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Abstract 

Background  Mosquitoes carry a variety of viruses that can cause disease in humans, animals and livestock. Surveys 
for viruses carried by wild mosquitoes can significantly contribute to surveillance efforts and early detection systems. 
In addition to mosquito-borne viruses, mosquitoes harbor many insect-specific viruses (ISVs). Quang Binh virus (QBV) 
is one such example, categorized as an ISV within the Flavivirus genus (family Flaviviridae). QBV has been specifically 
documented in Vietnam and China, with reports limited to several mosquito species.

Methods  The homogenate obtained from female mosquitoes was cultured on C6/36 (Aedes albopictus) and BHK-21 
(baby hamster kidney) cell lines. Positive cultures were identified by reverse transcription-polymerase chain reaction 
(RT‒PCR) with taxon- or species-specific primers. Next-generation sequencing was employed to sequence the com-
plete genomes of the identified positive samples. Subsequently, phylogenetic, gene homology, molecular evolution-
ary and genetic variation analyses were conducted.

Result  In 2021, a total of 32,177 adult female mosquitoes were collected from 15 counties in Guizhou Province, 
China. The predominant mosquito species identified were Culex tritaeniorhynchus, Armigeres subalbatus and Anopheles 
sinensis. Among the collected mosquitoes, three positive cultures were obtained from Cx. tritaeniorhynchus pools, 
revealing the presence of Quang Binh virus (QBV) RNA sequences. Phylogenetic analysis indicated that the three 
Guizhou isolates, along with the prototype isolate from Vietnam, formed distinct branches. These branches were pri-
marily closely related to other QBV isolates reported in China. Comparative analysis revealed a high degree of nucleo-
tide and amino acid homology between the Guizhou isolates and both Vietnamese and other indigenous Chinese 
isolates. Additionally, nonsynonymous single-nucleotide variants (SNVs) were observed in these strains compared 
to the QBV prototype strain.

Conclusion  This study represents the first report of QBV presences in Cx. tritaeniorhynchus mosquitoes in Guizhou 
Province, China. Phylogenetic tree analysis showed that the three Guizhou isolates were most closely related 
to the QBV genes found in China. In addition, the study of the genetic characteristics and variation of this virus pro-
vided a deeper understanding of QBV and enriched the baseline data of these insect-specific flaviviruses (ISFVs).
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Background
Mosquitoes serve as significant vectors for various arbo-
viruses, causing a significant burden on human health 
globally [1]. These arboviral diseases, including dengue, 
chikungunya, Zika virus disease and Japanese encepha-
litis, pose substantial public health concern [2]. Factors 
such as global warming, population movements, urbani-
zation, increased international trade and modern agri-
culture and animal husbandry contribute to the rapid 
dissemination of mosquito-borne viruses, leading to the 
emergence and expansion of the diseases [3, 4]. Mosqui-
toes of Aedes spp. and Culex spp. are particularly impor-
tant in transmission of flaviviruses (family Flaviviridae), 
alphaviruses (family Togaviridae), bunyaviruses (order 
Bunyvirales) and seadornaviruses (family Reoviridae). 
Flaviviruses have caused numerous emerging and re-
emerging arboviral diseases [5, 6]. Notably, the introduc-
tion of West Nile virus from Africa to New York in 1999 
led to its rapid dissemination and expansion [7, 8]. Simi-
larly, Zika virus, initially discovered incidentally during 
yellow fever surveillance in Uganda in 1947, caused sig-
nificant outbreaks in Americas between 2015 and 2016 
[9]. Additionally, there was a severe dengue outbreak in 
Asia [10, 11]. Despite the prevalence of these viruses, 
effective vaccines are currently lacking for most members 
of Flavivirus genus, except for Japanese encephalitis virus 
and yellow fever virus, presenting a significant health 
challenge.

The flavivirus can be categorized based on their trans-
mission vectors into three groups: tick-borne flavivi-
ruses, mosquito-borne flaviviruses and flaviviruses with 
no known vectors [12, 13]. Additionally, there is a group 
of viruses known as insect-specific flaviviruses (ISFVs), 
which exclusively infect mosquitoes and have not been 
shown to infect humans or animals [14]. The ISFV was 
originally isolated from Aedes aegypti cells and classi-
fied as cell-fusing agent virus, which belongs to the fam-
ily Flaviviridae [15]. Subsequently, Kamiti River virus, 
belonging to the same lineage of ISFVs, was isolated from 
Aedes macintoshi larvae and pupae in 1999 [16]. Besides 
cell-fusing agent virus and Kamiti River virus, several 
other ISFVs have been isolated and characterized, includ-
ing Culex flavivirus [17] and Aedes flavivirus [18]. Since 
1991, the presence of ISFVs has been documented world-
wide [19, 20].

Guizhou Province, with its diverse natural environ-
ment, has been a hotspot for various mosquito-borne 
diseases and viruses, including Japanese encephalitis and 

Zika virus [21–23]. However, post mosquito surveillance 
efforts in Guizhou Province primarily focused on arbo-
viruses, neglecting the presence and potential impact of 
insect-specific viruses (ISVs). Despite the perception of 
ISVs as nonpathogenic to humans, their ability to cross 
species barriers and cause disease should not be underes-
timated, as demonstrated by the identification of Liaon-
ing virus [24].

Quang Binh virus (QBV) in the genus Flavivirus (fam-
ily Flaviviridae) was initially isolated from Culex tritae-
niorhynchus in Quang Binh City, Vietnam, in 2002 [25]. 
Subsequent studies identified QBV in various provinces 
and cities in China [19, 26, 27]. In our study, conducted 
in 2021, we isolated and identified QBV from mosquitoes 
collected in Guizhou Province. This a previously unre-
ported flavivirus in Guizhou Province holds significance 
for understanding its origin, evolution, diversity and dis-
tribution. Furthermore, investigating QBV in mosquito 
viruses holds potential for utilizing ISFVs as biological 
control agents targeting vectors and medically significant 
viruses.

Methods
Survey area and mosquito collection
Mosquitoes were collected from July to September 2021 
from surveillance sites in 15 counties and districts in 
Guizhou Province, China (E 103°36′–109°35′, N 24°37′–
29°13′) (Fig. 1), covering different types of mosquito hab-
itats, including pig pens, cattle pens, field environments 
and other sites. Mosquitoes were collected using a light 
trap, a BG-Sentinel trap with BG lure and CO2 (Biogents, 
Germany) and a portable electroaspirator. Adult mos-
quitoes were frozen at − 20 °C for 30 min and placed on 
ice for morphological identification using a dichotomus 
key [28] and to remove male mosquitoes. Some spe-
cies could not be clearly distinguished by morphological 
characteristics, and these were identified by a molecular 
biology method based on cytochrome C oxidase subunit 
I [29]. Female mosquitoes were then divided into pools of 
approximately 50–100 individuals each, based on species, 
date and location of capture. The pools were stored in liq-
uid nitrogen tanks.

Virus isolation
The virus was successfully isolated using the Vero cell 
culture method [30]. After thawing, the mosquitoes 
were washed three times with precooled and sterile 
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PBS solution (Solarbio, Beijing, China). Each pool of 
mosquitoes was homogenized in 1  ml of RPMI-1640 
medium (Gibco, Beijing, China) using a cryogrinder 
(Jingxin, Shanghai, China) with stainless steel beads. 
Samples were then centrifuged at 12,000×g for 20 min 
at 4 °C. The supernatants were filtered through a 0.22-
μm Millipore filter (25  mm diameter) and inoculated 
into 12-well plates of C6/36 (Aedes albopictus) and 
BHK-21 (baby hamster kidney) cells for 1 h with 100 μl 
filtrates, with two wells for each sample. Next, 1 ml of 
media containing 2% serum was added, and the incu-
bation was continued for 6–7  days. Two wells in each 
plate were used as negative controls. C6/36 cells were 
maintained in RPMI 1640 medium containing 2% fetal 
bovine serum (FBS; Gibco, New Zealand) at 28 °C with 
5% CO2, and BHK-21 cells were maintained in minimal 
essential medium (Solarbio, Beijing, China) contain-
ing 2% FBS at 37 °C with 5% CO2. All media were sup-
plemented with 1% penicillin-streptomycin (HyClone, 
Cytiva, USA). Cells were scored daily for cytopathic 
effects (CPEs), and cultures were harvested from the 
plates when > 75% of the monolayer was affected by 
CPE. Positive cultures were processed three times 
to obtain pure cultures. If no cytopathic effect was 
observed after three passages, the sample was consid-
ered negative.

Virus identification and electron microscopy
Total RNA was extracted from cell-positive cultures using 
the QIAamp Viral RNA Kit (Qiagen, Hamburg, Germany), 
and total RNA was reverse transcribed using the cDNA 
Reverse Transcription Kit (Vazyme, Nanjing, China). For 
the detection of flaviviruses and alphaviruses, polymer-
ase chain reaction was performed using previously pub-
lished methods and primers [31, 32]. Two primers were 
designed to target the QBV NS5 gene for conventional 
PCR (forward primer 5′-GAG TAC GAA GCT CTG 
GGA TTT C-3′, reverse primer 5′-CTA GTA TGG AAG 
CGG TCG TTA TT-3′). Primer sequences were designed 
using the GenBank reference sequence (accession num-
ber MH827524) and PrimerQuest Tool software (https://​
sg.​idtdna.​com/​Prime​rQuest/​Home/​Index). PCR was per-
formed using a 2 × SuperNova PCR Mix (GenStar, Bei-
jing, China) PCR system (total reaction volume 50  μl), 
which contained 25 μl of 2 × SuperNova PCR Mix, 2.5 μl 
of each primer (10  μM), 18  μl of sterile water and 2.0  μl 
of cDNA sample. A thermal cycling procedure (Bio-rad, 
USA) was performed at 98  °C for 3  min, followed by 30 
cycles at 98 °C for 15 s, 55 °C for 15 s and 72 °C for 30 s, 
with a final extension step of 5 min at 72  °C. The ampli-
fied products were analyzed by agarose gel electrophore-
sis and then purified and sequenced in both directions by 

Fig. 1  Map of mosquito collection sites in Guizhou Province, China. The acronym stands for counties and districts in Guizhou Province, China. The 
sampling sites are indicated by the red circle (BZ, Bozhou; CS, Chishui; TZ, Tongzi; DJ, Dejiang; JK, Jiangkou; XR, Xingren; ZF, Zhenfeng; AL, Anlong; 
WM, Wangmo; QXG, Qixingguan; QX, Qianxi; SD, Sandu; LB, Libo; LP, Liping; RJ, Rongjiang). National Earth System Science Data Center, National 
Science & Technology Infrastructure of China (http://​www.​geoda​ta.​cn)

https://sg.idtdna.com/PrimerQuest/Home/Index
https://sg.idtdna.com/PrimerQuest/Home/Index
http://www.geodata.cn
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Sangon Biotech (Shanghai, China). BLAST alignment was 
performed on the above sequences (http://​www.​ncbi.​nlm.​
nih.​gov/​BLAST).

The positive virus culture supernatants from the cells 
were collected and centrifuged at 20,000 × g for 30 min at 
4 °C (JIDI-17R, Guangzhou, China) to remove the debris. 
Twenty microliters of virus suspension was placed with 
a pipette gun and dropped on a copper grid with car-
bon film for 3–5 min, and then filter paper was used to 
absorb the excess liquid. Then, 2% phosphotungstic acid 
was dropped on the copper grid to stain for 1–2 min, fil-
ter paper was used to absorb excess liquid, and the grid 
was dried at room temperature. The copper grids were 
observed under transmission electron microscopy and 
photographed.

Second‑generation sequencing and data analysis
The virus supernatant was centrifuged at 12,000×g for 
2  min to remove cells. Virus supernatants were treated 
with 200 U Benzonase (Millipore), Tubro DNase I 
(Thermo Fisher Scientific) and 0.1 mg/ml RNase A (San-
gon Biotech) followed by heat inactivation of DNases 
at 65  °C for 10  min. Viral RNA was then extracted 
using the Qiagen MinElute Virus Spin Kit according to 
the manufacturer’s instructions. RNA was quantified 
using an Equalbit RNA HS Assay Kit (Vazyme Biotech 
Co.,Ltd). The RNA virome library was constructed using 
a sequence independent amplification method [33]. The 
libraries were quality checked on an Agilent 4200 Bioana-
lyzer and sequenced on an Illumina Nova Seq 6000 plat-
form with 2 × 150 bp paired-end reads.

Raw data were processed using Fast [34] by filter-
ing low-quality reads and trimming adapters to obtain 
clean data. Contig assembly was performed using 
metaSPAdes [35] with default parameters, except “-k 
21,33,55,77,99,127.” Contigs > 500  bp were retained for 
downstream analysis. Next, the retained contigs were 
queried against the NCBI NT database using MegaB-
LAST [36] with default parameters and a cutoff value of 
10–5. According to the blast score, the virus species with 
the highest identity was selected as the final annotation 
for a query contig. First, the reference genome sequence 
was downloaded: Quang Binh virus (MH827524). Then, 
the contigs annotated to the same virus were mapped to 
the corresponding reference genome using MegaBLAST 
with “-dust no -word size 18.” The mapped contigs were 
then manually assembled using the Seqman application 
in the DNASTAR software package. All reads were rema-
pped to the annotated viral contigs using BWA [37] for 
quantification. Virome sequencing and subsequent data 
processing were performed by Chengdu Life Baseline 
Technology Co., Ltd.

5′ RACE and cloning full length
5′ RACE was performed using the HiScript-TS 5′/3′ 
RACE kit (Vazyme, Nanjing, China) following the man-
ufacturer’s instructions. RNA was extracted from posi-
tive virus isolates, and the quality of RNA was assessed 
by gel electrophoresis or bioanalyzer. The primers used 
for 5′ RACE were as follows and designed based on 
known sequence information: TTT GTT TTC CCC 
TCG TAG ACC TGC ACG C (5′ specific). The PCR 
products were purified and cloned. Sanger sequencing 
was then performed to determine the unknown end of 
the target sequence.

Sequence alignments and phylogenetic analysis
Multiple sequence alignments were performed with the 
gene sequences of three Guizhou viruses and relevant 
viral sequences using MAFFT version 7.490 [38]. The 
sequence of the reference strain QBV was downloaded 
from the GenBank database as well as the sequences of 
other flaviviruses, namely mosquito flavivirus, Culex 
flavivirus, Aedes flavivirus, yellow fever virus, Japanese 
encephalitis virus, West Nile virus and dengue virus types 
1–4 (DENV 1–4), (Additional file 1: Table S1). Sequences 
were analyzed using BioEdit (www.​mbio.​ncsu.​edu/​BioEd​
it/​bioed​it.​html) and the DNAStar (Lasergene) pro-
gram package (https://​www.​dnast​ar.​com/). To generate 
a heatmap, TBtools [39] was used (https://​github.​com/​
CJ-​Chen/​TBtoo​ls/​relea​ses). A phylogenetic tree was con-
structed with MEGA11 [40] using the neighbor-joining 
method and by building a maximum composite likeli-
hood distance model with 1000 bootstrap replicates. Vis-
ualization was performed using FigTree (FigTree v1.4.4 
visualization, http://​tree.​bio.​ed.​ac.​uk/​softw​are/​figtr​ee/).

Analysis of viral genomes
Gene annotation of three Guizhou virus strains was 
referenced to QBV (NC_012671). Briefly, we first 
downloaded two major protein sequences from QBV 
genomes as input and then used Prokka software [41] 
to acquire gene annotation with the following param-
eters: – Kingdom Viruses – norrna. Each virus genome 
was annotated with two CDS regions (polypeptide 
and truncated polypeptide), the regions upstream of 
the first CDS were defined as 5’UTR regions, and the 
regions downstream of the last CDS were defined as 
3′UTR regions. For more detailed annotation, three 
Guizhou genome sequences were further aligned to 
the 15 mat peptide sequences of QBV genomes using 
BLASTN [42], and the best alignment entry for each 
mat peptide was obtained. Each region matched with 
mat peptide was extracted and used for open reading 
frame (ORF) prediction using Prodigal [43] software.

http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/BLAST
http://www.mbio.ncsu.edu/BioEdit/bioedit.html
http://www.mbio.ncsu.edu/BioEdit/bioedit.html
https://www.dnastar.com/
https://github.com/CJ-Chen/TBtools/releases
https://github.com/CJ-Chen/TBtools/releases
http://tree.bio.ed.ac.uk/software/figtree/
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For sequence variant detection, the complete genomes 
of each Guizhou virus strain were aligned to QBV using 
ClustalW [44], and the bases of each Guizhou virus 
genome that did not align to QBV were extracted as 
single-nucleotide variants (SNVs) using custom-written 
Python scripts. These SNVs were annotated by ANNO-
VAR software [45], SNVs in the coding region were 
divided into synonymous SNVs and nonsynonymous 
SNVs, and the number of nonsynonymous SNVs in each 
mat-peptide region was counted. The similarity calcula-
tion between the Guizhou virus gene (including 5’UTR, 
3’UTR and mat-peptide genes) and QBV gene was based 
on blastn alignment results. Circos plots were con-
structed using Circos software [46]. The circularity was 
represented from outside to inside as follows: tracks: 1, 
genomic structural regions; 2–5, nucleic acid sequence 
similarity (GZ21m081, GZ21m120, GZ21m167, mean); 
6–9, number of nonsynonymous SNVs (GZ21m081, 
GZ21m120, GZ21m167, mean).

Ribosomal frameshifting
With reference to the published literature, the reference 
genomes of Hanko virus (JQ268258), Culex flavivirus 
(AB262759.2) and Quang Binh virus (FJ644291) have 
been downloaded from NCBI. We manually searched 
for five match patterns that have been reported in insect 
flaviviruses (including GGA​UUU​C, GGA​UUU​U, GUU​
UUU​U, UUU​UUU​U and UUU​UUU​C). Furthermore, 
RNA secondary structure prediction was performed 
150  bp downstream of the matched site by using RNA-
fold software [47], and only the region downstream of 
the − 1 frameshift site with an RNA stem-loop structure 
was considered in the predicted results.

Results
Mosquito species field collection and composition
A total of 32,177 mosquitoes were collected from 15 
counties of Guizhou Province, China. These mosqui-
toes were sampled from various locations, such as pig 
pens, cattle pens, trees, houses and other places. Among 
the collection sites, the largest portion of mosquitoes 
was obtained from cattle pens, accounting for 47.8% 
(15,379/32,177) of the total, followed by pig pens at 41.9% 
(13,495/32,177). These collected mosquitoes belonged to 
six species from four genera and two subfamilies, namely 

Anopheles (An.), Culex (Cx.), Aedes (Ae.) and Armigeres 
(Ar.). Among the collected mosquitoes, Culex accounted 
for 53.5% (17,201/32,177), followed by Armigeres at 34.1% 
(10,962/32,177), Anopheles at 11.7% (3,750/32,177) and 
Aedes at 0.8% (264/32,177). The dominant species was 
Cx. tritaeniorhynchus, comprising 48.7% (15,661/32,177) 
of the collected mosquitoes, followed by Armigeres sub-
albatus (34.1%, 10,962/32,177) and Anopheles sinensis 
(11.7%, 3,750/32,177).

Virus detection and characterization in vitro
In this study, mosquito samples were divided into 200 
pools based on the location, time of collection and mos-
quito species, and virus isolation was performed on each 
pool by inoculating onto C6/36 and BHK-21 cells.

Positive cultures at passage 3 were screened for the 
presence of flaviviruses and alphaviruses using PCR. 
Three virus isolation cultures were found to be positive 
by the successful amplification of the partial QBV NS5 
gene. An NCBI BLAST analysis of each sequence from 
each isolate showed a high degree of similarity to QBV 
(genus Flavivirus, family Flaviviridae). Of these, three 
virus isolates were from the Cx. tritaeniorhynchus pools, 
and they were collected from three areas (Table  1). In 
addition, these virus isolates caused a CPE in infected 
C6/36 cells, whereas no CPE was observed from inocu-
lation on BHK-21 cells, and it appeared that the C6/36 
cells had aggregated, detached and rounded compared 
to Mock cells (Fig.  2a, b). Electron microscopy showed 
that the viral particles were spherical with an envelope 
and approximately 40–60  nm in diameter (Fig.  2c). The 
virus particles were similar to the images that have been 
observed for members of the Flaviviridae family.

Complete genome sequencing
Next-generation sequencing was processed by filter-
ing out low-quality reads and removing adapters. The 
sequencing results showed a total of 6,279,672 reads 
for GZ21m081, 4,999,228 reads for GZ21m120 and 
8,267,166 reads for GZ21m167. In addition, the ratio of 
viral reads to clean reads was 66.0%, 90.1% and 64.7%, 
respectively. Reads below a minimum length of 30 nucle-
otides were trimmed, ensuring a minimum base quality 
of 99%. Subsequently, the trimmed reads were mapped to 
the reference sequence. The sequences of three Guizhou 

Table 1  Summary of viruses isolated from Guizhou in this study

Strains Collection date Host Habitat Geographic location

GZ21m081 07/2021 Culex tritaeniorhynchus Pigpen Bozhou District

GZ21m120 08/2021 Culex tritaeniorhynchus Pigpen Anlong District

GZ21m167 07/2021 Culex tritaeniorhynchus Pigpen Xingren District
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virus strains exhibited > 90% integrity and similarity to 
the reference sequence. The complete coding sequences 
of three Guizhou virus strains (GZ21m081, GZ21m120 
and GZ21m167) exhibited the characteristic organiza-
tion commonly found in flavivirus genomes. The com-
plete genome sequencing of GZ21m081 revealed a total 
genome size of 10,831 nt, consisting of a 98-nt 5′-end 
noncoding region, 10,080-nt coding region and 653-nt 
3′-end noncoding region. Similarly, the total genome 
size of GZ21m120 was 10,787  nt, with a 98-nt 5′-end 
noncoding region, 10,080-nt coding region and 609-
nt 3′-end noncoding region. For GZ21m167, the total 
genome size was 10,678 nt, but the 5′-end noncoding 
region was not amplified. A 632-nt fragment was ampli-
fied using 5′ RACE, and a 10,829-nt viral genome was 
obtained via sequence splicing. The sequence consisted 
of a 117-nt 5′-end noncoding region, a 10,080-nt coding 
region and a 632-nt 3′-end noncoding region. BLAST 
analysis confirmed the similarity of the complete genome 
sequences in this study to other QBV isolates and refer-
ences. The three genome sequences have been registered 
in the NCBI GenBank with the following sequence num-
bers: OQ139646, OQ139647 and OQ139648.

Phylogenetic and homology analysis
The phylogenetic tree analysis based on the complete 
genome and the NS5 gene (Fig. 3) revealed the presence 

of four major groups of viruses within the Flaviviridae 
family: mosquito-borne flaviviruses, tick-borne flavi-
viruses, no-known vector flaviviruses and ISFVs. The 
analysis of the sequences (GZ21m081, GZ21m120 and 
GZ21m167) from Guizhou revealed that they belonged 
to the insect-specific flaviviruses and were grouped in 
the QBV clade. Interestingly, QBV exhibited two dis-
tinct branches in the clustering analysis. One branch 
comprised mainland Chinese strains from Shanghai, 
Liaoning, Jiangsu and Guangdong, while the other 
branch contained the first reported QBV strain from 
Vietnam (VN180) and a strain from Guangdong, China 
(MH827523). When compared to other members of Fla-
vivirus genus, all Guizhou virus isolates formed a distinct 
group alongside QBV strains from China. The phyloge-
netic tree of the complete genome sequence (Fig. 3a) dis-
played a tree topology consistent with that obtained with 
the NS5 gene sequence (Fig. 3b).

The three QBV strains isolated from Guizhou Prov-
ince were used for homologous comparison based on the 
complete coding region (10,080 nt) and deduced amino 
acids (3,359 aa). Heatmap analysis revealed that the three 
Guizhou strains were highly homologous to QBV at the 
nucleotide and amino acid levels (Fig.  4). Compared 
with the VN180 strain (NC_012671), the nucleotide 
and amino acid homologies of the three Guizhou virus 
strains were 90.0% and 97.2%, respectively. Furthermore, 

Fig. 2  Isolates of Quang Binh virus were propagated in Aedes albopictus C6/6 cells. a Empty control cells (Mock) were used for infection testing. b 
C6/36 cells were infected with QBV to induce cytopathic effects (CPE). c QBV particles were visualized by transmission electron microscopy (TEM)
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the three Guizhou virus sequences were highly homolo-
gous to JS, JA_H6_18-10E-JS-Cxt-C-2-1 (MW246771), 
DD1716 (MG719525), YX594 (MW452275) and JM17156 
(MH827524) from China, with nucleotide sequence and 
amino acid identities ranging from 98.7 to 99.0% and 99.6 
to 99.9%, respectively. Furthermore, the nucleotide and 
amino acid similarities with mosquito flaviviruses ranged 

from 78.5 to 84.4% and 87.7 to 94.4%, respectively, and 
with other mosquito-borne flaviviruses ranged from 37.4 
to 69.2% and 10.3 to 72.4%, respectively.

Comparative genomic analysis of QBV
Circular maps, BLAST analysis and nonsynonymous 
SNV were used to illustrate three Guizhou virus genomes 
(Fig. 5). Nucleic acid similarity analysis showed that the 
E genes of the Guizhou viruses had the highest similarity 
to the reference genome (VN180, NC_012671), with an 
average similarity of 90.4%. The other structural protein 
genes exhibited average nucleotide sequence similarities 
ranging from 88.4 to 90.0%. Compared to the reference 
nonstructural protein genes (VN180), the NS2A genes of 
the Guizhou viruses showed the highest average nucleo-
tide sequence similarity (95.9%), while the NS4A genes 
had the lowest (85.9%). The noncoding regions displayed 
high nucleotide sequence similarity to the reference 
genome, with average nucleotide sequence similarities of 
95.6% for the flanking 5′ UTR and 94.6% for the 3′ UTR 
(Additional file 2: Table S2).

Compared to the reference sequences (VN180, 
NC_012671), the three Guizhou genomes exhibited 
1050, 1049 and 1058 SNV sites, respectively. Among 
these SNVs, there were 104, 106 and 105 nonsynony-
mous SNVs, respectively (Table 2). The SNVs of the three 
Guizhou genomes in different genomic regions showed 
that the average number of structural protein nonsyn-
onymous SNVs ranged from 1.6 in the protein pr to 13 
in the anchored capsid protein C, while the AC + C and 
E regions displayed the greatest differences. In nonstruc-
tural proteins, the average number of nonsynonymous 
SNVs ranged from 1 in protein 2K to 17.6 in NS3, with 
NS3 and RNA-dependent RNA polymerase NS5 being 
the most abundant nonstructural proteins (Fig. 5, Addi-
tional file 2: Table S2).

In this study, nonsynonymous SNVs were analyzed 
separately for different ORFs. In terms of the number of 
nonsynonymous SNVs, the range of the number of non-
synonymous SNVs occurring in different ORFs was from 
1 to 18. The highest number of nonsynonymous SNVs 
occurred in NS3 with an average of 17.7, followed by 
NS5 and AC + C with 16 and 13 nonsynonymous SNVs, 
respectively, and 2 K with the lowest number of 1 non-
synonymous SNV (Table 2, Additional file 2: Table S2).

Nonsynonymous SNV analysis across different ORFs 
revealed that mutations are present in all ORFs of the 
three Guizhou genomes. The highest number of muta-
tions was observed in NS3, NS5 and AC + C (Fig.  6). 
The predominant mutation type in NS3 and NS5 was A 
to G, accounting for 35.3–38.9% in NS3 and 33.3–40.0% 
in NS5, respectively. In contrast, the mutation type in 

Fig. 3  Phylogenetic analyses of the nucleotide sequences 
of flaviviruses. Phylogenetic trees constructed based on the complete 
genome sequences (a) and the NS5 gene (b). The evolutionary 
history was inferred using the neighbor-joining method. The 
optimal tree is shown. The percentage of replicate trees in which 
the associated taxa clustered together in the bootstrap test (1000 
replicates) are shown next to the branches. The tree is drawn to scale, 
with branch lengths in the same units as those of the evolutionary 
distances used to infer the phylogenetic tree. The evolutionary 
distances were computed using the maximum composite likelihood 
method and are in units of the number of base substitutions 
per site. The rate variation among sites was modeled with a gamma 
distribution (shape parameter = 1). Evolutionary analyses were 
conducted in MEGA 11. Guizhou isolates identified in this study are 
labeled with red shading
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AC + C was G to A, with a maximum proportion of 30.8% 
(Additional file 3: Table S3).

Ribosomal frameshifting
We analyzed the presence of − 1 ribosomal frameshift-
ing sites in the nucleotide sequences of three Guizhou 
virus genomes. Consistent with other ISFVs, the Guizhou 
genomes exhibited a conserved G_GAU_UUC slip-
pery heptanucleotide (highlighted in orange) followed 
by a predicted occurrence in the NS2B region. However, 
HANKV had a different conserved sequence (G_GAU_
UUU) in the NS2A-NS2B region. The frameshift site 
started at position 3333 (HANKV) to 3419 (GZ21m167). 
Additionally, a predicted RNA stem-loop structure was 
identified in the NS2B region (Fig. 7).

Discussion
The Flavivirus genus within the family Flaviviridae 
consists of over 70 enveloped, positive-sense, single-
stranded RNA viruses. These viruses are primarily 
transmitted by blood-sucking arthropods and are com-
monly found in vector mosquitoes [48]. Advances in 
sequencing technology and the expanded surveillance 
strategies have led to the discovery of novel flaviviruses 
specific to mosquito species. ISFVs such as Chaoy-
ang virus, Aedes flavivirus, Culex flavivirus, QBV and 
Menghai flavivirus have been identified, with primary 
mosquito hosts (Aedes, Culex and Anopheles species) 
[6, 49, 50].

During our study, we found the predominant mos-
quito species in Guizhou province was Cx. tritae-
niorhynchus, accounting for 48.7% of the collected 

Fig. 4  Heatmap of nucleotide and amino acid similarity in the flavivirus coding regions among QBV isolates in Guizhou and the reference strain 
and other flaviviruses. The similarity of amino acid sequences is shown in the upper triangle, and the similarity of nucleotide sequences is shown 
in the lower triangle. QBV, Quang Binh virus; MFV, mosquito flavivirus; CxFV, Culex flavivirus; YFV, yellow fever virus; JEV, Japanese encephalitis; WNV, 
West Nile virus; DENV (1–4), dengue virus (type 1–4); AEFV, Aedes flavivirus
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samples, followed by Ar. subalbatus mosquitoes at 
34.1%. The mosquito samples were primarily collected 
from cattle and pig pens. Culex tritaeniorhynchus vec-
tor, being the most common mosquito species in the 

province, plays a crucial role in the virus transmis-
sion, particularly as the principal vector of Japanese 
encephalitis [51]. Therefore, continuous monitoring of 
the main vector is necessary to investigate potential 
interactions between mosquito-borne viruses and other 
flaviviruses.

Our study identified the presence of ISF QBV in Cx. 
tritaeniorhynchus in the three regions of Guizhou prov-
ince (Table  1). QBV from Cx. tritaeniorhynchus was 
first reported in Vietnam in 2002 [25] and subsequently 
detected in various provinces and cities in China but has 
not been reported in other countries [19, 26, 27]. We iso-
lated only three QBV strains from 200 analyzed pools, 
resulting in a remarkably low virus isolation rate of 1.5% 
(3/200 pools). These findings suggest that QBV is not 
widely distributed throughout Guizhou Province, and 
further research is needed to determine its prevalence 
in nature. As reported in previous studies [52, 53], QBV 
has also been isolated from other mosquito species such 
as An. sinensis, Ae. aegypti and Culex pipiens, indicating 
its potential for multiple hosts. Therefore, it is crucial to 
focus on the vector species responsible for transmitting 
the virus among insects to better understand its trans-
mission mode and potential mechanisms of spreads.

Phylogenetic analysis using MEGA software was 
performed to examine the genetic relationships of the 
three Guizhou virus sequences (GZ21m081, GZ21m120 
and GZ21m167) within the QBV group. The analy-
sis revealed that these three Guizhou virus sequences 
clustered with ISFVs QBV found in Chinese provinces 
(Fig. 3). Two main clades with different branch lengths 
were observed in the phylogenetic tree. One clade con-
sisted mainly of strains/isolates from Chinese provinces 

Fig. 5  Comparative genomic analysis of three Guizhou virus 
genomes with Quang Binh virus. Circos plots from outer to inner 
represent: circle 1, genomic structural regions; circles 2–5, similarity 
of nucleic acid sequence to QBV (GZ21m081, GZ21m120, GZ21m167, 
mean); circles 6–9, number of nonsynonymous SNVs (GZ21m081, 
GZ21m120, GZ21m167, mean). Some overlapping genes are 
not shown in the circle diagram. C, capsid protein C; M, membrane 
glycoprotein M; E, envelope protein E; NS1, nonstructural protein 
NS1; NS2A, nonstructural protein NS2A; NS2B, nonstructural protein 
NS2B; NS3, nonstructural protein NS3; NS4A, nonstructural protein 
NS4A; 2 K, protein 2 K; NS4B, nonstructural protein NS4B; RdRp NS5, 
RNA-dependent RNA polymerase NS5

Table 2  SNVs of Guizhou isolates with the corresponding reference strain VN180 (Quang Binh virus, NC_012671)

AC + C anchored capsid protein C + capsid protein C, PrM + M membrane glycoprotein precursor M + membrane glycoprotein M, E envelope protein E, NS1 
nonstructural protein NS1, NS2A nonstructural protein NS2A, NS2B nonstructural protein NS2B, NS3 nonstructural protein NS3, NS4A nonstructural protein NS4A, 2K 
protein 2K, NS4B nonstructural protein NS4B, NS5 RNA-dependent RNA polymerase NS5

Region Start End SNVs Nonsynonymous SNVs

GZ21m081 GZ21m120 GZ21m167 GZ21m081 GZ21m120 GZ21m167

AC + C 113 520 44 41 43 13 13 13

PrM + M 521 946 49 47 52 3 3 5

E 947 2227 125 121 123 12 11 11

NS1 2228 3406 125 123 124 10 10 10

NS2A 3407 4012 25 26 23 9 11 9

NS2B 4013 4450 31 35 32 11 12 11

NS3 4451 6214 200 205 204 17 18 18

NS4A 6215 6679 64 67 65 8 9 9

2 K 6680 6748 7 6 7 1 1 1

NS4B 6749 7522 86 91 90 2 3 3

NS5 7523 10,189 294 287 295 18 15 15
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such as Shanghai, Liaoning, Jiangsu and Guangdong, 
which were also present in our study. The other clade 
included the prototype isolated from Vietnam and 
other strains/isolates from Guangdong (MH827523) 
and Hainan (MW246740) provinces in China. These 
findings suggest the existence of different transmis-
sion chains of QBV in different countries and regions. 

Furthermore, the three Guizhou strains from our 
study exhibited high nucleotide and amino acid simi-
larities with Chinese strains (MW246771, MG719525, 
MW452275 and MH827524), surpassing 98% similarity 
levels (Fig. 4). Additionally, our isolates showed a high 
level of nucleotide similarity (90.0%) with the Vietnam-
ese prototype strain VN180 (Fig. 4).

Fig. 6  Distribution and number of nonsynonymous SNV variabilities among all Guizhou virus genomes. The variable nucleotide positions are based 
on the QBV prototype sequence (VN180, NC_012671). ns SNVs, nonsynonymous SNVs

Fig. 7  Predicted sites of ribosomal frameshifting in the genomes of Guizhou viruses and other insect flaviviruses. Yellow indicates the predicted − 1 
frameshift site of the virus, pink indicates the mutated base at the frameshift site, brackets indicate the predicted RNA secondary structure, "*" 
indicates the conserved site, and the last number indicates the start position of the frameshift site. HANKV, Hanko virus (JQ268258); CxFV, Culex 
flavivirus (AB262759); QBV, Quang Binh virus (FJ644291)
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Furthermore, the complete sequencing of the three 
Guizhou isolates allowed for a better understanding 
of their genetic relationships. The different regions of 
the sequences exhibited > 84% nucleotide similarity to 
the corresponding regions of the prototypical QBV iso-
late (Fig.  5). A species demarcation study [54] revealed 
a genetic similarity exceeding 84% among the three 
Guizhou strains, suggesting their close relationship with 
QBV within the flavivirus group. Therefore, these strains 
are classified as QBV because of their high degree of 
genetic similarity. However, it is important to note that 
QBV can be further divided into two distinct groups 
based on the phylogenetic tree and nucleotide similar-
ity analysis. Currently, QBV has been reported only in 
Vietnam and certain provinces and cities in China, with 
limited documentation in other countries and regions. 
Given the limitations of this study, further surveillance in 
the future may provide valuable insights into the dynam-
ics of QBV circulation.

Additionally, we conducted SNV analysis of the ORFs 
of the three Guizhou virus genomes and compared them 
with the corresponding regions of prototype QBV iso-
lates. The analysis revealed that there were more syn-
onymous mutations than nonsynonymous mutations, 
and the mutation sites and types were largely consist-
ent among the three Guizhou virus genomes (Table  2, 
Fig.  6). Our analysis further revealed a notable degree 
of genetic consistency or similarity among the Guizhou 
QBV strains. Specifically, comparative genomic analysis 
identified a higher frequency of nonsynonymous SNVs in 
proteins encoded by NS3, NS5, AC + C, and E. The NS3 
and NS5 proteins are essential for flavivirus replication 
[55], while the C protein plays roles in packaging viral 
genomic RNA and the formation of viral core [56]. More-
over, the E protein is crucial for virulence, stability and 
tissue tropism of flaviviruses [57]. Therefore, studying the 
effects of nonsynonymous SNVs on genetic diversity and 
protein expression may provide valuable insights for fur-
ther research on mosquito-borne viruses.

Ribosomal frameshifting, specifically − 1 ribosomal 
frameshifting, is a well-defined process where ribosomes 
shift by one nucleotide and translate in a new reading 
frame [58]. Viruses utilize programmed − 1 ribosomal 
frameshifting to control gene expression and enhance 
the information content of their genomes [59]. ISFVs uti-
lize programmed − 1 ribosomal frameshifting to express 
a new overlapping gene, fifo, in the NS2A-NS2B region 
[60, 61]. In the three Guizhou virus genomes, nonsyn-
onymous SNVs were identified in NS2A, NS2B and NS1-
NS2AN-FIFO. The predicted − 1 ribosomal frameshifting 
site contained a conserved G_GAU_UUC slippery hep-
tanucleotide (Fig.  7), known to stimulate frameshift-
ing [61]. These findings align with previous reports and 

support the existence of ribosomal frameshifting in the 
QBV genome [62], although further research is required 
to elucidate its mechanisms and functions.

Many aspects of the interaction among ISFVs, hosts, 
vectors and humans remain unclear [63, 64]. Surveil-
lance efforts are crucial for systematically observing and 
tracking the prevalence, distribution and potential risks 
associated with both ISFVs and flavivirus arboviruses. 
We hypothesized that the co-infection of ISFVs and fla-
vivirus arboviruses in mosquitoes may have a significant 
impact on human health, potentially influencing the 
transmission dynamics and pathogenesis of arboviruses 
in humans. Avian flu (influenza A viruses) provides an 
example supporting the hypothesis as avian flu viruses 
are typically harmless in birds but can cause severe dis-
ease in humans when they undergo genetic reassortment 
or mutation after infecting intermediate hosts, such as 
pigs [65]. Similarly, co-infections of ISFVs and flavivi-
rus arboviruses in mosquitoes may facilitate genetic 
exchanges or modifications within the viral populations 
and lead to the emergence of new arbovirus variants with 
altered transmission patterns or increased pathogenicity 
in humans. Studying the interactions between ISFVs and 
flavivirus arboviruses in mosquitoes is crucial for under-
standing the potential consequences of co-infection. By 
investigating the genetic changes, altered transmission 
dynamics and increased disease severity that may result 
from these co-infections, we can develop better surveil-
lance and control strategies to mitigate the risks associ-
ated with arboviral infections.

Conclusions
Our study on wild mosquitoes carrying QBV demon-
strates the One Health approach. It is the first report of 
QBV in Cx. tritaeniorhynchus in Guizhou Province. Phy-
logenetic analysis revealed that the three Guizhou iso-
lates were most closely related to the QBV strains found 
in China. Furthermore, our comprehensive analysis of 
the complete genome and nucleotide variation in differ-
ent genomic regions offers valuable insights into QBV 
evolution. This study significantly expands the baseline 
data of QBV genomes and provides a valuable resource 
for future research on molecular epidemiology, evolu-
tionary studies and the development of molecular assays.
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