
Sánchez-Vega et al. Epigenetics & Chromatin  (2015) 8:14 
DOI 10.1186/s13072-015-0007-7
RESEARCH Open Access
Pan-cancer stratification of solid human epithelial
tumors and cancer cell lines reveals
commonalities and tissue-specific features of the
CpG island methylator phenotype
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Abstract

Background: The term CpG island methylator phenotype (CIMP) has been used to describe widespread DNA
hypermethylation at CpG-rich genomic regions affecting clinically distinct subsets of cancer patients. Even though there
have been numerous studies of CIMP in individual cancer types, a uniform analysis across tissues is still lacking.

Results: We analyze genome-wide patterns of CpG island hypermethylation in 5,253 solid epithelial tumors from 15
cancer types from TCGA and 23 cancer cell lines from ENCODE. We identify differentially methylated loci that define
CIMP+ and CIMP− samples, and we use unsupervised clustering to provide a robust molecular stratification of tumor
methylomes for 12 cancer types and all cancer cell lines. With a minimal set of 89 discriminative loci, we demonstrate
accurate pan-cancer separation of the 12 CIMP+/− subpopulations, based on their average levels of methylation. Tumor
samples in different CIMP subclasses show distinctive correlations with gene expression profiles and recurrence of somatic
mutations, copy number variations, and epigenetic silencing. Enrichment analyses indicate shared canonical pathways
and upstream regulators for CIMP-targeted regions across cancer types. Furthermore, genomic alterations showing
consistent associations with CIMP+/− status include genes involved in DNA repair, chromatin remodeling genes,
and several histone methyltransferases. Associations of CIMP status with specific clinical features, including overall
survival in several cancer types, highlight the importance of the CIMP+/− designation for individual tumor
evaluation and personalized medicine.

Conclusions: We present a comprehensive computational study of CIMP that reveals pan-cancer commonalities and
tissue-specific differences underlying concurrent hypermethylation of CpG islands across tumors. Our stratification of
solid tumors and cancer cell lines based on CIMP status is data-driven and agnostic to tumor type by design, which
protects against known biases that have hindered classic methods previously used to define CIMP. The results that we
provide can be used to refine existing molecular subtypes of cancer into more homogeneously behaving subgroups,
potentially leading to more uniform responses in clinical trials.
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Background
DNA methylation plays an important role for cell fate
commitment, both in disease and normal development
[1-3]. Recurrent patterns of aberrant DNA methylation
are commonly observed in cancerous cells, implying that
this epigenetic alteration is inherently linked to general
mechanisms of oncogenesis and tumor progression [4-7].
Since methylation of specific genomic loci is a potentially
actionable event, the analysis of these patterns may influ-
ence therapeutic approaches aimed at individual subtypes
of tumors [8-10]. Concurrent and widespread hyperme-
thylation of CpG islands in clinically distinct cancer sub-
types is known as CpG island methylator phenotype
(CIMP) [11,12].
The concept of CIMP was introduced more than

15 years ago within the context of colorectal cancer [13],
the cancer type for which it has been most extensively
studied [14-17]. Since then, CIMP occurrence has been
reported in a wide variety of additional tumor types (for
a review, see Hughes et al. [11]). However, evidence for
a pan-cancer overlap of individual gene targets is virtu-
ally absent in these previous reports, suggesting a tissue-
specific CIMP program for each type of cancer [18].
In line with this, a number of genes have been impli-

cated in CIMP outcomes in a tissue-specific manner.
For example, the inactivation of mismatch repair gene
MLH1 [13] correlates strongly with CIMP in colon can-
cer. Glioblastoma exhibits mutations in epigenetic regu-
lators such as IDH1/2 and in histone encoding genes
such as H3F3A, whereas CIMP in leukemia is associated
with TET2 mutations (for a review, see Witte et al. [19]).
Despite these tissue-specific differences at the level of in-
dividual genes, there is a growing body of evidence that
shows increased methylation targeting certain groups of
genes within some cancer types [11,19,20]. The methyla-
tion targets are reproducible, not random, and the actual
gene subgroups are strongly associated with specific mo-
lecular and pathological features, which reinforces the
targeted nature of these events. More compelling evi-
dence points to shared similarities in pathway analyses
across tumors [21,22]. For example, targets of polycomb
repressor complex (PRC) are frequently identified within
hypermethylated gene sets and often involve tissue-
specific developmental transcription factors [23]. How-
ever, to date, no consistently methylated targets have
been identified across tumor types to represent a
generalizable CIMP phenotype [19] and the question of
whether or not CIMP is a universal phenomenon across
cancers remains unclear [11].
We present a novel approach to stratify tumors based

on molecular signatures of CIMP that are evaluated in a
unified manner across different cancer types. Our pro-
posed stratification can be used to refine current mo-
lecular subtyping, with important implications in terms
of translation to the clinic. We also show that methyla-
tion levels averaged across a selected set of 89 CpG di-
nucleotides provide enough information to accurately
distinguish CIMP+ tumors from CIMP− tumors across
cancer types. This suggests that these loci are consist-
ently targeted in CIMP across tissues and that average
levels of methylation correlate to CIMP+ status. We
demonstrate numerous statistically significant associa-
tions between CIMP status, genomic functional events,
and clinical annotations that recapitulate several previ-
ously known results from the literature and therefore
provide a means of de facto validation that supports the
adequacy of our data-driven set of CIMP labels for pa-
tient stratification. Our analysis also gives rise to new
biologically plausible hypotheses to be explored in future
follow-up studies.

Results
We analyzed DNA methylation data from the Illumina
HumanMethylation450K platform for 5,253 solid tumors
from 15 different cancer types made available by The
Cancer Genome Atlas (TCGA) and for 51 cultured cell
lines with known cancer (n = 23) or non-cancer (n = 28)
origins made available by The Encyclopedia of Coding
Elements (ENCODE). Based on reports of heteroge-
neous DNA methylation levels across a majority of
tumor subtypes in recent studies [24-28], we hypothesize
that the CIMP designation extends to subpopulations
within the majority of cancer types and, therefore, that
large cohorts of cancer patients may reveal a mixture of
CpG island methylator phenotype positive (CIMP+) and
CpG island methylator phenotype negative (CIMP−)
tumor genomes.

CIMP stratification of solid tumors and human cell lines
For each TCGA cancer type, we examined all probe lo-
cations within CpG islands (CGIs) with variable levels of
DNA methylation by excluding probes with very low
methylation variance (SD < 0.1, based on normalized beta
values between 0 and 1). Probes located in chromosomes
X and Y were also excluded from these sets. To assess the
extent of aberrant hypermethylation in different types of
cancer, we first analyzed genome-wide variation of CGI
methylation in tumors vs. controls (Additional file 1:
Figure S1 and Additional file 2). These plots visually dem-
onstrate the distribution of methylated and unmethylated
probes, whereby a large fraction of the variably methylated
sites have very low levels of methylation in controls and
become aberrantly hypermethylated in tumors (Additional
file 1: Figure S1A). Also, a vast majority of these sites ex-
hibit larger standard deviation in methylation levels across
tumor samples than across controls (Additional file 1:
Figure S1B), which is consistent with previous reports of in-
creased methylation variability in cancer [29]. The number
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of variably methylated probes for each cancer type varied
from 21,945 to 62,606 out of the 485,512 probes in the
array (Table 1).
We examined each cancer type separately and we fo-

cused our analysis on patterns of differential methylation
occurring at sites of minimal methylation in control
samples and increased methylation in tumors. For this,
we selected probes with average methylation levels below
5% across controls and average methylation levels above
25% across tumors. This dual-thresholding approach and
the actual choice of thresholds guaranteed a very small
probability of spurious detections for probe selection, as
we showed using Monte Carlo simulations and random
permutations of probe labels and beta-values (see the
‘Methods’ section). The number of differentially methyl-
ated probes selected for each cancer type ranged from 0
to 2,656 (Table 1, the actual sets of differentially methyl-
ated probes selected for each individual cancer type are
available as Additional file 3). Cases like uterine corpus
endometrioid carcinoma (UCEC) and colon adenocarcin-
oma (COAD), with a known CIMP phenotype [13,24-26],
had 1,430 and 2,656 differentially methylated probes, re-
spectively. Thyroid carcinoma (THCA) was the only type
for which no probes were selected, likely indicating no
methylator phenotype within the actual samples in the
data set that we used, so we excluded it from the rest of
the study.
Table 1 Cancer types, sample sizes and probe-set cardinalitie

Cancer type Variably
methylated
probes

Differentially
methylated
probes

Co

BLCA (bladder urothelial carcinoma) 49,148 338 20

BRCA (breast invasive carcinoma) 46,722 1,311 96

COAD (colon adenocarcinoma) 46,168 2,656 38

HNSC (head and neck squamous
cell carcinoma)

44,100 1,228 50

KIRC (kidney renal clear cell carcinoma) 26,148 196 16

KIRP (kidney renal papillary cell
carcinoma)

28,083 40 45

LIHC (liver hepatocellular carcinoma) 51,875 544 50

LUAD (lung adenocarcinoma) 42,822 1,667 32

LUSC (lung squamous cell carcinoma) 40,606 1,430 42

PAAD (pancreatic adenocarcinoma) 27,899 1,602 9

PRAD (prostate adenocarcinoma) 33,718 450 49

READ (rectum adenocarcinoma) 40,496 1,255 7

STAD (stomach adenocarcinoma) 62,606 1,110 2

THCA (thyroid carcinoma) 21,945 0 56

UCEC (uterine corpus endometrioid
carcinoma)

43,040 1,430 46

Probe set cardinalities and sample sizes for the 15 cancer types that were included
samples from our genome-wide methylation study that also appear in the selected
Classification of tumor samples into CIMP subtypes
We stratified samples into groups that are representative
of CIMP status by classifying all tumors within each can-
cer type into three different categories using k-means
clustering of mean methylation values computed over
the tumor-specific probe sets (Figure 1A and Additional
file 2). We labeled tumor samples with the lowest aver-
age levels of methylation as CIMP− and those with the
highest average levels of methylation as CIMP+. We
noted that clustered heat maps of the data show a gradi-
ent of DNA methylation levels across the probe sets
from CIMP− to CIMP+. For the purposes of our subse-
quent computational and functional analysis, we focused
on these two sample categories and excluded tumors
assigned to the intermediate group (that we refer to as
CIMPi). Eliminating samples classified as CIMPi allows
unambiguous classification of tumors with strong bio-
logical differences that are most representative of CIMP
extremes, at the price of a reduced effective sample size
for statistical comparisons. We assessed the robustness
of our sample stratification across a wide range of probe
selection thresholds and found that the actual choice of
cutoff values did not change our assignment of CIMP+/−
labels in a relevant manner (see Additional file 2). Also,
the CIMP+/− groups remained largely unaltered when
probes were chosen using an alternative strategy based on
variance-guided feature selection (Additional file 2). The
s

ntrol Tumor CIMP- CIMPi CIMP+ CIMP− CIMP+

pan-cancer pan-cancer

201 78 84 39 43 14

676 270 244 162 76 47

274 96 92 86 71 60

426 156 186 84 115 55

0 296 126 94 76 97 65

147 60 59 28 NA NA

151 45 61 45 NA NA

437 161 169 107 67 48

359 140 142 77 32 11

65 16 33 16 NA NA

248 74 122 52 NA NA

96 31 39 26 22 22

260 109 95 56 NA NA

508 NA NA NA NA NA

407 155 139 113 54 34

in our analysis. The last two columns show the number of CIMP+ and CIMP−
functional event data matrix from Ciriello et al. [27].
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Figure 1 CIMP+ and CIMP− samples across cancer types. (A) Heat maps showing differentially methylated probes for each individual cancer
type. Rows and columns represent samples and selected probes, respectively. Color side bars show tumor vs. control labels, as well as CIMP+,
CIMPi, and CIMP− labels resulting from k-means clustering on the vector of average methylation values computed over differentially methylated sites. Rows
were ranked from top to bottom in decreasing order of average methylation computed over selected probes. Columns were ordered horizontally using
hierarchical correlational clustering. White dashed horizontal lines were used to highlight different subgroups based on CIMP status. (B) Average sample
methylation computed over the sets of variably methylated probes (horizontal axes) vs. average sample methylation computed over the set of
selected differentially methylated probes (vertical axes). For each plot, we provide the Spearman rho coefficient and the corresponding P-value.
(C) PCA results where samples are projected onto the first two principal components. PCA was computed using data for all variably methylated
probes within each cancer type. For each plot, we provide the corresponding percentage of variance explained (PVE) by the first two principal
components. In panels (B) and (C), each point represents an individual sample and samples are colored according to their CIMP status, using the
same color labels as in (A). THCA was excluded from the three panels because no differentially methylated probes had been selected for it.
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number of control, tumor, CIMP+, CIMP−, and CIMPi
samples for each cancer type is provided in Table 1 (indi-
vidual sample labels are available as Additional file 4).
We questioned whether aberrant methylation repre-

sents a more widespread alteration of the genomic land-
scape by exploring correlations between the differentially
methylated probe sets selected for each tissue type and
the much larger sets of variably methylated probes in
CpG islands (Figure 1B). These probe sets differ in size
by an order of magnitude (Table 1). The strong correl-
ation indicated that average levels of methylation mea-
sured over the relatively small sets of differentially
methylated probes recapitulated the same levels mea-
sured over the larger, more extensive sets involving tens
of thousands of CpG dinucleotides located in CpG
islands across the genome. This conclusion indicates
that a wide-spread aberrant methylation process occurs
and that it can be modeled within each individual cancer
type by a distinct set of differentially methylated probes
that exhibit a large and consistent magnitude of effect.
This finding was further supported by principal compo-
nent analysis (PCA) plots computed over the large sets
of variably methylated probes, where our CIMP classifi-
cation labels were always grouped in spatially coherent
clusters with the CIMPi tumors separating the CIMP+
from the CIMP− group (Figure 1C).
In order to further investigate similarities in CIMP

across different cancer types, we drew pan-cancer heat
maps of the entire set of samples, pooling together tu-
mors and controls from different cancer and tissue types
(Figure 2). We considered data from a reference set of
8,492 probes representing the union of our tissue-
specific sets of differentially methylated loci. When we
looked at hierarchical correlational clustering of beta
values, we observed that tumors clustered according to
cancer type (Figure 2A), which was consistent with pre-
vious reports of tissue-of-origin largely characterizing
DNA methylation patterns in tumor cells [21]. In con-
trast, when we ranked samples according to their aver-
age levels of methylation over the same set of 8,492
probes, we observed that tumors clustered according to
our definitions of CIMP status rather than according to
cancer type (Figure 2B).
Identification of a pan-cancer panel of CIMP markers
After selecting tumor type-specific differential probe sets
for individual cancer types, we searched for discrimina-
tive loci that were consistently chosen across multiple
cancer types. We identified a minimal set of 89 differen-
tial probes that was present in at least 6 of 14 selected
probe sets from different cancer types (Additional file 5:
Table S1). This threshold of 6/14 was chosen as a trade-
off between presence in as many cancer types as possible
and the need to select a sufficiently large number of
probes. We performed a leave-one-type-out (LOTO)
cross-validation analysis in order to assess the ability of
this set of markers to separate CIMP+ from CIMP−
samples. Based on Monte Carlo simulation, the classifi-
cation rates and correlations with genome-wide levels of
CGI methylation were statistically significant for all can-
cer types except kidney renal papillary cell carcinoma
(KIRP) and stomach adenocarcinoma (STAD), which
were consequently excluded from the rest of our study
(Additional file 2). The pan-cancer panel of 89 selected
loci achieved a classification accuracy of 97.57%, aver-
aged over the 12 cancer types with statistically signifi-
cant classification rates (Additional file 5: Table S2).
A pan-cancer ranking of samples based on average

levels of methylation computed over our proposed panel
of 89 markers corroborates that this set can distinguish
CIMP+ from CIMP− samples with very high accuracy
(Figure 2C). Together with the pan-cancer heat maps
presented earlier, these results illustrate that CIMP+ tu-
mors show consistent elevation in average CGI methyla-
tion levels among multiple cancer types (Figure 2B,C),
even though an important fraction of this hypermethyla-
tion is distributed in tissue-specific patterns (Figure 2A).
Additionally, CIMP− tumors tend to have lower average
methylation levels, although these are still higher than
baseline non-cancer controls. The consistent behavior of
the small pan-cancer panel of 89 loci across the



Figure 2 (See legend on next page.)

Sánchez-Vega et al. Epigenetics & Chromatin  (2015) 8:14 Page 6 of 24



(See figure on previous page.)
Figure 2 Pan-cancer clustering of TCGA tumors based on DNA methylation levels. Heat maps show levels of DNA methylation for TCGA tumor
and control samples. Samples were pooled together across 14 cancer types (all except THCA). Each row corresponds to a sample and each column
corresponds to a probe. Color bars show the CIMP status and the cancer type associated to each sample. (A) Heat map showing results for
CIMP+, CIMPi, CIMP−, and control samples over a reference pan-cancer set of 8,492 probes (obtained as the union of type-specific sets of
differentially methylated probes). Rows and columns were ordered using hierarchical correlational clustering. (B) Same as panel (A), but rows
and columns were ranked in decreasing order of average methylation, from top to bottom and from left to right, respectively. (C) Same as panel
(B), but average levels of methylation were computed using our proposed panel of 89 pan-cancer differentially methylated loci. In panels (A) and (B), a
third color bar shows the relative ranking of each sample in terms of average methylation, with black showing the most methylated sample and white
showing the least methylated sample. In panel (C), CIMPi tumors were excluded to facilitate visual comparison of the CIMP+/− categories and, for
probes associated to known genes, the actual gene or genes are included next to each probe identifier.
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evaluated cancer types demonstrates its efficacy in cross-
cancer determination of CIMP status.

Canonical pathways and upstream regulators
An Ingenuity Pathway Analysis (IPA) evaluation of the
genes associated with the differential methylation sites in
individual cancers revealed a subset of canonical pathways
Figure 3 Canonical pathways and upstream regulators associated to select
of canonical pathways associated to genes that are interrogated by selecte
selected probes. Heat map colors show –log(P-values), so that more intens
shows the top 50 scorers based on Fisher’s sum for combining P-values. Ro
to different cancer types. Rows and columns were ordered using hierarchic
that are collectively targeted in the CIMP probe sets
(Figure 3A). Several of these were related to tissue
morphology and development, including regulation of
pluripotency in embryonic stem cells. We also observed
an important enrichment of genes involved in the Wnt/
beta-catenin pathway, pathways involved in glutamate re-
ceptor signaling, and regulators of epithelial-mesenchymal
ed differentially methylated sites across cancer types. (A) Enrichment
d differentially methylated probes. (B) Enriched upstream regulators of
e red color corresponds to higher statistical significance. Each panel
ws correspond to pathways or regulators, while columns correspond
al correlational clustering.



Figure 4 (See legend on next page.)

Sánchez-Vega et al. Epigenetics & Chromatin  (2015) 8:14 Page 8 of 24
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Figure 4 Characterization of CIMP in ENCODE cell lines. (A) Density plot of average site methylation for variably methylated in-CGI probes in cancer
vs. non-cancer cell lines. (B) Same plot for probes in CGI shores and shelves. (C) Density plot showing standard deviation for variably methylated sites.
(D) Heat map showing results from the CIMP classification algorithm. (E) Average cell line methylation computed over selected differentially methylated
probes vs. average methylation computed over variably methylated probes. (F) PCA results showing samples projected onto the first two principal
components and colored according to their CIMP status. (G) Average cell line methylation computed over variably methylated probes (vertical axis)
vs. average methylation computed over set of 89 pan-cancer selected differentially methylated probes (horizontal axis).
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transition (EMT). These pathway enrichments create po-
tentially interesting clusters among the different tumor
types, forming subgroups for head and neck squamous
cell carcinoma (HNSC), UCEC, lung squamous cell car-
cinoma (LUSC), breast invasive carcinoma (BRCA), and
lung adenocarcinoma (LUAD); kidney renal clear cell car-
cinoma (KIRC) and pancreatic adenocarcinoma (PAAD);
and prostate adenocarcinoma (PRAD), rectum adenocar-
cinoma (READ), and COAD. Using the IPA tool, we also
identified a set of recurrent upstream regulators for the
differentially methylated probe set associated with each
cancer type (Figure 3B). These included important mem-
bers of the PRC (SUZ12, EZH2), chromatin remodeling
genes (CTCF, HDAC), histone coding genes (H3F3A),
members of the Wnt/beta-catenin pathway (WNT,
CTNNB1), genes known to be important for embryonic
stem cell differentiation (NANOG, SOX2, POU5F1/
OCT4), and several members of the sonic hedgehog path-
way (SHH, OTX2, PAX6, GLI3).

Assessment of CIMP status in ENCODE cell lines
We applied our computational pipeline for CIMP identi-
fication to methylation data from a heterogeneous panel
of 51 ENCODE cell lines. We evaluated all cell lines
from the ENCODE HAIB track at the UCSC Genome
Browser that had a cancer or non-cancer origin (n = 23
and n = 28, respectively), based on available ENCODE
annotations (Additional file 5: Table S3). The set of vari-
ably methylated probes included 69,186 loci. The overall
methylation patterns at these sites in cancer vs. non-
cancer cell lines resembled our observed patterns for
solid epithelial tumors compared to normal samples
(Figure 4A,B,C). Our feature selection algorithm chose a
set of 8,702 differentially methylated probes. K-means
classification of average methylation values computed
over that set identified 6, 10, and 7 cell lines as CIMP+,
CIMPi, and CIMP−, respectively (Figure 4D). CIMP+
samples included HeLa and Jurkat cell lines, whereas
CIMP− samples included HL60 and Nt2d1. Non-tumor
cell lines were treated as controls in the feature selection
algorithm, and therefore, they show baseline methylation
levels at all selected probe sites. As we had observed in
solid epithelial tumors, the reduced set of differentially
methylated probes were highly correlated with genome-
wide variably methylated probes (Figure 4E) and our
CIMP labels revealed coherent clusters on a PCA plot
(Figure 4F). Also, we noted a strong correlation between
the differentially methylated probe set and the set of 89
tumor-derived pan-cancer loci (Figure 4G), which sup-
ports the consistency of our findings between the cell
lines and the tumor data. In fact, a majority of the 89
pan-cancer probes (80%, 71 of 89) were included in the
cell line specific, differentially methylated probe set.

Pan-cancer neighborhoods of hyper- and
hypomethylation
In assessing pan-cancer patterns of aberrant methyla-
tion, we searched for consecutive probes that show con-
sistent patterns of change. This allowed us to reduce the
number of effective candidate regions that needed to be
evaluated in our subsequent analysis. Using an unsuper-
vised clustering algorithm, we identified probes with
similar levels of differential DNA methylation in the
CIMP+ and CIMP− samples across multiple tissues (see
Additional file 2). Starting from the original set of
485,512 probes in the Illumina array, this approach iden-
tified a total of 105,875 clusters of probes that were dif-
ferentially methylated at statistically significant levels for
at least one of the 12 cancer types under consideration
(Additional file 5: Table S4). About two thirds of the re-
gions (66%, 69,946 of 105,875) were associated with
known genes (that is, fell within 1.5 kb of the annotated
transcripts).
We divided the dataset into regions of pan-cancer

hypermethylation in CIMP+ samples (CIMP + Hyper

regions) by requiring the mean level of methylation in
CIMP+ samples (averaged over all the probes within the
region) to be at least 5% higher than in CIMP− samples
(that is, average differences of at least 0.05 in beta
values) and that this minimum difference be observed
for all 12 cancer types. We defined CIMP + Hypo regions
in an analogous manner, but requiring that average
levels of methylation in CIMP+ samples be at least 5%
lower than in CIMP− samples. The 5% minimum differ-
ence was chosen to enforce non-negligible magnitude of
effect (on top of the statistically significant differences
used to define the clusters) and acted as a strong re-
quirement when imposed simultaneously upon all the 12
cancer types. We identified 6,408 CIMP+ Hyper regions
and 68 CIMP + Hypo regions. A total of 3,892 CIMP+ Hyper

regions were associated with at least one gene, cover-
ing 1,805 distinct genes. A total of 54 distinct genes



Figure 5 (See legend on next page.)

Sánchez-Vega et al. Epigenetics & Chromatin  (2015) 8:14 Page 10 of 24



(See figure on previous page.)
Figure 5 Differentially methylated regions and differentially expressed genes in CIMP+ relative to CIMP- samples from TCGA. (A) Proportion of
gene-associated regions, CIMP + Hyper regions and CIMP + Hypo regions overlapping CGIs, TSSs, 5′ UTRs, first exons, gene bodies, and 3′ UTRs. (B)
Differentially expressed genes exhibiting significant correlation with methylation at associated CIMP + Hyper or CIMP + Hypo regions. The 93 genes
selected in the bottom panel overlapped at least one CIMP + Hyper or one CIMP + Hypo region and exhibited significant levels of Spearman
correlation (FDR < 0.10) in all the 12 cancer types that we analyzed. Top color bars shows genomic locations of probes within each of the 120
CIMP + Hyper and 1 CIMP + Hypo regions overlapping one of those 93 genes. Top heat map shows differences in mean methylation for these 121
regions. Middle heat map shows values of Spearman correlation between methylation within these 121 regions and expression of the 93 associated
genes. Bottom panel shows differential expression (Z-scores) for these 93 genes in CIMP+ vs. CIMP− samples, with red corresponding to genes with
higher expression levels in CIMP+. Rows and columns in the bottom heat map were ordered according to average Z-score, decreasing from left to
right and from top to bottom. Columns in the middle and top heat map were drawn so that genes associated to differentially methylated regions
were shown in the same order as in the bottom heat map. Row order was also chosen to be the same as in the bottom heat map. The number of
array probes located within each CIMP + Hyper or CIMP + Hypo region is shown in parentheses after the corresponding gene name below the differential
methylation heat map.
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were associated with 54 distinct CIMP + Hypo regions.
We identified CIMP + Hypo and CIMP + Hyper regions
appearing concurrently within 18 genes, including five
zinc-finger genes (RNF144A, ZNF727, ZNF536, ZIK1,
and ZSCAN1). These discordant alterations strongly
implicate disruption of the normal regulation of these
genes. Consistent with our prior findings, an IPA ana-
lysis of canonical pathways and upstream regulators
using these differentially methylated regions yielded
results that largely coincided with the ones that we had
reported using differentially methylated probes (as was
shown in Figure 3). Of note, the CIMP+ Hyper region with
the largest minimum increase in average methylation in
every single cancer type (≥30%) was associated with the T-
box transcription factor Brachyury, which has been re-
ported to drive primary tumors towards metastasis under
certain conditions by inducing EMT [30]. Of note, the
probe in the pan-cancer set of 89 loci that exhibited the
largest magnitude of effect in terms of average hyperme-
thylation across samples was also associated to this gene
(Figure 2C). A vast majority of CIMP+ Hyper regions over-
lapped CGIs, which was not the case for CIMP+ Hypo re-
gions (Figure 5A). Furthermore, less than half of the
CIMP+ Hyper regions in the gene-associated set collocated
with known transcription start sites annotated by Illumina
(and a comparable number overlapped gene bodies), sug-
gesting that aberrant hypermethylation in CIMP is not ex-
clusive to gene promoters. However, we cannot rule out
regions of unannotated alternative promoters or unanno-
tated promoters of novel transcripts.

Identification of differentially methylated and differentially
expressed genes
To test hypotheses that DNA methylation events affect
gene regulatory programs, RNA-Seq data generated by
TCGA were used to assess correlations between methyla-
tion and expression for genes overlapping with CIMP+ Hypo

and CIMP + Hyper regions. A subset of 121 regions
associated with 93 genes exhibited significant levels of
Spearman correlation between methylation and expression
in all 12 cancer types, with varying magnitudes of effect in
terms of actual differential expression (Figure 5B). The gene
with the strongest global difference in gene expression was
ADPRH, which is involved in DNA repair through histone
ADP-ribosylation [31] and has been shown to play a role in
tumorigenesis in mice [32]. Additionally, FLI1 (which had
been identified in our selected differentially methylated
probe sets for 8 of 14 cancer types), contained a combin-
ation of CIMP+ Hyper and CIMP + Hypo regions, which
occurred at the gene promoter and the first exon, respect-
ively. Only one CIMP + Hypo region exhibited consistent
levels of significant correlation with expression across all 12
cancer types, located at the 3′UTR of gene PLCL1. We also
identified families of genes showing consistently significant
correlations between expression and differential methyla-
tion, including 14 genes from the protocadherin family and
16 zinc-finger genes. In particular, ZNF154 - which we re-
cently proposed as a pan-cancer biomarker to distinguish
tumors from non-cancer controls [28] - was also part of
this collection.

Analysis of associations between methylator phenotype
and composite functional profiles
One hypothesis to explain the occurrence of CIMP
across different tissues is that it arises due to some
shared underlying genomic alterations or functional
mechanisms. To address commonalities, we used char-
acterizations of TCGA data generated by Ciriello et al.
[27], which consisted of 479 selected functional events
(SFEs) including 116 copy number gains, 151 copy num-
ber losses, mutation of 199 genes, and epigenetic silen-
cing of 13 genes (requiring promoter methylation and
decreased expression). Although not specifically reported
as driver alterations, these events had originally been
chosen due to their relevance in cancer. The study inter-
sected 9 of the 15 TCGA tumor collections from our ana-
lysis: bladder urothelial carcinoma (BLCA), BRCA, COAD,
HNSC, KIRC, LUAD, LUSC, READ, and UCEC.
For each cancer type, we compared the average frequen-

cies associated with each functional event in CIMP+
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samples and CIMP− samples. From a matrix of differential
frequencies, we selected the top 100 functional events
with the highest average absolute differences (Figure 6A).
Events with strong effects in more than one tumor type
included MGMT and MLH1 promoter methylation, as
Figure 6 Frequency of SFE occurrence in CIMP+ vs. CIMP− samples from T
samples minus frequency in CIMP- samples for the top 100 SFEs with the g
to a SFE and each column corresponds to a different cancer type. The colo
deletion, mutation or methylation event). (B) Average number of mutation
Error bars show 95% confidence intervals. Reported P-values were compute
well as mutation of ARID1A, KRAS, BRAF, and PTEN.
Events that were strong but gave mixed results towards
the CIMP phenotype included mutation of TP53, PIK3CA,
FBXW7, and several amplification and deletion regions.
We performed an aggregation analysis where we looked
CGA. (A) The heat map shows frequency of occurrence in CIMP+
reatest absolute variation across cancer types. Each row corresponds
r side bar shows the category associated to each SFE (amplification,
s, amplifications and deletions per sample in different types of cancer.
d using a one sided t-test.
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for differences in SFE frequencies between the entire set
of pooled CIMP+ samples and the entire set of pooled
CIMP− samples (including 356 CIMP+ samples and 577
CIMP− samples from all 9 cancer types combined) to test
for the possibility of universal or convergent pathway
events. The top 20 SFEs in terms of differences in fre-
quencies are shown in Table 2, wherein a total of 12 SFEs
showed statistically significant differences (FDR < 0.10). Of
these, four amplification events were significantly more
frequent in CIMP− samples and involved genes such as
PIK3CA, TERC, SOX2, CCNE1, BRD4, and NOTCH3. In
contrast, mutations in six genes (BRAF, PTEN, KRAS,
SETD2, PIK3R1, and PBRM1) and two gene silencing
events (MLH1 and MGMT, for which the smallest FDRs
were recorded) were more frequent in CIMP+ samples.
Of interest within the context of CIMP, PBRM1 is a SWI/
SNF chromatin remodeling complex gene that has been
reported to play a tumor suppressor role across multiple
cancer types [33], and SETD2 is a histone methyltransfer-
ase for H3K36 methylation, which is enriched in the gene
bodies of actively transcribed genes [34]. The remaining
Table 2 Top 20 SFEs in terms of differential frequencies in po

Selected functional event DifFreq Count CIMP+ Fre

MLH1.METHYLATION 0.100 38 0.1

MGMT.METHYLATION 0.113 58 0.1

MFN1.PIK3CA.TERC.GNB4.SOX2.MECOM.
ZMAT3.KCNMB3.ZNF639.KCNMB2..chr3.
168753729.181290583_AMP

−0.094 17 0.0

BRAF..BRAF_MUTATION 0.063 30 0.0

PTEN..PTEN_MUTATION 0.080 47 0.1

KRAS..KRAS_MUTATION 0.091 62 0.1

SETD2..SETD2_MUTATION 0.053 25 0.0

LOC148145.C19orf12.CCNE1..chr19.
29379723.30313894_AMP

−0.044 3 0.0

CACNA1A.BRD4.NOTCH3..
chr19.15367544.15380857_AMP

−0.035 1 0.0

PIK3R1..PIK3R1_MUTATION 0.046 25 0.0

DNM2..chr19.10877710.10887626_AMP −0.024 0 0.0

PBRM1..PBRM1_MUTATION 0.058 43 0.1

ATM..ATM_MUTATION 0.042 25 0.0

TP53..TP53_MUTATION −0.101 143 0.4

ARID1A..ARID1A_MUTATION 0.052 40 0.1

GSTP1.METHYLATION 0.054 44 0.1

SAMD4B..chr19.39837455.39850028_AMP −0.024 2 0.0

TMED11P.CTBP1.SPON2..
chr4.1105313.1243877_DEL

−0.016 0 0.0

KEAP1..KEAP1_MUTATION −0.016 0 0.0

FOSL2.PLB1..chr2.28628327.28860856_AMP −0.017 0 0.0

Data included 356 CIMP+ samples and 577 CIMP− samples. P-values were compute
bold font.
mutations are well known due to their involvement in the
PI3K/PTEN/AKT/mTOR [35] and the Ras/Raf/MEK/ERK
[36] pathways. In particular, both BRAF [37] and KRAS
[38,39] mutations have been linked to CIMP status (high
and low, respectively) in colorectal cancer [37-39]. Despite
these associations, the mechanistic connections to CIMP
are not discernable from the reported functional activities
of these proteins and the prominent driver mutations do
not appear to be responsible for a ‘universal’ methylator
phenotype.
We compared the average counts of copy number

events and mutational events per sample in the CIMP+
and the CIMP− subsets for each individual cancer type
(Figure 6B). CIMP+ samples for COAD, KIRC, LUSC,
and READ exhibited a larger number of mutational
events per sample than CIMP− samples, implicating im-
pairment of DNA repair processes. In contrast, copy
number variation showed significant effects in CIMP−
samples, where amplifications occurred more frequently
in COAD and UCEC tumors, and deletions occurred
more frequently in BRCA and UCEC tumors. However,
oled CIMP+ vs. pooled CIMP− samples

q CIMP+ Count CIMP− Freq CIMP− P-value FDR

07 4 0.01 7.11 × 10−13 3.40 × 10−10

63 29 0.05 2.22 × 10−08 5.30 × 10−06

48 82 0.14 3.06 × 10−06 4.89 × 10−04

84 12 0.02 1.15 × 10−05 1.38 × 10−03

32 30 0.05 2.48 × 10−05 2.38 × 10−03

74 48 0.08 4.07 × 10−05 3.25 × 10−03

70 10 0.02 5.86 × 10−05 4.01 × 10−03

08 30 0.05 2.02 × 10−04 1.21 × 10−02

03 22 0.04 2.98 × 10−04 1.59 × 10−02

70 14 0.02 1.10 × 10−03 5.28 × 10−02

00 14 0.02 1.46 × 10−03 6.35 × 10−02

21 36 0.06 2.37 × 10−03 9.46 × 10−02

70 16 0.03 2.82 × 10−03 1.01 × 10−01

02 290 0.50 2.94 × 10−03 1.01 × 10−01

12 35 0.06 6.16 × 10−03 1.95 × 10−01

24 40 0.07 6.51 × 10−03 1.95 × 10−01

06 17 0.03 1.47 × 10−02 3.76 × 10−01

00 9 0.02 1.55 × 10−02 3.76 × 10−01

00 9 0.02 1.55 × 10−02 3.76 × 10−01

00 10 0.02 1.65 × 10−02 3.76 × 10−01

d using a two-sided Fisher’s exact test. SFEs with FDR < 0.10 are highlighted in
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these events are not always positively correlated, as
shown by the reduction in deletions in COAD CIMP−
samples.
Finally, we used binary classification and regression

trees on these SFEs in order to identify individual fea-
tures that were able to recursively partition the original
set of tumors into increasingly homogeneous subgroups
based on either CIMP status (in the classification case,
Figure 7) or average methylation levels from the variably
methylated probe sets (in the regression case, Additional
file 1: Figure S2). We learned pan-cancer trees by pooling
together samples across different cancer types (Figure 7
and Additional file 1: Figure S2), and we also learned
type-specific trees on individual cancer types (Additional
file 1: Figures S3 and S4). The pan-cancer trees highlight
n=48 n=16 n=8 n=495 n=12 n=8 n=63 n=9 n=7 

PIK3CA
chr3:1687

NKX2, FOXA1,
chr14:34582086-36

PTEN 

LOC148145,C19orf12,CCNE1 
chr19:29379723-30313894 

TP53 C17orf63 
chr17:27093542-27093542 

GSTP1 

GATA3 

GALR1,TMX3,DOK6 
chr18:65215074-77107934 

HERC2, SNURF 
chr15:22615504-31134902 

      SFE is present 
      SFE is absent 

      CIMP+  
      CIMP- 

Methylation 

Mutation 

Amplification 

Deletion 

BLCA BRCA COAD HNSC KIRC

Figure 7 Pan-cancer partitioning of TCGA tumors using a binary classificat
the CIMP+ and the CIMP− categories. Red and green branches illustrate th
nodes show the number of samples and associated fractions of CIMP+ vs. CIM
each subset.
SFEs which are relevant in more than one type of tumor.
For example, MLH1 promoter methylation is observed
in a subset of COAD and UCEC tumors with a very
strong majority of CIMP+ labels. Similarly, a high pro-
portion of CIMP+ labels was observed in samples with
MGMT promoter methylation, combined with either (a)
FBXW7 mutations or (b) APC and KRAS mutations or (c)
absence of FBXW7 and APC mutations (Figure 7). Of
note, subgroups containing these alterations consisted en-
tirely of tumors of the aero-digestive tract (HNSC, LUSC,
COAD, and READ). Notably, MLH1 and MGMT have
been previously associated with two distinct methyla-
tion landscapes in colorectal cancer that exhibited im-
portant differences in terms of KRAS and APC mutation
frequency [40].
n=42 n=12 n=14 n=21 n=31 n=15 n=17 n=95 n=20 

MLH1 

MGMT 

APC PBRM1 

FBXW7 SETD2 

KRAS 

, TERC, SOX2 
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 PAX9 
962989 
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ion tree. Pan-cancer binary tree for classification of tumor samples into
e absence or presence of the corresponding SFE, respectively. Terminal
P− labels, as well as proportions of different cancer types represented in
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In our samples lacking MGMT and MLH1 promoter
methylation, the highest proportions of CIMP+ samples
were observed in a subgroup dominated by KIRC tu-
mors that were characterized by a combination of
SETD2 and PBRM1 mutations. We found co-occurrence
of CCNE1 amplification and TP53 mutations in a sub-
group derived from a mixture of BLCA, BRCA, UCEC,
and LUAD tumors where all the samples were labeled as
CIMP−. By contrast, within these same cancer types,
amplification of a chromosomal region around C17orf63
in tumors lacking amplification of CCNE1 was observed
in a subgroup that contained a higher proportion of
CIMP+ than CIMP− labels. Other copy number events,
such as amplification of the region containing NKX2 and
FOXA1 or deletion of HERC2 were observed in sub-
groups with a majority of CIMP+ samples and a large
fraction of LUAD but also a few BRCA tumors. Deletion
of a region containing GALR1 was observed in a subset
with a majority of CIMP+ tumors that came primarily
from the COAD and HNSC types.
Our pan-cancer regression tree shows that VHL muta-

tions correlate with significant reductions in average
levels of CGI methylation in KIRC tumors (Additional
file 1: Figure S2). Similarly, amplification of two chromo-
somal regions in chromosome 17, including ERBB2 (a.k.a.
HER2), co-occurs with an overall increase in CGI methyla-
tion in a subgroup consisting mostly of BRCA samples
with some LUSC representation. Mutations observed in
the context of decreased average methylation are NSD1 in
HNSC and KDM6A (sharing a mixed subgroup with a
majority of BLCA tumors).
Individual tumor trees were also associated with recur-

rent functional events. For example, our classification
tree for BLCA highlights alterations affecting RB1 and
ARID1A in CIMP+ tumors (Additional file 1: Figure S3),
consistent with previous independent analyses [19,41].
In BRCA, we found a strong association between
CCND1 amplification and CIMP status (Additional file 1:
Figures S3 and S4). Also, the presence of MYC amplifi-
cations delineated a subset of samples that consisted
entirely of CIMP− tumors (Additional file 1: Figure S3).
This is consistent with reports from TCGA identifying
MYC amplification and high-expression in basal-like
breast tumors, which tend to be hypomethylated [42]. In
KIRC, the presence of either mutations or deletions af-
fecting gene SETD2 and methylation of the GSTP1 pro-
moter correlate with an important increase in the
frequency of CIMP+ cases (Additional file 1: Figures S3
and S4). Also in KIRC, we found that deletion of a gen-
omic region containing CDKN2A and CDKN2B on
chromosome 9 is associated with increased levels of CGI
methylation (Additional file 1: Figure S4). This kind of de-
letion has been linked to a more aggressive phenotype of
clear cell carcinoma [43]. In LUSC, methylation of the
RBP1 promoter and amplification of a region containing
KDM5A correlate with an increase in average CGI
methylation (Additional file 1: Figure S4). In UCEC, our
data show that methylation of the MLH1 promoter results
in a very high probability of CIMP+ status. For samples
that do not exhibit this trait, the presence of TP53 muta-
tions is associated with the opposite outcome. Among the
remaining samples, PIK3R1 mutations are linked to in-
creased CIMP+ rates (Additional file 1: Figure S3). Thus,
the presence of tumor-specific mutations provides a po-
tential link to predicting methylation status.

Analysis of associations between methylator phenotypes
and clinical features
We compared our sets of data-driven CIMP labels with
clinical annotations provided by TCGA for individual
samples. First, we note that the sets of controls used in
our analysis covered a range of ages that is similar to the
range of ages covered by the sets of tumor samples for
most cancer types (Figure 8A). This fact rules out age ef-
fects as a confounding factor because our feature selec-
tion algorithm requires selected differentially methylated
probe sites to remain consistently low across controls,
leading to large overlaps in the ages associated with the
three CIMP categories (Figure 8A). In fact, ANOVA re-
sults using the Kruskal-Wallis test fail to reject the null
hypothesis of equal median ages for different CIMP sub-
groups in 9 out of 12 types (after applying Holm’s cor-
rection for multiple hypotheses). The only exceptions
are BRCA, COAD, and KIRC. For these three types, the
median age of CIMP+ patients is higher than the median
age in CIMP− (consistent with an independent study of
CIMP+ status in COAD [11]). We found no statistical
association between CIMP status and gender in any can-
cer type, except KIRC (P = 0.025, Fisher’s exact test with
Holm’s correction), where we observed a significantly
higher frequency of CIMP+ labels in male samples (45%,
58 of 128) than in female samples (22%, 15 of 66).
Whereas mutational events are correlative, an associ-

ation of survival and CIMP status would indicate relevant
subclasses of tumors that could prompt more narrowly
defined intervention strategies. We evaluated survival
curves based on CIMP status for the 12 cancer types in
our study and found significant differences in KIRC,
LUSC, and UCEC (BRCA results were borderline signifi-
cant at 0.06) (Figure 8B). CIMP+ samples exhibited better
survival curves than CIMP− samples in UCEC and LUSC,
whereas CIMP− samples exhibited better survival than
CIMP+ in KIRC and BRCA. Of course, these results must
be interpreted carefully because they result from a univari-
ate analysis that does not explicitly take into account po-
tentially confounding factors.
Consistent with prior knowledge, we also detected a

significant level of statistical association between CIMP
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Figure 8 Associations between CIMP status and clinical annotations. (A) Age vs. CIMP status across 12 cancer types. (B) Overall survival curves for
the four cancer types exhibiting significant differences based on CIMP status (BRCA, KIRC, LUSC, UCEC) and overall survival curves for luminal A
and luminal B subtypes in BRCA based on CIMP status. (C) Microsatellite instability vs. CIMP status in COAD, READ, and UCEC. (D) CIMP status as a
function of anatomic subdivision in COAD. P-values come from a Kruskal-Wallis test for difference in medians in panel (A), a log-rank test for survival
curve differences in panel (B), and Fisher’s exact test in panels (C) and (D). For each survival curve in (B), the number of CIMP−/CIMP+ samples is
provided next to the corresponding P-value.
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status and microsatellite instability (MSI) in the three
cancer types for which this annotation was available
(Figure 8C). These included COAD (P = 3.8 × 10−3; Fish-
er’s test with Holm’s correction), READ (P = 0.011), and
UCEC (P = 3.8 × 10−27). In all cases, a vast majority of
CIMP− samples were microsatellite stable while CIMP+
labels were more frequent among microsatellite instable
samples. These results are consistent with independent
reports of MSI in CIMP-high colorectal tumors [37] and
also with the division between UCEC serous and endo-
metrioid samples (largely CIMP− and CIMP+ in our
analysis, respectively), where endometrioid tumors carry
microsatellite instability and serous tumors do not [26].
Thus, the MSI characteristic appears to be associated
with CIMP+ status and mutually exclusive with TP53
mutations and copy number variation.
We observed statistically significant levels of association

between our CIMP labels and the five categories com-
monly used to catalogue breast tumors [42] (Additional
file 1: Figure S5A; P = 3 × 10−8, Fisher’s exact test). In
effect, the basal and normal-like categories were enriched
in CIMP− samples, the luminal B category consisted
mostly of CIMP+ and the luminal A group contained a
more balanced mixture of CIMP types. This conclusion is
consistent with trends reported by TCGA, where many
luminal B samples showed a hypermethylator phenotype
while basal-like samples were hypomethylated and associ-
ated with very high rates of TP53 mutations [42]. Still,
treatment approaches for breast cancer often consider
hormone responsiveness over subtype classification. In
BRCA samples (Additional file 1: Figure S5A), CIMP+
appeared more frequently in ER+ samples than in ER−
samples (P = 6.7 × 10−5, Fisher’s exact test, Bonferroni
correction). Likewise, a large number of HER2+ tumors
were CIMP+, suggesting applications for methylation inhib-
itors in combination therapy of CIMP+ tumors. In contrast,
a majority of HER2− samples were CIMP− (P= 0.001, Fisher’s
exact test, Bonferroni correction).
In COAD (Figure 8D), we observed a strong associ-

ation between CIMP status and anatomic neoplasm sub-
division (P = 2.4 × 10−6, Fisher’s exact test, Bonferroni
correction). More precisely, there is a progressive decrease
in the frequency of CIMP+ samples along the intestinal
tract from cecum, through ascending, transversal, and de-
scending colon and finishing at the rectosigmoid junction.
This variation appears to be proportional to distance along
the intestinal tract and is consistent with a previous study
of colorectal cancer samples collected from three ana-
tomic locations and assessed at eight CIMP-specific pro-
moters using MethyLight technology [44], as well as
independent reports of a gradual decrease in the fre-
quency of BRAF mutations and microsatellite instability
within this same region of the intestinal tract [45].
In HNSC (Additional file 1: Figure S5B), we also ob-

served a significant level of association between CIMP
labels and anatomic subdivision (P = 5.0 × 10−3, Fisher’s
exact test, Bonferroni correction), with more CIMP+
than CIMP− samples at the oral cavity, buccal mucosa,
and floor of the mouth. However, CIMP− labels out-
numbered CIMP+ labels in the base of tongue, alveolar
ridge, tonsil, and larynx. Also in HNSC, CIMP− samples
exhibited significantly better survival curves for recur-
rence free status than CIMP+ samples (Additional file 1:
Figure S5B).
In KIRC (Additional file 1: Figure S6A), samples labeled

as CIMP+ tended to have higher grade (P = 2.5 × 10−6,
Fisher’s exact test, Bonferroni correction) and higher
pathological stage (P = 1.5 × 10−12, Fisher’s exact test,
Bonferroni correction). They also exhibited higher T pa-
rameters (P = 8.4 × 10−12, Fisher’s exact test, Bonferroni
correction) and M parameters (P = 5.6 × 10−4, Fisher’s
exact test, Bonferroni correction) based on the TMN can-
cer staging notation system, which implies larger pri-
mary tumor sizes and higher distant metastatic spread,
respectively. Together with the survival curves shown in
Figure 8B, these indicators suggest a worse prognosis for
CIMP+ patients than CIMP− patients in KIRC. This is
consistent with our finding of recurrent CDKN2A and
CDKN2B deletions in CIMP+ samples from KIRC patients
mentioned earlier (Additional file 1: Figure S4), which
were independently linked to a more clinically aggressive
phenotype of kidney clear cell carcinoma [43].
In UCEC, we observed a strong association between

CIMP status and histological subtype, wherein all the 68
samples of serous subtype had CIMP− labels and 103 of
161 endometrioid samples had CIMP+ labels, with 58
endometrioid samples being labeled as CIMP− (Additional
file 1: Figure S6B, P = 9 × 10−24, Fisher’s exact test).
These observations agree with our previous finding of
a methylator phenotype occurring in endometrioid
endometrial tumors but not serous endometrial tumors
[25], as well as results reported by TCGA [26]. In fact,
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the association between CIMP status and histological
subtype extends to tumor grade (an indicator of how
quickly a tumor is likely to grow and spread based on
microscopic appearance), where CIMP− samples exhibit
higher grades than CIMP+ samples (Additional file 1:
Figure S6B, P = 9.6 × 10−4, Fisher’s exact test, Bonferroni
correction). In particular, all the high-grade samples were
CIMP−, consistent with the fact that serous endometrial
tumors tend to present higher grades than endometrioid
endometrial tumors [46].

Discussion
Overall, our results support the existence of both com-
monalities and tissue-specific differences in CGI hyper-
methylation patterns across tumors. The most important
similarity found in our analysis is the existence of
consistent levels of average CGI hypermethylation that
correlate with CIMP status and are independent of can-
cer type (Figure 2B,C). A consequence of this is the
identification of a pan-cancer set of 89 genomic loci that
can accurately separate CIMP+ from CIMP− samples
across 12 different cancer types. Our genome-wide ana-
lyses (Additional file 1: Figure S1) show that much of
the focal, cancer-related CGI hypermethylation occurs at
loci that exhibit consistently baseline levels of methyla-
tion in control samples. This finding is particularly obvi-
ous and relevant for gene promoters (Additional file 1:
Figure S7A). These data support a model whereby CIMP
arises through mechanisms of de novo methylation that
are largely reproducible events in the genome, rather
than random spontaneous events. Furthermore, our data
show unequivocally that this happens at a large number
of genomic regions in a coordinated manner (Figure 1).
Importantly, CGI methylation within gene bodies re-
veals that targets of hypermethylation in CIMP+ tumors
are also found outside of promoters (Additional file 1:
Figures S7B,C).
Our results validate previous biological CIMP findings

while unveiling potentially interesting new avenues of re-
search. For example, significantly recurrent functional
events in CIMP+ samples correspond to mutated genes
or silencing of MLH1 and MGMT, while recurrent
events in CIMP− consist primarily of chromosomal am-
plifications and TP53 mutations (Table 2). This suggests
a possible, previously unreported pan-cancer corres-
pondence between the mutually exclusive M class and C
class (groups dominated by mutations and copy number
changes) as defined in Ciriello et al. [27] and the CIMP+
and CIMP− categories, respectively. Similarly, our ana-
lysis of upstream regulators that are shared across differ-
ent sets of differentially methylated probes points to
important members of the PRC such as EZH2 and
SUZ12. This is consistent with previous reports of PRC
targets being affected in CIMP tumors across cancers
[47], but our results involve a much larger collection of
cancer types. While mutations in gene H3F3A, which
encodes histone variant H3.3, have been correlated with
specific DNA methylation subgroups in pediatric glioblast-
oma [19], our analysis of upstream regulators implicates
involvement in most of the cancer types that we evaluated,
with the exception of LUAD and BLCA (Figure 3B). The
same upstream analysis suggests potential relevance in
CIMP of several members of the sonic hedgehog pathway,
which is consistent with tissue-specific patterns of aber-
rant CGI methylation. Loss-of-function mutations in the
demethylating enzyme TET2 have been previously associ-
ated to CIMP in leukemia, and our results reveal recur-
rence of this mutation in CIMP+ for other types such as
UCEC and READ (Figure 6A). Also, mutations of ARID1A
have been linked to MSI and CIMP in gastrointestinal
cancers, and our results indicate importance in UCEC and
BLCA. BRAF mutations, which are perhaps one of the
most commonly accepted indicator events for CIMP in
colorectal cancers, also appear to be relevant in LUAD,
but not the other tumor types.
Some of our results translate into biologically plausible

hypotheses that could lead to refined treatment regimes.
For example, amplification of genes PIK3CA and CCNE1
occur significantly more frequently in CIMP− samples.
Interestingly, both PIK3CA and CCNE1 are directly or
indirectly drug targetable [27], suggesting a possible
combinational therapy aimed at CIMP− patients. Our
pan-cancer regression tree revealed global CGI hypome-
thylation in samples with mutated NSD1, which came
primarily from the HNSC data set (Additional file 1:
Figure S2). The connection between NSD1 and DNA
hypomethylation is likely related to a loss of its histone
H3K36 methyltransferase activity that is a documented
event in Sotos syndrome [48-51]. Our results also
linked mutations in KDM6A, a H3K27me3 demethy-
lase, to decreased CpG island methylation (Additional
file 1: Figure S2). Notably, H3K27me3 recruits the
polycomb repressive complex to specific targets, in-
cluding HOX genes whose regulation is critical during
cell-differentiation [52]. Furthermore, H3K27me3 has
been proposed to ‘pre-mark’ genes for de novo methy-
lation in cancer by favoring the aberrant recruitment
of DNA methyltransferases [53], which suggests that
KDM6A mutations may play an important role for the
establishment of CIMP. Along the same lines, amplifi-
cation of histone demethylase KDM5A, which targets
H3K4me3/me2 active marks [54,55], was shown in our
LUSC regression tree as exhibiting significant correl-
ation with variations in average levels of CGI methyla-
tion (Additional file 1: Figure S4).
The results from our analysis of clinical annotations

reveal ways in which our sample stratification can be
used to refine current molecular subtyping. For example,
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an early study of DNA methylation patterns in breast
cancer by Fang et al. had reported good survival for
CIMP+ tumors [47]. However, more recent analyses
have linked luminal B tumors, which are generally char-
acterized by high levels of CGI methylation, with poor
survival [56,57]. Our results help to clarify this apparent
contradiction by showing that poor survival could be as-
sociated with luminal B patients with CIMP+ status and
that luminal B patients with CIMP− can have good sur-
vival outcomes (Figure 8B). Interestingly, the situation is
reversed in luminal A tumors, where CIMP+ status is
associated to good survival and CIMP− status is associated
with poor survival (as originally reported by Fang et al.).
The lack of statistical significance for the reported differ-
ences might be due to the small number of available sam-
ples (for example, only five samples were available in the
‘luminal B & CIMP−’ category), so the strong magnitude
of effect that we observe should be re-evaluated in the
context of a larger cohort. If confirmed, these results
would suggest that the CIMP+/− and the luminal A/luminal
B categorizations can be combined to build improved prog-
nosis indicators and also that current therapies are better
suited for treating patients in the ‘luminal B & CIMP−’ or
‘luminal A & CIMP+’ categories than they are for treating
patients in the ‘luminal B & CIMP+’ or ‘luminal A &
CIMP−’ subgroups. This is a circumstance that needs to
be further investigated.

Conclusions
Our tissue-specific selection of differentially methylated
probes was important to identify concerted changes in
average methylation levels that occur on top of the epi-
genetic background of tissue-specific repressive events.
We have shown that those concerted changes are rele-
vant for defining phenotypic and clinical differences
among tumor samples. The cross-cancer analysis that
we present also suggests that tissue-specific patterns
may obscure detection of underlying pan-cancer epigen-
etic signals, which are often weak in comparison to com-
peting signatures of cellular differentiation. Still, our
results highlight the existence of several functional
events that are relevant for CIMP across multiple cancer
types and our set of 89 signature loci represents the first
evidence for a pan-cancer methylation signature that can
be used to classify multiple tumor types according to
CIMP status.
We provide a robust, principled molecular stratifica-

tion of solid tumors and cell lines based on CIMP signa-
tures that can be reused in future studies to refine
current molecular subtypes in a wide variety of cancers.
By applying the same computational pipeline to samples
from different tissues and cancer types, our work facili-
tates biologically meaningful cross-cancer comparisons.
The many statistically significant associations between
CIMP status and both genomic and clinical features that
we report in our work show that our CIMP+ and CIMP−
labels define biologically distinct subpopulations whose
phenotypic differences transcend DNA methylation patterns.
Beyond several findings that characterize CIMP status in a
tissue-specific manner, our study highlights the existence
of important commonalities underlying CIMP as a pan-
cancer epigenomic phenomenon. Still, our results are
mostly correlational in nature and the identification of a
unifying mechanism for CIMP across cancer types
remains elusive. In order to further characterize causal
genomic alterations that drive CIMP while answering the
question of whether CIMP itself is a driver or a passenger
trait for tumorigenesis and cancer progression, future
pan-cancer studies shall benefit from extended experi-
mental frameworks that include large scale interventions
based on refined tumor stratification.

Methods
Data
DNA methylation data from TCGA
We downloaded level 3 data for 15 different cancer types
from the TCGA data portal (https://tcga-data.nci.nih.
gov/tcga/). Data had been acquired using the Illumina
HumanMethylation450K platform and had been pre-
processed following TCGA standard protocols. Data
were downloaded in October 2013. The number of
tumor and control samples that we downloaded for each
cancer type is shown in Table 1. For the colorectal
(COREAD) validation experiment, where we compared
our sample classification algorithm with the methylation
clusters defined by TCGA [24], we used a separate data
set from the Illumina HumanMethylation27K platform.
Specifically, we combined all the 320 samples from the
COAD and READ cancer types for which both Illumina
HumanMethylation27K methylation data and methyla-
tion cluster labels (CIMPH, CIMPL, Cluster3, Cluster4)
were available.

Data pre-processing The data that we used had gone
through all the pre-processing associated with level 3
data from TCGA. We discarded all the probes that inter-
rogated locations in chromosomes X and Y, as well as all
probes that were masked as NA (‘Not Available’) for
more than 90% of the samples. In the case of the KIRP
dataset, we excluded nine tumor samples that behaved
as outliers based on PCA plots computed over variably
methylated probes (these tumor samples clustered to-
gether with each other, away from the rest of tumors
and closer to the set of controls; the actual sample IDs
were TCGA-A4-7915-01, TCGA-F9-A4JJ-01, TCGA-G7-
6793-01, TCGA-GL-7966-01, TCGA-P4-A5E8-01, TCGA-
P4-A5EA-01, TCGA-BQ-5879-01, TCGA-BQ-5893-01,
TCGA-BQ-5894-01). We normalized the data individually

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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for every sample in every cancer type using the BMIQ
method [58], which corrects for technical differences be-
tween type I probes and type II probes in the Illumina
HumanMethylation platform. This method was chosen
based on positive reviews from a recent study that com-
pared several normalization methods [59]. A more de-
tailed analysis of the technical biases associated with
different Illumina probe types and their effect upon our
probe selection criterion is provided in Additional file 2.
We also provide an exploratory analysis of the impact of
batch effects upon our sample stratification in Additional
file 2.

DNA methylation data from ENCODE
We used DNA methylation data for 51 human cell lines
from ENCODE (Additional file 5: Table S3). The data
were downloaded from the HAIB Methyl450K track
of the UCSC Human Genome Browser (https://
genome.ucsc.edu/) and had originally acquired using the
Illumina HumanMethylation450K Bead Array platform,
as was the case for the solid epithelial tumors data from
TCGA. Data was pre-processed following the same guide-
lines that we had described for solid epithelial tumors.

RNA-Seq data for TCGA samples
Gene expression RNA-Seq data was downloaded from
the TCGA data portal between January and June 2014
(Additional file 5: Table S5). We used RNA-Seq V2 data
processed at level 3. We used the files ending with
‘rsem.genes.normalized_results’ - these files contain gene
expression values for 20,531 genes. Gene expression in
these files is normalized so that the third quartile of
genes with positive expression is set to 1000, for each
sample. We removed 29 genes that did not have a gene
symbol. The COAD, READ, and UCEC data sets con-
tained data from both the GA and HiSeq sequencing
platforms. We merged these data as follows: if a given
sample was present on both platforms, we kept only the
HiSeq version. If only the GA or HiSeq version was
present, then it was kept. Additional file 5: Table S5 con-
tains the resulting number of samples in each cancer type.

Selected functional event data for TCGA samples
We downloaded data for 479 selected functional events
across 3,299 TCGA samples that were made publicly
available by the cBio group at Memorial Sloan Kettering
Cancer Center (http://cbio.mskcc.org/cancergenomics/
pancan_tcga/), as described in Ciriello et al. [27]. We
used the genomic alterations matrix file containing fil-
tered calls only with date stamp of 5/31/2013.

Clinical data for TCGA samples
All the clinical data that we used in our analysis were
downloaded from the UCSC Cancer Genomics Browser
(https://genome-cancer.ucsc.edu/) [60]. All clinical data
files had time stamp of 12/18/2013. The actual set of
available annotations varied across cancer types. Also,
within each cancer type, the set of available annotations
varied across samples.

Statistical methods
All our computations were done using the R statistical
package (with the only exception of the P-values shown
in Figure 3, which were computed directly using the IPA
software). We used CpG island annotations from UCSC
for hg19 and gene annotations provided by Illumina for
their HumanMethylation450K platform.

Statistical significance and biological relevance for probe
selection thresholds
Our approach to feature selection requires the use of
two parameters that represent the maximum threshold
for average methylation across controls (αC) and the
minimum threshold for average methylation across tu-
mors (αT). A probe will be selected for inclusion into the
differentially methylated set if and only if its average
level of methylation computed over all the control sam-
ples is below αC and its average level of methylation
computed over all the tumor samples is above αT. A
choice of αC = 0.05 and αT = 0.25 seemed biologically
reasonable to us in order to capture probes that exhibit
consistently low levels of methylation in controls while
presenting at least some sufficiently high level of methy-
lation signal in tumors. We show statistical significance
and biological relevance for this choice of thresholds:

(a) In order to evaluate statistical significance, we ran
a random permutation experiment to estimate the
number of false positive detections associated with
this choice of parameters. More precisely, we
considered each individual cancer type separately
and we proceeded as follows: (1) we randomly
shuffled the ‘control’ and ‘tumor’ labels for all the
samples in the data set, (2) we applied our sample
selection algorithm with parameters (αC = 0.05, αT =
0.25) to the randomly shuffled data, and (3) we
counted the number of selected features. These
counts represent the number of features selected
under the null hypothesis of randomly labeled
samples (that is, when tumor vs. control label
assignment is independent of sample identifier), and
therefore, they provide an estimate of the false
positive rate associated to our feature selection
procedure. The number of selected features averaged
over 100 random permutations was below 0.1 for all
types except READ (5.50) and STAD (502.32). The
worst results were obtained for the cancer types with
the lowest number of control samples, since this

https://genome.ucsc.edu/
https://genome.ucsc.edu/
http://cbio.mskcc.org/cancergenomics/pancan_tcga/
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increases the probability of regions with low
methylation being randomly aligned across those
samples. When looking at our actual data, the
number of selected features for READ was 1,255,
which leads to an acceptably low false detection rate.
In the case of STAD, however, the rate between
expected false detections and actual detections was
around 50% (502.32/1,110). Since only two controls
were available for this cancer type at the time of our
analysis, we found that any choice of threshold that
guarantees a sufficiently low rate of false detections
results in no differentially methylated probes being
selected at all, so we decided to exclude STAD from
most parts of our analysis.

(b) We evaluated biological relevance, in the sense of
sufficiently large magnitude of effect. For this, we
computed the average difference in mean per-probe
methylation for samples in the CIMP+ vs. CIMP−
category (where labels had been learned using αC =
0.05 and αT = 0.25) for each individual cancer type
(Additional file 1: Figure S9). For every cancer type, we
observe differences in beta values of at least 0.1 and 0.3
when the variably methylated set and the differentially
methylated set, respectively, are used to estimate average
per-probe methylation in the CIMP+ and CIMP− subsets
of samples. These mean differences are large enough to
be considered biologically relevant (the TCGA marker
paper on ovarian cancer [61], for example, proposes to
use mean per-probe differences of 0.1 and 0.3
between tumors and controls as a relaxed and
stringent threshold, respectively, in order to
establish gene hypermethylation, while others such
as Ciriello et al. rely on a single hard threshold of
0.1 [27]).

Comparison to previously published hierarchical clustering
results from TCGA
For validation purposes and to address whether our clas-
sifications correspond convincingly to known examples
of CIMP phenotypes from the literature, we compared
our method with previously published results from
TCGA that were also based on hierarchical clustering of
DNA methylation levels. We applied our sample classifi-
cation algorithm to an independent set of 320 colorectal
samples (233 tumors and 87 controls) that had been pre-
viously analyzed by the TCGA Network [24] (see the
‘Methods’ section). These samples were used only for
validation purposes and consisted of a mixture of 240
COAD samples (165 tumors and 75 controls) and 80
READ samples (68 tumors and 12 controls). Only a
small subset of these samples overlapped our pan-cancer
analysis (that is, 4 tumors and 38 controls were present
in COAD and 1 tumor and 7 controls were present in
READ from the pan-cancer data sets). Nevertheless, the
data for these 320 TGCA samples derived from the
HumanMethylation27K platform in contrast to the
HumanMethylation450K data depicted in Table 1, enfor-
cing that no measurements were reused in the two separ-
ate analyses. TCGA classified these samples into four
different clusters (CIMPH, CIMPL, Cluster3, Cluster4)
based on their overall levels of DNA methylation. Clusters
CIMPH and CIMPL were described as having higher rates
of methylation than the other two clusters. Our algorithm
identified 86 samples as CIMP+, which all belonged to the
CIMPH or CIMPL clusters (Additional file 1: Figure S10).
Additionally, we identified 59 samples as CIMP−, which
all belonged to the Cluster3 or Cluster4 categories. The
remaining 88 tumors classified as CIMPi. The contingency
table comparing the results from the two classification al-
gorithms yielded a highly significant level of association
based on Fisher’s exact test (P = 2.15 × 10−67).

Selection of pan-cancer differentially expressed genes in
CIMP
We evaluated individually each of the 3,892 CIMP + Hyper

and 54 CIMP + Hypo regions that were associated to at
least one known gene to search for significant correlations
between DNA methylation and gene expression. In fact,
since some of these regions were associated to more than
one gene, we evaluated a total of 4,840 gene-region pairs.
For each pair consisting of a gene and a CIMP+ Hyper/Hypo

region, we computed the Spearman correlation between
the average level of methylation measured by each individ-
ual probe in the region and the RNA-Seq level of expres-
sion measured for the gene. We then selected the probe
with the highest absolute coefficient of correlation as the
cluster representative. We did this separately for each of
the 12 cancer types in our analysis. Figure 5B shows the
set of 121 genomic regions and 93 genes that exhibited
significant levels of correlation (FDR < 0.10) for all 12 can-
cer types.

Analysis of selected functional events from Ciriello et al.
Our analysis of differential frequencies in CIMP+ vs.
CIMP− samples was done by counting the number of
samples in each of the two CIMP categories that pre-
sented each SFE for each individual type of cancer.
Those counts were normalized by the total number of
CIMP+ and CIMP− samples in each cancer type in
order to turn them into frequencies of occurrence. For
each SFE and each cancer type, we subtracted the fre-
quency of occurrence in CIMP− samples from the fre-
quency of occurrence in CIMP+ samples and we applied
hierarchical clustering to draw the heat map shown in
Figure 6A. We then pooled together all samples across
different cancer types, and we computed global pan-
cancer counts of occurrence for each selected functional
event within the CIMP+ and the CIMP− subpopulations.
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We performed Fisher’s exact test to evaluate associations
between CIMP labels and sample counts for each indi-
vidual SFE. We ranked the samples in terms of increas-
ing P-values and we showed the top 20 scorers in
Table 2 (including FDR values to correct for multiple hy-
pothesis testing). For the comparison of the average
number of mutation, amplification and deletion events
per sample shown in Figure 6B, we provide a bar plot
showing mean number of events of each category for
each individual cancer type. Error bars show 95% confi-
dence intervals centered at the estimated means. The P-
values shown in the figure correspond to a one-sided t-test.
Finally, our analysis using binary decision trees was done
with the R package ‘partykit’ [62], which provides tools for
working with tree models for classification and regression.
In the classification case, we restricted the analysis to sam-
ples that had been previously labeled as CIMP+ or CIMP−
and we used the CIMP status as class label. In the regres-
sion case, we worked with all the samples for which both
methylation and SFEs data were available, and in the case
of the pan-cancer tree (Additional file 1: Figure S2), we
used the average level of methylation computed across all
the probes in the pan-cancer union of variably methylated
probe sets (for all the nine cancer types under consider-
ation) as the response or dependent variable. Regression
trees for individual cancer types (Additional file 1: Figure S4)
were learned using the average level of methylation com-
puted across all the probes in the cancer-specific variably
methylated probe set as the response variable.

Analysis of clinical annotations
We divided our analysis of clinical annotations into two
separate parts. First, we evaluated statistical associations
between CIMP status and a number of clinical annota-
tions that we considered inherently relevant to our
study. This included age, gender, microsatellite instabil-
ity, and overall survival. We evaluated associations be-
tween CIMP status and patient age at the time of
diagnostic using the Kruskal-Wallis test for analysis of
variance. We tested for statistical associations between
CIMP labels and categorical clinical annotations using
Fisher’s exact test. In all these cases, we used Holm’s
correction for multiple hypotheses restricted to the
number of cancer types tested for each individual anno-
tation. We compared survival curves for CIMP+ vs.
CIMP− tumors using the log-rank test (the P-values that
we report for survival curve comparisons were not cor-
rected for multiple hypotheses). For the second part of
our study of clinical annotations, we did an exploratory
analysis where we evaluated a set of 300 categorical clin-
ical annotations, most of which were available only for a
small subset of the 12 cancer types. In particular, we ran
a total of 653 individual tests involving specific pairs of
cancer type and annotation. Due to the exploratory
nature of this part of our analysis, we applied the more
conservative Bonferroni correction with a factor of 653
to correct for multiple hypothesis testing.

Additional files

Additional file 1: Supplemental figures S1 to S12.

Additional file 2: Supplemental methods.

Additional file 3: Selected sets of differentially methylated probes
for TCGA samples.

Additional file 4 CIMP labels for TCGA samples.

Additional file 5: Supplemental tables S1 to S7.
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