution from a given PC if its pro-
jection is ≷ ± nσi, where σ2i is the eigenvalue of the
associated PC (Additional file 3: Figure S3).
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Principal component reconstruction
Ideally, we seek to associate the patterns of methylation
for each PC with an observable trait such as age, tissue,
and so on. We can consider the projections as repre-
senting the strength of a ‘vote’ of a given CpG for that
particular PC. If a PC is associated with a trait, we can
construct a trait predictor using these projections.
Given the data matrix X and the projection matrix P we
can reconstruct the matrix of PCs V using V =
norm(XTP) where norm indicates normalization of col-
umns to unity.
The value of this approach is to reconstruct the associ-

ated trait predictors (PCs) in an unknown dataset Y, by
using the associated votes from each CpG from the known
data X. By analogy to the expression above, the new re-
constructed matrix of PCs Ṽ is defined as Ṽ = norm(ỸTP).

Blood and brain composition
The neuron/glia composition of our brain samples was
computed using the publicly available CETS package for
R [42]. To obtain the cell composition of our blood sam-
ples we used a published deconvolution method [18,41].

Hierarchical clustering
To perform hierarchical clustering, we computed the
sample similarities using the nearest point algorithm:

d u; vð Þ ¼ min d
→
ui;

→
vj

� �� �
, where d is the Euclidian dis-

tance, min is the minimum, u and v are two different

clusters, and
→
ui;

→
vj are vectors from the respective clus-

ters. The dendogram was calculated and plotted using
the ‘scipy.cluster.hierarchy’ Matplot library from
Python.

Enrichment of spatial location around the TSS
From the hg19 human genome release, we selected
genes that do not have any neighboring TSS within 5
kbp distance from their own TSS. We found 16,344
genes meeting this criterion, which we call ‘lone genes.’
In order to discard methylation interference from neigh-
boring genes, we selected probes whose distance to the
lone genes’ TSS is smaller than 2.5 kbp. The number of
Illumina 450K Human DNA methylation probes associ-
ated to lone genes was 60,846 after correcting for
poorly performing probes, probes with SNPs, probes
hybridized to multiple locations in the genome, and
those located on the X and Y chromosomes. These
probes mapped to 10,176 out of the total 16,344 ‘lone
genes.’
For a given a subset of probes, we compared their spatial

distribution with that of the background distribution of
probes associated with the lone genes (Nbg = 60, 486). We
selected the subset of probes that have a certain threshold
projection onto the PC of interest, with size Nexp. The
distances of each probe from the TSS were binned (bin
size = 167 bp). For each bin, this gave the number of
probes from the enriched set nexp and background nbg To
obtain an enrichment Z-score, we considered the null dis-
tribution of the enrichment set to be a binomial with mean
μ and variance σ2 with probability p = nbg/Nbg:

μ ¼ nbg
Nbg

Nexp

σ2 ¼ 1−
μ

N exp

� �
μ

Z ¼ nexp−μ
� �

σ

Gene ontology analysis
All the CpG sites that are less than 2.5 kbp away from
the TSS of a lone gene were associated to the corre-
sponding gene. We have calculated enrichments for bio-
logical functions by comparing the features of the genes
contained in a particular CpG subset, to the background
(‘lone genes’ that have probes on them). The GO terms
were obtained using DAVID 6.7 [50,56].

Additional files

Additional file 1: Figure S1. Principal component summary. (A)
Cumulative sum of variance % of each PC. We can observe that 75% of
the total variance is captured by PC1. Ninety percent of the total
variation is captured by the first 13 PCs. (B) Mean methylation M-value of
each sample. (C) PC0 emerged as the most dominant pattern. It had a
horizontal line shape since it is due to a methylation offset between
CpGs that have high values across all samples and CpGs that have low
values. (D) PC6 showed variability across individuals but not across tissues
and it was not correlated with any of the variables measured. (E) PC27
showed tissue-related levels of methylation for BA7 samples. BA10,
Broadmann area 10; BA20, Broadmann area 20, BA7, Broadmann area 7;
PC, principal component; WB, whole blood.

Additional file 2: Figure S2. Scatter plot of PCs vs sample features. PC1
was correlated with tissue of origin. PC2 was correlated with neuron
proportion in brain samples. PC3 was correlated with granulocyte
proportion of whole blood samples. PC4 was correlated with age in brain
samples but not in whole blood samples. PC5 was correlated with age in
both brain and whole blood samples. BA10, Broadmann area 10; BA20,
Broadmann area 20, BA7, Broadmann area 7; PC, principal component;
WB, whole blood.

Additional file 3: Figure S3. Projection thresholding. (Top) Histogram
of the 450K probe projections for PC1. (Bottom) Six probes with different
positive and negative scores. Positive scoring probes are more
methylated in the blood than in the brain, whereas negative scoring
probes are more methylated in the brain than in the blood. The similarity
between the probe profile and PC1 (Figure 1A) increases with the
magnitude of the score value. PC, principal component.

Additional file 4: Figure S4. Variance across samples in each tissue.
Line plots show the variance distributions; bar plots show the percentage
of total variance on each tissue. (A) Original data. (B) Data without cell
type contribution. Blood was significantly more variable across samples
than brain. BA10, Broadmann area 10; BA20, Broadmann area 20, BA7,
Broadmann area 7; WB, whole blood.

http://www.epigeneticsandchromatin.com/content/supplementary/s13072-015-0011-y-s1.png
http://www.epigeneticsandchromatin.com/content/supplementary/s13072-015-0011-y-s2.pdf
http://www.epigeneticsandchromatin.com/content/supplementary/s13072-015-0011-y-s3.png
http://www.epigeneticsandchromatin.com/content/supplementary/s13072-015-0011-y-s4.pdf
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Additional file 5: Figure S5. PCs for which blood patterns and brain
patterns correlated with each other. This subset of PCs captured 33.1% of
the non-tissue-specific variation (PCs after PC3). The first 8 patterns have
positive correlations and they capture 74.5% of the variance of the correlating
subset; the following 11 patterns have negative correlations and represent
25.5% of the variance of the subset. PC, principal component.

Additional file 6: Figure S6. Correlation of blood and brain methylation
patterns. We show the variance captured by individual-specific PCs (PCs
after PC3) classified by the correlation of DNA methylation patterns in the
brain and blood.

Additional file 7: Figure S7. PCA performed on each tissue separately.
All brain tissues (BA10, BA20, BA7) showed a first PC that correlated with
neuron proportion (A-C) and a second one that correlated with age (E-G).
Whole blood (WB) samples showed two PCs that correlated with granulocyte
proportion (D, H) and no PCs correlating with age of participants (not shown).
BA10, Broadmann area 10; BA20, Broadmann area 20, BA7, Broadmann area 7;
PC, principal component; WB, whole blood.

Additional file 8: Figure S8. Percentage of datasets with PCs with a
significant correlation (P < 0.05 and P < 0.01) with the age of participants
after cell composition was subtracted. The datasets of different sizes were
generated with random sampling from a larger cohort. We observed that
an age PC can be found with a probability of approximately 60% only in
datasets with >22 samples.

Additional file 9: Figure S9. Enrichment and depletion of intron/exon
categories in subsets of CpG sites with < − σ projections (left bar) and >
σ projections (right bar) compared to the background total 450K CpG
sites (central bar). (A-C) Tissue-related PC1-PC3 showed an enrichment of
intron probes and depletion of exon probes irrespective of the sign of
the projection. (D) PC4, the age signature found in all tissues except
blood showed an enrichment of exon probes and depletion of intron
probes in both positive and negative projections. (E) PC5, the age signature
that was found present in all of the tissues checked was found enriched in
exon probes in positive projections (CpGs increase methylation with age)
and enriched in intron probes in negative projections (CpGs decrease
methylation with age). PC, principal component.

Additional file 10: Figure S10. Enrichment and depletion of CpG/
non-CpG categories in subsets of probes with < − σ projections (left
bar) and > σ projections (right bar) compared to the background total
450K probes (central bar). PC1 showed an enrichment of non-CpG sites
for probes with negative projections (probes more methylated in brain
than blood) (A). For PC2, probes with positive projections were
enriched for non-CpG (methylation increases with neuron fraction) (B).
PC3 showed a general depletion of non-CpG for both projection signs
(C). The age-related PCs, PC4 and PC5, showed a slight enrichment of
non-CpG sites in the probes where methylation increases with age
(positive projections in PC4 and negative in PC5) (D,F). (E) Projections
of non-CpG sites in each PC normalized by the standard deviation of all
450K probe projections in the PC. PC, principal component.

Additional file 11: Figure S11. Scheme of the construction of spatial
enrichment heatmaps. In gray we show the background number of
probes in each distance bin. Error bars show the standard deviation of a
binomial distribution. The color plot is a hypothetical example of an
experimental distribution of probes. The number of standard deviations
away from the mean background (Z-score) is mapped to a color, where
red corresponds to enrichment and blue corresponds to depletion. TSS,
transcriptional start site.

Additional file 12: Figure S12. Overlaps of genes containing probes
with positive and negative 2σ projections on the first five PCs. The
independent-case overlaps were calculated as the product of the
observed probabilities of belonging to each gene set.

Additional file 13: Table S1. List of GO term enrichment results from
DAVID.

Additional file 14: Figure S14. Distribution of PC scores sorted by chip
and row position for the evaluation of possible batch effects. Kolmogorov-
Smirnov tests indicated that all distributions were significantly similar. BA10,
Broadmann area 10; BA20, Broadmann area 20, BA7, Broadmann area 7; PC,
principal component; WB, whole blood.
Abbreviations
BA7: Broadmann area 7; BA10: Broadmann area 10; BA20: Broadmann area
20; GO: Gene ontology; HC: High-density CpG island; IC: Intermediate density
CpG island; KS: Kolmogorov-Smirnov; LC: Low-density CpG island;
PCA: Principal component analysis; PC: Principal component;
TSS: Transcriptional start site.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PF performed the analyses, generated the figures, and drafted the
manuscript. MJJ assisted with the study design, interpreted the results, and
drafted the manuscript. MM assisted with the study conception, advised on
the study design, assisted with the interpretation of results, and revised the
manuscript. EE assisted with the study design and analysis and revised the
manuscript. GT conceived of the study, participated in the study design, and
revised the manuscript. MSK conceived of the study, advised on the analysis
and figures, and revised the manuscript. All authors read and approved the
final manuscript.

Acknowledgements
We thank Lucia Lam for excellent technical assistance. MSK is the co-lead of
the Biology Working Group of the Canadian Longitudinal Study of Aging
and the Canada Research Chair in Social Epigenetics. This study was supported
by funds from NSERC (EE), Brain Canada/Garfield Weston Foundation (MSK, MJM,
GT), and NeuroDevNet NCE (MSK). MJJ was supported by a Mining for Miracles
Post-doctoral fellowship from the Child and Family Research Institute. MJM and
MSK are Senior Fellows of the Canadian Institute for Advanced Research.

Author details
1Department of Physics, Simon Fraser University, 8888 University Drive,
Burnaby, BC V5A 1S6, Canada. 2Centre for Molecular Medicine and
Therapeutics, Child & Family Research Institute, 950 W 28th ave, Vancouver,
BC V5Z4H4, Canada. 3Department of Medical Genetics, University of British
Columbia, 950 W 28th ave, Vancouver, BC V5Z4H4, Canada. 4Ludmer Centre
for Neuroinformatics and Mental Health, Douglas Mental Health University
Institute, McGill University, 6875 Boulevard Lasalle, Verdun, QC H4H 1R3,
Canada. 5Singapore Institute for Clinical Sciences, 30 Medical Drive,
Singapore 117609, Singapore. 6Canadian Institute for Advanced Research,
Toronto, ON, Canada. 7Department of Psychiatry, McGill University, 6875
Boulevard Lasalle, Verdun, QC H4H 1R3, Canada.

Received: 15 January 2015 Accepted: 21 April 2015

References
1. Illingworth RS, Bird AP. CpG islands–‘a rough guide’. FEBS Lett. 2009;583:1713–20.
2. Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M, et al.

Distribution, silencing potential and evolutionary impact of promoter DNA
methylation in the human genome. Nat Genet. 2007;39:457–66.

3. Price ME, Cotton AM, Lam LL, Farré P, Emberly E, Brown CJ, et al. Additional
annotation enhances potential for biologically-relevant analysis of the
Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics
Chromatin. 2013;6:4.

4. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, et al. Quantitative
sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base
resolution. Science. 2012;336:934–7.

5. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al.
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian
DNA by MLL partner TET1. Science. 2009;324:930–5.

6. Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, et al.
Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and
during differentiation. Nature. 2011;473:398–402.

7. Song C-X, Szulwach KE, Dai Q, Fu Y, Mao S-Q, Lin L, et al. Genome-wide
profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell.
2013;153:678–91.

8. Wen L, Li X, Yan L, Tan Y, Li R, Zhao Y, et al. Whole-genome analysis of
5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the
human brain. Genome Biol. 2014;15:R49.

http://www.epigeneticsandchromatin.com/content/supplementary/s13072-015-0011-y-s5.png
http://www.epigeneticsandchromatin.com/content/supplementary/s13072-015-0011-y-s6.pdf
http://www.epigeneticsandchromatin.com/content/supplementary/s13072-015-0011-y-s7.png
http://www.epigeneticsandchromatin.com/content/supplementary/s13072-015-0011-y-s8.pdf
http://www.epigeneticsandchromatin.com/content/supplementary/s13072-015-0011-y-s9.jpeg
http://www.epigeneticsandchromatin.com/content/supplementary/s13072-015-0011-y-s10.jpeg
http://www.epigeneticsandchromatin.com/content/supplementary/s13072-015-0011-y-s11.png
http://www.epigeneticsandchromatin.com/content/supplementary/s13072-015-0011-y-s12.pdf
http://www.epigeneticsandchromatin.com/content/supplementary/s13072-015-0011-y-s13.pdf
http://www.epigeneticsandchromatin.com/content/supplementary/s13072-015-0011-y-s14.pdf


Farré et al. Epigenetics & Chromatin  (2015) 8:19 Page 17 of 17
9. Jin SG, Wu X, Li AX, Pfeifer GP. Genomic mapping of 5-hydroxymethylcytosine
in the human brain. Nucleic Acids Res. 2011;39:5015–24.

10. Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LTY, Kohlbacher O, et al. Charting
a dynamic DNA methylation landscape of the human genome. Nature.
2013;500:477–81.

11. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL,
et al. Aging and environmental exposures alter tissue-specific DNA methylation
dependent upon CpG island context. PLoS Genet. 2009;5:e1000602.

12. Slieker RC, Bos SD, Goeman JJ, Bovée JV, Talens RP, van der Breggen R, et al.
Identification and systematic annotation of tissue-specific differentially methylated
regions using the Illumina 450k array. Epigenetics Chromatin. 2013;6:26.

13. Yuen RK, Neumann SM, Fok AK, Penaherrera MS, McFadden DE, Robinson
WP, et al. Extensive epigenetic reprogramming in human somatic tissues
between fetus and adult. Epigenetics Chromatin. 2011;4:7.

14. Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K, et al. Aging
effects on DNA methylation modules in human brain and blood tissue.
Genome Biol. 2012;13:R97.

15. Lowe R, Gemma C, Beyan H, Hawa MI, Bazeos A, Leslie RD, et al. Buccals are
likely to be a more informative surrogate tissue than blood for epigenome-wide
association studies. Epigenetics. 2013;8:445–54.

16. Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in
epigenome-wide association studies. Genome Biol. 2014;15:R31.

17. Zou J, Lippert C, Heckerman D, Aryee M, Listgarten J. Epigenome-wide
association studies without the need for cell-type composition. Nat
Methods. 2014;11:309–11.

18. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ,
Nelson HH, et al. DNA methylation arrays as surrogate measures of cell
mixture distribution. BMC Bioinformatics. 2012;13:86.

19. Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments
in analysis of DNA methylation data. Bioinformatics. 2014;30:1431–9.

20. Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, et al. Factors
underlying variable DNA methylation in a human community cohort. Proc
Natl Acad Sci U S A. 2012;109 Suppl 2:17253–60.

21. Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks.
Trends Genet. 2007;23:413–8.

22. Teschendorff AE, West J, Beck S. Age-associated epigenetic drift: implications,
and a case of epigenetic thrift? Hum Mol Genet. 2013;22:R7–15.

23. Poulsen P, Esteller M, Vaag A, Fraga MF. The epigenetic basis of twin
discordance in age-related diseases. Pediatr Res. 2007;61:38R–42.

24. Horvath S. DNA methylation age of human tissues and cell types. Genome
Biol. 2013;14:R115.

25. Florath I, Butterbach K, Müller H, Bewerunge-Hudler M, Brenner H. Cross-sectional
and longitudinal changes in DNA methylation with age: an epigenome-wide
analysis revealing over 60 novel age-associated CpG sites. Hum Mol Genet.
2014;23:1186–201.

26. Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, et al. Aging of blood
can be tracked by DNA methylation changes at just three CpG sites.
Genome Biol. 2014;15:R24.

27. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide
methylation profiles reveal quantitative views of human aging rates. Mol Cell.
2013;49:359–67.

28. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, et al.
Global epigenomic reconfiguration during mammalian brain development.
Science. 2013;341:1237905.

29. Johansson A, Enroth S, Gyllensten U. Continuous aging of the human DNA
methylome throughout the human lifespan. PLoS One. 2013;8:e67378.

30. Bjornsson HT, Fallin MD, Feinberg AP. An integrated epigenetic and genetic
approach to common human disease. Trends Genet. 2004;20:350–8.

31. Boks MP, Derks EM, Weisenberger DJ, Strengman E, Janson E, Sommer IE,
et al. The relationship of DNA methylation with age, gender and genotype
in twins and healthy controls. PLoS One. 2009;4:e6767.

32. Bell JT, Tsai P-C, Yang T-P, Pidsley R, Nisbet J, Glass D, et al. Epigenome-wide
scans identify differentially methylated regions for age and age-related
phenotypes in a healthy ageing population. PLoS Genet.
2012;8:189–200.

33. Heijmans BT, Mill J. Commentary: the seven plagues of epigenetic
epidemiology. Int J Epidemiol. 2012;41:74–8.

34. Jiao Y, Widschwendter M, Teschendorff AE. A systems-level integrative
framework for genome-wide DNA methylation and gene expression data
identifies differential gene expression modules under epigenetic control.
Bioinformatics. 2014;30:2360–6.
35. McClay JL, Aberg KA, Clark SL, Nerella S, Kumar G, Xie LY, et al. A methylome-wide
study of aging using massively parallel sequencing of the methyl-CpG-enriched
genomic fraction from blood in over 700 subjects. Hum Mol Genet.
2014;23:1175–85.

36. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al.
Tackling the widespread and critical impact of batch effects in high-throughput
data. Nat Rev Genet. 2010;11:733–9.

37. Banovich NE, Lan X, McVicker G, van de Geijn B, Degner JF, Blischak JD,
et al. Methylation QTLs are associated with coordinated changes in
transcription factor binding, histone modifications, and gene expression
levels. PLoS Genet. 2014;10:e1004663.

38. Jiang R, Jones MJ, Sava F, Kobor MS, Carlsten C. Short-term diesel exhaust
inhalation in a controlled human crossover study is associated with changes
in DNA methylation of circulating mononuclear cells in asthmatics. Part
Fibre Toxicol. 2014;11:71.

39. Sequeira A, Mamdani F, Ernst C, Vawter MP, Bunney WE, Lebel V, et al.
Global brain gene expression analysis links glutamatergic and GABAergic
alterations to suicide and major depression. PLoS One. 2009;4:e6585.

40. Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, et al.
Functional annotation of the human brain methylome identifies tissue-specific
epigenetic variation across brain and blood. Genome Biol. 2012;13:R43.

41. Koestler DC, Christensen B, Karagas MR, Marsit CJ, Langevin SM, Kelsey KT,
et al. Blood-based profiles of DNA methylation predict the underlying
distribution of cell types: a validation analysis. Epigenetics.
2013;8:816–26.

42. Guintivano J, Aryee MJ, Kaminsky ZA. A cell epigenotype specific model for
the correction of brain cellular heterogeneity bias and its application to age,
brain region and major depression. Epigenetics. 2013;8:290–302.

43. Chung NC, Storey JD. Statistical significance of variables driving systematic
variation in high-dimensional data. Bioinformatics. 2015;31:545–54.

44. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen S-E, Greco D, et al.
Differential DNA methylation in purified human blood cells: implications for
cell lineage and studies on disease susceptibility. PLoS One. 2012;7:e41361.

45. Ladd-Acosta C, Hansen KD, Briem E, Fallin MD, Kaufmann WE, Feinberg AP.
Common DNA methylation alterations in multiple brain regions in autism.
Mol Psychiatry. 2014;19:862–71.

46. Berko ER, Suzuki M, Beren F, Lemetre C, Alaimo CM, Calder RB, et al. Mosaic
epigenetic dysregulation of ectodermal cells in autism spectrum disorder.
PLoS Genet. 2014;10:e1004402.

47. Ahrens M, Ammerpohl O, Von Schönfels W, Kolarova J, Bens S, Itzel T, et al.
DNA methylation analysis in nonalcoholic fatty liver disease suggests
distinct disease-specific and remodeling signatures after bariatric surgery.
Cell Metab. 2013;18:296–302.

48. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG
methylation is prevalent in embryonic stem cells and may be mediated by
DNA methyltransferase 3a. Proc Natl Acad Sci U S A. 2000;97:5237–42.

49. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al.
Human DNA methylomes at base resolution show widespread epigenomic
differences. Nature. 2009;462:315–22.

50. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of
large gene lists using DAVID bioinformatics resources. Nat Protoc.
2008;4:44–57.

51. Stewart SK, Morris TJ, Guilhamon P, Bulstrode H, Bachman M, Balasubramanian
S. Beck S: oxBS-450K: a method for analysing hydroxymethylation using 450K
BeadChips. Methods. 2015;72:9–15.

52. McGirr A, Alda M, Séguin M, Cabot S, Lesage A, Turecki G. Familial
aggregation of suicide explained by cluster B traits: a three-group family
study of suicide controlling for major depressive disorder. Am J Psychiatry.
2009;166:1124–34.

53. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al.
The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development
and validation of a structured diagnostic psychiatric interview for DSM-IV
and ICD-10. J Clin Psychiatry. 1998;59 Suppl 20:22–33. –quiz 34–57.

54. Du P, Kibbe WA, Lin SM. lumi: a pipeline for processing Illumina microarray.
Bioinformatics. 2008;24:1547–8.

55. Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F.
Evaluation of the Infinium Methylation 450K technology. Epigenomics.
2011;3:771–84.

56. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools:
paths toward the comprehensive functional analysis of large gene lists.
Nucleic Acids Res. 2009;37:1–13.


	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	The majority of variation in DNA methylation was accounted for by tissue differences, cellular heterogeneity within a tissue, and subject age
	Variability of DNA methylation between brain and blood was moderately concordant
	Age-related PCs were more easily detected in the brain than in blood
	Age-associated PCs were replicated in independent datasets
	Hierarchical clustering of data using principal components revealed further relationships between samples
	Tissue and age-dependent methylation profiles were enriched for specific CpG densities
	CH methylation was associated with specific tissue and cell types
	Distinct promoter DNA methylation signatures associated with tissue differentiation and aging
	PCs were enriched for biologically relevant gene ontology terms

	Conclusions
	Methods
	Data collection
	Principal component analysis
	Projection thresholding
	Principal component reconstruction
	Blood and brain composition
	Hierarchical clustering
	Enrichment of spatial location around the TSS
	Gene ontology analysis

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

