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Abstract 

Background  Anaplasma phagocytophilum is characterized by a worldwide distribution and distinguished from other 
Anaplasmataceae by the broadest range of mammalian hosts and high genetic diversity. The role carnivores play 
in the life cycle of A. phagocytophilum in Europe is uncertain. Currently, only the red fox is considered a suitable 
reservoir host. In this study, we focused on native and invasive medium-sized carnivore species that live in sympatry 
and represent the most abundant species of wild carnivores in Poland.

Methods  A total of 275 individual spleen samples from six carnivore species (Vulpes vulpes, Meles meles, Procyon lotor, 
Nyctereutes procyonoides and Martes spp.) were screened combining nested PCR and sequencing for A. phagocyt-
ophilum targeting a partial groEL gene with subsequent phylogenetic analysis inferred by the maximum likelihood 
method.

Results  The DNA of A. phagocytophilum was detected in 16 of 275 individuals (5.8%). Eight unique genetic variants 
of A. phagocytophilum were obtained. All detected haplotypes clustered in the clade representing European ecotype 
I. Three variants belonged to the subclade with European human cases together with strains from dogs, foxes, cats, 
and wild boars.

Conclusions  While carnivores might have a restricted role in the dissemination of A. phagocytophilum due to their 
relatively low to moderate infection rates, they hold significance as hosts for ticks. Consequently, they could contrib‑
ute to the transmission of tick-borne infections to humans indirectly, primarily through tick infection. This underscores 
the potential risk of urbanization for the A. phagocytophilum life cycle, further emphasizing the need for comprehen‑
sive understanding of its ecological dynamics.
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Background
Anaplasma phagocytophilum is a gram-negative alpha-
proteobacterium infecting neutrophils. It is character-
ized by a broad distribution [1, 2] and distinguished from 
other Anaplasmataceae bacteria by the widest range of 
mammalian hosts and high genetic diversity [3]. Based 
on studies focused on ecology and genetic diversity, the 
species of A. phagocytophilum consists of at least four 
major ecotypes, of which only ecotype I has been proven 
to infect humans in Europe so far [4, 5]. The main hosts 
of ecotype I are ungulates [6, 7], dogs, cats, horses [8–
10], and various wild mammals in urban or suburban 
areas, such as red foxes (Vulpes vulpes) [11–13], hedge-
hogs (Erinaceus sp.) [14–17], and wild boars (Sus scrofa) 
[18–20]. European ecotype I of A. phagocytophilum is 
mainly transmitted by the tick Ixodes ricinus, character-
ized by low host specificity [21, 22]. To some extent, the 
nest-dwelling I. hexagonus, which is known to parasitize 
hedgehogs, red foxes, and European badgers, is involved 
in the circulation of ecotype I of A. phagocytophilum [23, 
24]. Occasionally, species from other tick genera tested 
positive for the presence of A. phagocytophilum DNA; 
however, their significance is currently unknown [25–28].

In Europe, A. phagocytophilum has been detected by 
molecular methods in wild carnivores from six fami-
lies: Canidae, Ursidae, Mustelidae (Caniformia), Felidae, 
Procyonidae, and Viverridae (Feliformia) [3, 29–31]. 
Although the role of wild carnivores as reservoir hosts for 
this pathogen in Europe is uncertain, some species such 
as raccoon dogs and red foxes are capable of transmitting 
A. phagocytophilum in nature. In this study, we focused 
on native and invasive medium-sized carnivore species 
living in sympatry and representing the most abundant 
species of wild carnivores in Poland. Thus, the objec-
tives of this study were to understand the genetic diver-
sity of A. phagocytophilum in wild invasive and native 
carnivores with overlapping ranges and to investigate 
the possibility of cross-species transmission of genetic 
variants (including zoonotic ones) of A. phagocytophilum 
between these species.

Materials and methods
Study area and sampling
The carcasses of red fox, raccoon dog, raccoon, badger, 
and marten were collected in the forestry of Ruszów (51° 
24′ 00.1″ N 15° 10′ 12.2″ E) in the Lower Silesia County 
in Poland during the predator control, which was part of 
the program for the reintroduction of capercaillie (Tetrao 
urogallus) in the Lower Silesian Forest (project LIFE11 
NAT /PL/428) in the years 2017–2019. All carcasses 
were frozen and transported to the Department of Para-
sitology, University of Wrocław. A total of 275 individual 

spleen samples from six carnivore species, red fox (V. 
vulpes) (n = 48), raccoon dog (Nyctereutes procyonoides) 
(n = 50), raccoon (Procyon lotor) (n = 42), badger (Meles 
meles) (n = 51), beech marten (Martes foina) (n = 57), and 
European pine marten (Martes martes) (n = 27) were col-
lected during necropsy. All samples were kept at − 20 °C 
until further DNA isolation procedures.

DNA extraction, PCR protocols and sequencing
DNA was extracted from 10  mg of spleen using the 
commercial GeneMatrix Bio-Trace DNA Purification 
Kit (EURx, Poland) according to the manufacturer’s 
instructions. PCRs for detection of A. phagocytophilum 
were performed using 2 × PCRBIO Taq Mix Red (PCR 
Biosystems, UK). To determine the groEL ecotype of 
A. phagocytophilum, 1297  bp fragments of the groESL 
operon or (in the case of a missing amplicon) 407 bp of 
the groEL gene were amplified by nested PCR as previ-
ously described [18]. To distinguish two marten species 
(M. martes and M. foina) the rapid PCR–RFLP method 
described by Vercillo et al. [32] was used.

Amplicons were separated by electrophoresis in a 1.5% 
agarose gel stained with Midori Green Advance (Nip-
pon Genetics Europe, Germany) gel stain and visual-
ized under UV light. All PCR products of the expected 
size were excised from the agarose gels, purified, and 
sequenced in both directions using the amplification 
primers. Sequencing was performed by Macrogen Capil-
lary Sequencing Services (Macrogen Europe, the Nether-
lands). The sequences obtained were processed using the 
Geneious 11.1.4 software [33] and compared with those 
available in the GenBank™ dataset by Basic Local Align-
ment Tool (BLAST).

Phylogenetic analysis
The phylogeny of A. phagocytophilum was constructed 
using eight unique groEL haplotypes detected in this 
study along with 65 sequences from GenBank, repre-
senting four ecotypes described by Jahfari et  al. [4] and 
a sequence from Anaplasma  platys used as outgroup. 
Due to unequal sequence lengths, the alignment was cal-
culated in two steps using the MAFFT algorithm ‘Auto’ 
strategy for sequences > 1000  nt and the –add function 
for implementing sequences < 1000  nt in the alignment 
with final length of 1402  nt. The phylogenetic tree was 
inferred by the maximum likelihood method by IQTREE 
1.6.5 [34]. The best-fit evolution model was selected 
based on the Bayesian information criterion (BIC) com-
puted by implemented ModelFinder [35]. Branch sup-
ports were assessed by the ultrafast bootstrap (UFBoot) 
approximation [36] and by the SH-like approximate like-
lihood ratio test (SH-aLRT) [37]. Trees were visualized 
and edited in FigTree v1.4.1 and Inkscape 0.91.



Page 3 of 7Lesiczka et al. Parasites & Vectors          (2023) 16:368 	

Results
The DNA of A. phagocytophilum was detected in 16 of 
275 individuals (5.8%). The number of positive animals 
per species ranged from one (2%) in raccoon dog to five 
(8.8%) in beech marten (Table 1). Three long (> 1000 nt) 
and 13 short (300–400  nt) sequences of the groEL gene 
representing 8 unique genetic variants were obtained. 
The major genetic variant V1 was detected in seven sam-
ples derived from four martens and a single European 
badger, red fox, and raccoon, respectively. Two other 
variants, V2 and V3, were detected in two animals each. 
Variant V2 was found in red fox and racoon dog, and var-
iant V3 was detected in samples from red foxes only. The 
remaining variants V4–V8 were detected in one sample 
each from three martens, one badger, and one raccoon 
(Table  1). The representative sequences were submitted 
to the GenBank under the accession number OR167090-
OR167101. In phylogenetic analyses (Fig. 1), all detected 
haplotypes clustered in the largest clade representing 
European ecotype I [4], which is closely related to iso-
lates from the USA and forms cluster I [5]. Three variants 
(V1, V3, and V8) belonged to the subclade with Euro-
pean human cases and strains from dogs, foxes, cats, and 
wild boars. The remaining five variants were distributed 
among strains isolated from I. ricinus, European hares, 
carnivores, and sequences obtained from ungulates. 

Discussion
The persistence and transmission of tick-borne patho-
gens in ecosystems relies upon abundance of susceptible 
reservoir hosts and their infestation by permissive tick 
species. Studies on European strains of A. phagocytophi-
lum have shown that a wide range of animal species are 
involved in the circulation of this pathogen in different 
ecological niches [38]. Among all Anaplasma spp., A. 
phagocytophilum represents an assemblage with enor-
mous genetic diversity. Clarifying which host species 
harbor specific strains of Anaplasma is important for 
understanding pathogen dynamics and for developing 
measures to reduce disease burden [39]. The role of car-
nivores in the ecoepidemiology of A. phagocytophilum is 

not well understood. While several wild carnivores have 
been implicated as possible reservoirs for A. phagocyt-
ophilum in the US, only the red fox has been considered 
a suitable host in Europe [12, 29, 30, 40–42]. Carnivores 
such as badgers and martens are often overlooked in 
studies. This information gap also affects invasive species 
such as raccoons and raccoon dogs, which were inten-
tionally introduced to Europe and later spread through 
the continent [43]. In our study, we have shown that both 
native (foxes, badgers, martens) and invasive (raccoons) 
carnivores living in sympatry in a forest biotope are 
involved in the circulation of A. phagocytophilum with 
zoonotic potential, finding the genetic variant V1 in all 
examined species except raccoon dogs (Table 1, Fig. 1).

The red fox is the most widespread free-living preda-
tor in the world [44], and its role as a host for A. phago-
cytophilum is well documented [45, 46]. In Poland, A. 
phagocytophilum has been detected in foxes with preva-
lence ranging from 2.7% in the central part of the coun-
try [11] to 34.5% in the northeastern regions [31]. In our 
study, 6.2% of animals tested positive for this pathogen, 
which is consistent with the general trend observed for 
Anaplasma infections in the European fox population 
and supports foxes as a reservoir of A. phagocytophilum.

Only a few previous studies have focused on the role 
of mustelids in the circulation of A. phagocytophilum. In 
this study, 3.9% of badgers and 9.5% of martens were pos-
itive for A. phagocytophilum DNA. Analyses focused on 
badgers and martens from eastern and northern Poland 
detected the DNA of A. phagocytophilum in 18.7% and 
41.7% of animals, respectively [31]. For comparison, the 
number of positive badgers from Spain and The Nether-
lands did not exceed 2% [39, 47]. Data on A. phagocyt-
ophilum in European marten populations are sparse. To 
our knowledge, this pathogen has been detected so far 
in a beech marten from Romania [28] and a pine mar-
ten from Hungary [45] in which ecotype I was recog-
nized [4]. In addition, in mustelids from The Netherlands 
tested by quantitative polymerase chain reaction (qPCR) 
for several Tick Borne Pathogens (TBPs), A. phagocyt-
ophilum was detected in beech martens (1.5%), European 

Table 1  The prevalence of Anaplasma phagocytophilum among invasive and native carnivore species living in sympatry in Poland

a All genetic variants detected in this study belong to ecotype-I [4]

Species Total number of animals No. of positive animals/prevalence Genetic varianta

Red fox (Vulpes vulpes) 48 3/6.2% V1, V2, V3

Raccoon (Procyon lotor) 42 2/4.7% V1, V8

Raccoon dog (Nyctereutes procyonoides) 50 1/2% V2

Beech marten (Martes foina) 57 5/8.8% V1, V6

European pine marten (Martes martes) 27 3/11% V1, V5, V7

Meles meles (Meles meles) 51 2/3.9% V1, V4
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badgers (1.8%), European polecats (Mustela putorius) 
(4.9%), and pine martens (22%) [39]. The observed dis-
crepancies in overall prevalence are likely due to the spe-
cific environmental conditions under which each study 
was conducted, affecting tick occurrence and density. 
The type of tissue and molecular method used to detect 
pathogens may also explain the differences in results [17]. 
The results of our study indicate that martens are signifi-
cantly more susceptible to Anaplasma infection, with a 

consistent increase in prevalence observed in these pred-
ators in all cited studies. The differences in distribution 
patterns between the two species (the pine marten has a 
patchy, fragmented ecogeographic distribution restricted 
to a narrow ecological niche, whereas the beech mar-
ten has a continuous distribution across a wide range of 
natural, semi-natural, and even urban habitats) may have 
implications for the ecoepidemiology of A. phagocytophi-
lum, particularly in the context of rapid landscape change 
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Fig. 1  A Schematic representation of the maximum likelihood phylogenetic tree based on the groEL gene sequences of Anaplasma 
phagocytophilum representing all ecotypes. The highlighted clade representing Ecotype I is displayed in detail; bootstrap values (SH-aLRT/
UFB) above the 70/70 threshold are displayed; sequence of Anaplasma platys used as an outgroup is not shown. B Detailed view of the clade 
representing the Ecotype I/Cluster I; sequences acquired from the GenBank database are marked by their accession number, host, and country 
of origin. Sequences from this study are highlighted in red and marked by the number of a respective variant. The scale bar indicates the number 
of nucleotide substitutions per site. C Map of Poland with a detailed locality of Ruszów Forestry sampling area
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and intense urbanization processes. Nevertheless, the 
current lack of comprehensive studies makes it difficult 
to fully elucidate the relationships. Determining whether 
martens have exclusive host/reservoir competence for 
Anaplasma, Anaplasmataceae, or other tick-borne path-
ogens is a complex task that requires further investiga-
tion. Invasive carnivore species, such as raccoons and 
raccoon dogs, are potential reservoirs for numerous 
TBPs [43, 48], and we also found A. phagocytophilum in 
2% of raccoon dogs and 4.7% of raccoon dogs. The preva-
lence of A. phagocytophilum previously observed in rac-
coon dogs from Poland (35.3%) [31] was higher than in 
Germany (23%) [47]. Kjær and colleagues reported a high 
clustering of A. phagocytophilum-positive ticks on indi-
vidual raccoon dogs in Denmark [49]. Raccoons from 
Austria, the Czech Republic, Germany, and Poland [50, 
51] were tested for the presence of A. phagocytophilum 
DNA, but the pathogen was found in only one raccoon 
from the latest study [43]. Our results show that raccoons 
are adapted to carry European variants of A. phagocyt-
ophilum. Due to their synanthropic nature and frequent 
use of tree holes and burrows of other animal species, 
raccoons can be infested with both questing and endo-
philic ticks, potentially bridging the enzootic cycles of A. 
phagocytophilum. Regarding the epidemiological impact 
of raccoons and raccoon dogs, these invasive species 
should be monitored for their possible involvement in 
the spread of A. phagocytophilum in different geographic 
regions [51].

In recent years, awareness of role of wildlife in TBPs 
and the possible impact on livestock, humans, and their 
pets has increased [52]. Knowledge of potential reser-
voir hosts and their ticks is necessary to develop effec-
tive surveillance and management measures for disease 
outbreaks and parasite cycles in wildlife [53]. Nidicol-
ous ticks such as Ixodes hexagonus, which are commonly 
found on foxes and have been detected on mustelids [39, 
54], deserve future attention as they may play a role as 
vectors for zoonotic variants of A. phagocytophilum. In 
addition, high population densities of predator popula-
tions are possible in European landscapes with hetero-
geneous habitat structure, leading to shared territories 
among red foxes, raccoons, and raccoon dogs [55–57], 
favoring the transmission of vectors and pathogens. The 
increasing distribution and numbers of foxes in urban 
and suburban areas make this species a bridging species 
between natural ecosystems and anthropogenic land-
scapes [39].

Conclusions
While carnivores might have a restricted role in the dis-
semination of A. phagocytophilum due to their relatively 
low to moderate infection rates, they hold significance 

as hosts for ticks. Consequently, they could contribute to 
the transmission of tick-borne infections to humans indi-
rectly, primarily through tick infection. This underscores 
the potential risk of urbanization for the A. phagocytophi-
lum life cycle, further emphasizing the need for compre-
hensive understanding and management of its ecological 
dynamics.
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