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Abstract 

Background  A close connection between a protozoan parasite and the balance of the other gut microbes 
of the host has been demonstrated. The calves may be naturally co-infected with many parasites, and the co-effects 
of parasites on other intestinal microbes of calves remain unclear. This study aims to preliminarily reveal the relation-
ship between intestinal parasites and other intestinal microbes in calves.

Methods  Fecal samples were collected from four calves with bloody diarrhea, four calves with watery diarrhea, 
and seven normal calves, and the microbial flora of the samples were analyzed by whole-genome sequencing. Proto-
zoal parasites were detected in the metagenome sequences and identified using polymerase chain reaction (PCR).

Results  Cryptosporidium, Eimeria, Giardia, Blastocystis, and Entamoeba were detected by metagenomic analysis, 
and the identified species were Giardia duodenalis assemblage E, Cryptosporidium bovis, Cryptosporidium ryanae, 
Eimeria bovis, Eimeria subspherica, Entamoeba bovis, and Blastocystis ST2 and ST10. Metagenomic analysis showed 
that the intestinal microbes of calves with diarrhea were disordered, especially in calves with bloody diarrhea. Fur-
thermore, different parasites show distinct relationships with the intestinal microecology. Cryptosporidium, Eimeria, 
and Giardia were negatively correlated with various intestinal bacteria but positively correlated with some fungi. 
However, Blastocystis and Entamoeba were positively associated with other gut microbes. Twenty-seven biomarkers 
not only were significantly enriched in bloody diarrhea, watery diarrhea, and normal calves but were also associated 
with Eimeria, Cryptosporidium, and Giardia. Only Eimeria showed a distinct relationship with seven genera of bacteria, 
which were significantly enriched in the healthy calves. All 18 genera of fungi were positively correlated with Crypto-
sporidium, Eimeria, and Giardia, which were also significantly enriched in calves with bloody diarrhea. Functional 
genes related to parasites and diseases were found mainly in fungi.

Conclusions  This study revealed the relationship between intestinal protozoan parasites and the other calf gut 
microbiome. Different intestinal protozoan parasites have diametrically opposite effects on other gut microecology, 
which not only affects bacteria in the gut, but also is significantly related to fungi and archaea.
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Background
Protozoan parasites are commonly found in the diges-
tive tract of cattle, especially in the rumen and intes-
tines, and have an important effect on their health. 
Ciliate species, mainly in the rumen, play an important 
role in rumen fermentation and the stability of rumen 
ecology [1]. On the contrary, protozoan parasites in the 
cattle gut are usually associated with intestinal diseases. 
Many intestinal protozoan parasites, such as Crypto-
sporidium, Eimeria, and Giardia, cause intestinal dis-
ease outbreaks in humans and animals [2, 3]. However, 
the controversial pathogenicity of some intestinal pro-
tozoan parasites, such as Blastocystis and nonpatho-
genic Entamoeba, is mainly observed in asymptomatic 
individuals [4]. Protozoan parasites interact with other 
gut microbes in symbiotic environments and co-evolve 
over time [5, 6]. At present, studies on the effects of 
parasites on calves mainly focus on the interaction 
between parasites and hosts, and there are few studies 
on the effects of parasites on the intestinal microflora 
of calves.

Intestinal microecology impacts cattle health and is 
correlated with nutrient metabolism, energy produc-
tion, and the immune system [7]. Intestinal diseases are 
among the most important health problems in calves 
(0–1 year of age). Approximately 4–25% of calves in the 
United States die from diarrhea each year, causing tre-
mendous economic losses to the cattle industry [8–10]. 
Although many factors cause calf diarrhea, disorders 
of the intestinal microbiome are the main manifesta-
tions of calf diarrhea [10–12]. Diverse gut microbiota 
prevent colonization by foreign pathogens and enhance 
the host immune system through interactions between 
antigens and immune cells during the early stages of 
life [8]. Studies have shown that restoring the intesti-
nal microbial composition of diarrheal calves by fecal 
microbiota transplantation can ameliorate diarrhea in 
pre-weaning calves [13].

There are few effective drugs and vaccines for proto-
zoan parasites such as Cryptosporidium and Giardia 
duodenalis [3, 14]. Changes in the intestinal bacteria 
may be related to various intestinal protozoan para-
sites, and understanding the effects of parasites on gut 
microbes could provide new insights into treating para-
sitic diseases [15–17]. In this study, parasites and other 
intestinal microecological elements in the posterior 
intestines of calves were characterized using metagen-
omic analysis. The association between intestinal pro-
tozoan parasites, other intestinal microbes, and calf 
diarrhea was also investigated, which provides a theo-
retical basis for maintaining calf intestinal health.

Methods
Animal management
Samples for this study were collected from a beef cattle 
farm in Henan Province, China. A total of 15 fresh stool 
samples were collected from four calves with bloody 
diarrhea (B1–B4), four calves with watery diarrhea (W1–
W4), and seven calves with normal stools (N1–N7). All 
calves were 2–3 months old, and samples were collected 
by rectal sampling, stored in 2-ml cryotubes, transported 
on dry ice to the laboratory, and stored at −80  °C until 
use.

Sample preparation and Illumina sequencing
Total DNA from the fecal microbiota was extracted using 
the QIAamp Fast DNA Stool Mini Kit (QIAGEN, Hilden, 
Germany) according to the manufacturer’s instructions 
(QIAamp Fast DNA Stool Mini Kit Handbook, www.​
qiagen.​com/​handb​ooks). The degree of degradation 
and potential contamination of DNA was analyzed by 
electrophoresis using 1% agarose gel. DNA purity was 
determined using a NanoPhotometer® spectrophotom-
eter (IMPLEN, Westlake Village, CA, USA), and DNA 
concentration was measured using the Qubit® double-
stranded DNA (dsDNA) Assay Kit on a Qubit® 2.0 Fluo-
rometer (Life Technologies, Carlsbad, CA, USA). One 
microgram of the qualified DNA was used to construct 
the library. DNA samples were fragmented to 350  base 
pairs (bp) by sonication, and the DNA fragments were 
end-polished, A-tailed, and ligated with a full-length 
adaptor for Illumina sequencing with further polymer-
ase chain reaction (PCR) amplification. The libraries 
were analyzed for size distribution using an Agilent 2100 
Bioanalyzer (Agilent Technologies, Santa Clara, CA, 
USA) and quantified via real-time PCR. Libraries were 
sequenced using the Illumina PE150 platform (Illumina, 
Inc., San Diego, CA, USA).

Identification of intestinal microorganisms
Metagenomic analysis was carried out following previ-
ously published methods [18, 19]. The host sequence 
was removed from the raw data using Bowtie 2 (v2.4.5) 
[20] and assembled using MEGAHIT (v1.2.9) [21]. The 
sequences (≥ 500  bp) were used to predict the open 
reading frame using MetaGeneMark (v3.38) [22] and 
eliminate redundancy using CD-HIT (v4.5.8) [23]. Clean 
data from each sample were mapped to the initial gene 
catalog using Bowtie2. The corresponding relative abun-
dance of each gene was calculated based on the follow-
ing formula: Ai = Ci/∑n

i=1  Ci  (where Ni represents the 
number of reads mapped to each gene and Li represents 
the length of each gene; Ci = Ni/Li) [24]. The obtained 
genes were used to BLAST the sequences for bacteria, 
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fungi, archaea, viruses, and intestinal protozoan para-
sites, which were extracted from the National Center 
for Biotechnology Information (NCBI) non-redundant 
(NR) database (https://​www.​ncbi.​nlm.​nih.​gov) using 
DIAMOND software (v2.0.14) [25]. We used the lowest 
common ancestor (LCA) algorithm to obtain the num-
ber of genes and abundance information for each sample 
in each taxonomic hierarchy (kingdom, phylum, class, 
order, family, genus, and species) [26]. DIAMOND soft-
ware was used to annotate the unigenes using the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database 
(http://​www.​kegg.​jp/​kegg/).

PCR amplification and sequence analysis
Further specialization of parasites was accomplished 
using PCR. Giardia was identified based on the β-giardin 
(bg) gene [27], and Cryptosporidium [28], Eimeria [29], 
Blastocystis [30], and Entamoeba [31] were identified 
based on the small subunit (SSU) ribosomal RNA (rRNA) 
gene. After amplification, the DNA fragments were 
separated by agarose gel electrophoresis (1% agarose), 
stained with DNA Green (TIANDZ, Beijing, China), 
and observed using a Tanon 3500 gel imaging system 
(TANON, Shanghai, China). Amplified samples with 
the target band were selected as positive PCR produc-
tion. Positive PCR amplicons with the target band were 
sequenced by SinoGenoMax (Beijing, China). Bidirec-
tional sequencing was chosen to ensure the veracity of 
sequences. Phylogenetic analysis was conducted using 
MEGA 7.0 software (http://​www.​megas​oftwa​re.​net/), 
choosing the maximum composite likelihood model, 
and bootstrap values were calculated by analyzing 1000 
replicates.

Statistical analysis and visualization
Venn diagrams, alpha diversity (Chao1 and Shannon 
indices), and principal coordinates analysis (PCoA) based 
on the Bray–Curtis distance were calculated and plot-
ted using Tutools (https://​www.​cloud​tutu.​com), and the 
ImageGP (https://​416h8​6i955.​zicp.​fun/​Cloud_​Platf​orm/​
front/#/) platform, and microbial features showing dif-
ferential abundance were identified using linear discri-
minant analysis effect size (LEfSe) threshold criteria of 
linear discriminant analysis (LDA) score > 2 and P < 0.05 
(http://​hutte​nhower.​sph.​harva​rd.​edu/​galaxy/). To reveal 
the relationship between parasites and the microbial 
or KEGG ortholog group (KO), we calculated the pair-
wise Spearman’s rank correlation and removed coeffi-
cients below 0.7 with P > 0.05. We adjusted the P-value 
to avoid false positives using the Benjamin-Hochberg 
(BH) method from the ‘Hmisc’ package in R (v4.2.2) 
statistical software. Network analysis and visualization 

were conducted using Gephi (https://​gephi.​org/) and 
Cytoscape (https://​cytos​cape.​org/).

Results
Species of intestinal protozoan parasites
The parasites identified using metagenomics belonged to 
the genera Giardia, Eimeria, Cryptosporidium, Blastocys-
tis, and Entamoeba (Fig. 1A). Specific genetic information 
is shown in Additional file  3: Table  S2. Not all positive 
samples were successfully amplified. Based on these 
results, the parasite species in calves were G. duodenalis 
assemblage E (Fig.  1B), Cryptosporidium bovis, Crypto-
sporidium ryanae (Fig. 1C), Eimeria bovis, Eimeria sub-
spherica (Fig. 1D), Blastocystis (ST2 and ST10) (Fig. 1E), 
and Entamoeba bovis (Fig. 1F).

Intestinal microbial imbalance in diarrheal calves
Comparing calves with watery diarrhea and calves with 
normal stools, the major intestinal microbiota of calves 
with bloody diarrhea changed greatly at the phylum and 
genus levels. At the phylum level, Firmicutes, Bacteroi-
detes, and Proteobacteria were the main phyla in the gut 
of the calves. Firmicutes and Bacteroidetes were mainly 
found in calves with watery diarrhea and calves with nor-
mal stools, but Proteobacteria were more abundant in 
calves with bloody diarrhea (Fig. 2A). At the genus level, 
Bacteroides were mainly found in calves with watery 
diarrhea and calves with normal stools and were lower in 
calves with bloody diarrhea (Fig. 2B).

The intestinal microbes of calves with diarrhea show 
disorders, especially calves with bloody diarrhea. The 
PCoA results show that calves with watery diarrhea and 
calves with normal stools have comparable intestinal 
microbiota compositions, which differ significantly from 
calves with bloody diarrhea (Fig.  2C). The diversity of 
microbes declined with an increase in the degree of diar-
rhea, while in calves with bloody diarrhea, it was signifi-
cantly reduced (Fig. 2D).

The taxa that most likely explain the differences 
between calves with bloody diarrhea, calves with watery 
diarrhea, and calves with normal stools were defined by 
LEfSe. One hundred thirty-six biomarkers were detected 
at the genus level (LDA > 2, P < 0.05). Thirty-two bio-
markers significantly enriched in calves with bloody 
diarrhea, including various fungi and opportunistic path-
ogens, such as Escherichia, Streptococcus, Salmonella, 
and Shigella. Thirty-two biomarkers in calves with watery 
diarrhea, mainly Bacteroidetes, Firmicutes, and Proteo-
bacteria, and 71 biomarkers were significantly enriched 
in calves with normal stool and mainly belonged to Fir-
micutes (Additional file 1: Fig. S1).

https://www.ncbi.nlm.nih.gov
http://www.kegg.jp/kegg/
http://www.megasoftware.net/
https://www.cloudtutu.com
https://416h86i955.zicp.fun/Cloud_Platform/front/
https://416h86i955.zicp.fun/Cloud_Platform/front/
http://huttenhower.sph.harvard.edu/galaxy/
https://gephi.org/
https://cytoscape.org/
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Relationship between parasites, other microbes, and calf 
diarrhea
Cryptosporidium, Eimeria, and Giardia were distrib-
uted in both diarrheal and healthy calves and were 
more abundant in diarrheal cattle and lower in calves 
with normal stools. However, Blastocystis and Enta-
moeba were found only in calves with normal stools, 
with a higher abundance than that of the other para-
sites (Additional file 1: Fig. S2).

The network analysis results showed that the para-
sites were associated with various other gut microbes 
(Fig.  3). In total, five protozoan parasites formed two 
distinct networks, indicating that protozoan parasites 
have different mutual regulatory relationships with other 
intestinal microbes. Blastocystis and Entamoeba were 
related to the diversity of the intestinal bacteria, archaea, 
fungi, and viruses in calves. All 494 genera of intestinal 
microbes were positively associated with Blastocystis and 

Fig. 1  Intestinal parasitic protozoa detected in the calves. a Parasites annotated by metagenomic sequencing. b Phylogenetic relationships 
of Giardia duodenalis based on β-giardin (bg) nucleotide sequences. c Phylogenetic relationships of Eimeria based on the SSU rRNA gene. d 
Phylogenetic relationships of Cryptosporidium based on the SSU rRNA gene. e Phylogenetic relationships of Blastocystis based on the SSU rRNA 
gene. f Phylogenetic relationships of Entamoeba based on the SSU rRNA gene. Phylogenetic relationships were calculated using the maximum 
composite likelihood model. Percent bootstrap values greater than 50% from 1000 replicates are shown next to the branches. Triangles represent 
isolates detected in this study, and the name of samples which detected the parasite are written in parentheses
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Entamoeba; about 81.2% (401/494) were bacteria, and the 
others were archaea (41/494), fungi (44/494), and viruses 
(8/494). Interestingly, Blastocystis and Entamoeba were 
significantly positively correlated with various archaea, 
including many methanogens: Methanothermus, Metha-
nothermococcus, Methanothermobacter, Methanosalsum, 
and Methanolacinia. One hundred sixty-one intestinal 
microbes were associated with Eimeria, Cryptosporid-
ium, and Giardia, including 62 genera of bacteria, 97 
fungi, and two viruses. Most of the bacteria were nega-
tively correlated with Eimeria, Cryptosporidium, and 
Giardia, and all the fungi and viruses were positively 
correlated with them, meaning that these protozoan 
parasites may be related to the imbalance of other gut 
microbes.

Key microbes associated with protozoan parasites 
and the health of calves
Twenty-seven biomarkers were not only significantly 
enriched in calves with bloody diarrhea, watery diar-
rhea, and normal stools, but were also associated with 

Eimeria, Cryptosporidium, and Giardia. In addition, 
all intestinal microorganisms associated with Blasto-
cystis and Entamoeba were not significantly enriched 
in calves with varying degrees of diarrhea. Among the 
biomarkers, seven genera of bacteria were negatively 
correlated with Eimeria, which were mainly enriched 
in the intestines of calves with normal stools, namely, 
Dietzia, Flavonifractor, Gemmiger, Intestinimonas, 
Lachnoclostridium, Negativibacillus, and Rutheni-
bacterium. All 18 genera of fungi were positively cor-
related with Eimeria, Cryptosporidium, and Giardia 
were enriched in the intestines of calves with bloody 
diarrhea, including Blastocladiella, Diaporthe, Diplo-
carpon, Endocarpon, Fomitiporia, Gaeumannomy-
ces, Gelatoporia, Hydnomerulius, Kalmanozyma, 
Leucosporidium, Magnaporthe, Magnaporthiopsis, 
Melampsora, Meyerozyma, Sclerotinia, Setospha-
eria, Spiromyces, and Trichophyton. The two viruses, 
Alphaentomopoxvirus and Pandoravirus, were enriched 
in the intestines of calves with bloody diarrhea (Fig. 4).

Fig. 2  Comparison of gut microbes among calves with bloody diarrhea, watery diarrhea, and normal stools. a Relative abundance (%) 
at the phylum level. b Relative abundance (%) at the genus level. c PCoA of gut microbes based on the Bray–Curtis distance. d α-diversity (Chao1 
and Shannon index) of gut microbes. Boxes of α-diversity denote the interquartile range (IQR) between the first and third quartiles (the 25th 
and 75th percentiles, respectively), and the line inside denotes the median. Whiskers denote the lowest and highest values within 1.5 times and the 
IQR from the first and third quartiles, respectively
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Relationship between parasites and other gut microbial 
function
Functional annotation based on the KEGG database 
showed that the intestinal microorganisms of calves had 
abundant functional genes (Additional file 1: Fig. S3). The 
functional categories identified included Metabolism, 
Cellular Processes, Environmental Information Process-
ing, Genetic Information Processing, Human Diseases, 
and Organismal Systems. PCoA results showed that, at 
the KO level, the samples of calves with watery diarrhea 
and normal stools showed a clear distance from calves 
with bloody diarrhea. This suggests that severe diarrhea 
could affect gut microbial function (Additional file 1: Fig. 
S4).

The functions of other gut microbes were related to 
intestinal parasites. A total of 611 KOs were found to be 
associated with parasites by calculating their correlation 
coefficients (Additional file 2: Table S1), and 87 KOs were 
disease-related (Fig. 5A). The genes annotated as 87 KOs 
were aligned with the NCBI NR database to trace the 
possible integration of the bacteria. Sixty-six KOs were 
successfully annotated, most of which were from fungi 
(Fig. 5B).

Discussion
Intestinal protozoan parasitic diseases are prevalent in 
ruminants, and infections with intestinal protozoan para-
sites in cattle are associated with outbreaks of diarrhea, 

Fig. 3  Relationship between protozoan parasites and calf microbiome. Network relationships between protozoan parasites and gut microbes 
at the genus level. The relationship was calculated using the pairwise Spearman rank correlation, the removed coefficient was below 0.7, P > 0.05, 
and the P-value was adjusted to avoid false positives using the BH method
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mainly in calves, leading to economic losses for agri-
cultural producers [32, 33]. However, the relationship 
between parasites and calf gut microbes remains unclear. 
Here, we have shown the relationship between parasites, 
gut microbes, and diarrhea.

The abundance of parasites found in this study was 
associated with calf diarrhea. Eimeria, Cryptosporidium, 
and Giardia were detected in both diarrheal and nor-
mal calves, but in higher abundance in diarrheal calves. 
Previous studies have shown similar results; the oocysts/
cyst per gram of feces of Eimeria, Cryptosporidium, and 
Giardia in diarrheal animals were positively higher than 
in healthy animals [34–36]. Nevertheless, Blastocystis 
and Entamoeba were found only in healthy calves, which 
may indicate a positive association with intestinal health. 
The pathogenicity of Blastocystis and Entamoeba in cat-
tle is controversial; however, Blastocystis and Entamoeba 
are highly prevalent in cattle and are mostly detected in 
healthy cattle [37, 38], which is consistent with the results 
of this study.

Calf diarrhea was often characterized by an imbalance 
in intestinal flora [10–12], and this study also revealed 

intestinal microbial imbalance in calves with diarrhea. 
Moreover, Eimeria, Cryptosporidium, and Giardia intes-
tinalis were related to an imbalance in gut microbes. 
Previous studies have also shown negative effects of 
these parasites on gut microbes. For example, Eimeria 
damaged the chicken intestinal barrier and reduced the 
abundance of probiotic bacteria [16]. Cryptosporidium 
infection decreased bacterial diversity [39], and Giardia 
infection was associated with significant dysbiosis within 
the murine foregut and hindgut [15]. By contrast, Blasto-
cystis and Entamoeba in this study were associated with 
the diversity of other intestinal microorganisms. The 
same phenomenon has been observed in humans, where 
it was found that Blastocystis was associated with both 
higher richness and higher evenness of the gut bacterial 
microbiota, whereas Entamoeba was associated only with 
higher richness, all of which have a role in maintaining 
intestinal health [17]. It is worth noting that Blastocys-
tis and Entamoeba were significantly positively corre-
lated with various methanogenic archaea. The possible 
use of methanogens as probiotics has received particu-
lar attention in humans [40, 41]; therefore, the positive 

Fig. 4  Microbes that not only are associated with parasites but also vary significantly in different degrees of diarrhea
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relationship between Blastocystis, Entamoeba, and meth-
anogenic archaea may be beneficial for gut health. The 
relationship between archaea and parasites in animals 
has received little attention, and more research is needed 
to uncover this phenomenon.

Little attention has been paid to the relationship 
between fungi and parasites in cattle. In this study, many 
fungi that were significantly enriched in calves with 
bloody diarrhea were positively correlated with Eimeria, 
Cryptosporidium, and Giardia. The parasites and fungi 
may play a synergistic role in intestinal disease in calves. 
Previous studies have found that higher fungal abun-
dance is associated with intestinal disease, with a higher 
prevalence and abundance in patients with inflammatory 
bowel disease [42], which enhances inflammation by pre-
venting intestinal healing [43, 44]. Fungi are neglected 
microorganisms that influence intestinal diseases in 

cattle, and further studies on the interactions between 
fungi and parasites are needed.

Conclusion
In conclusion, this study revealed the relationship 
between protozoan parasites and the calf microbiome. 
Eimeria, Cryptosporidium, and Giardia are associated 
with calf diarrhea and intestinal microbial disorders. By 
contrast, Blastocystis and Entamoeba play positive roles 
in maintaining intestinal health and microbial diversity. 
In addition, many fungi have a potential synergistic rela-
tionship with Eimeria, Cryptosporidium, and Giardia; 
on the contrary, archaea were only positively correlated 
with Blastocystis and Entamoeba. Due to the limited col-
lection from the same farm, more extensive sampling in 
the future will clearly help produce a better association 
between protozoan parasites and intestinal health. As we 

Fig. 5  Key pathway associated with protozoan parasites and calf diarrhea. a Disease- and parasite-related KOs. b Carriers of KOs associated 
with diseases and parasites
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described only the association of protozoan parasites, 
microbiome, and health of calves in this study, further 
work, including intervention studies, will be needed to 
fully elucidate the role of the protozoan parasites in the 
intestinal environment.
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