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Abstract 

Background  Apicomplexan haemoparasites are protozoans that infect a variety of domestic and wild animal species, 
as well as humans. Data regarding haemoprotozoans in domestic cats are limited; therefore, the aim of this study was 
to assess the occurrence of Babesia spp., Cytauxzoon spp., and Hepatozoon spp. in domestic cats in Romania using 
molecular tools.

Methods  Blood samples from 371 domestic cats were screened for the presence of piroplasmids. All samples that 
yielded a visible band in agarose gels were subsequently tested by specific assays targeting the 18S rDNA of Babesia 
spp., Cytauxzoon spp., and Hepatozoon spp. Moreover, nested PCR assays targeting mitochondrial genes of Babesia 
spp. were used for screening of all Babesia spp. 18S rDNA-positive samples.

Results  From the total number of sampled cats, 19.4% were positive in the PCR assay targeting piroplasmids. Babesia 
spp. were identified in 15.1% of cats, while 0.5% were positive for Hepatozoon spp. Molecular analyses confirmed the 
presence of Babesia canis. No samples were positive for Cytauxzoon spp.

Conclusions  The high infection rates of domestic cats with Babesia spp. and the need for species differentiation 
highlight the importance of mitochondrial genes as targets for molecular protocols.
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Background
Apicomplexan     haemoparasites           are protozoans 
that infect a wide variety of domestic and wild animals, as 
well as humans [1, 2]. The complex interactions between 
domestic animals, wild reservoirs and arthropod vectors   
favour   tick-borne pathogen transmission and increase 
their geographical distribution [3]. During the last dec-
ades, several studies have focused on the detection and 
characterization of    haemoprotozoans           in domestic 
dog populations worldwide [4–7]. However, in domestic 
cats, data regarding the presence of haemoprotozoans are 
scarce.

Genus Babesia includes more than 100 species, with 
intraerythrocytic localization in the vertebrate host, 
causing mild to severe  haemolytic   diseases [2, 8]. Sev-
eral ixodid ticks are thought to be involved in their 
transmission, although vector competence has not been 
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confirmed in all cases [9]. Feline babesiosis is a relatively 
newly recognized clinical entity, with most available 
studies originating from South Africa [10]. Non-specific 
clinical signs such as anaemia, lethargy, and anorexia are 
described, whereas icterus and fever are inconsistently 
found [11]. While several Babesia spp. have been docu-
mented in domestic cats, the species most commonly 
associated with clinical cases is Babesia felis [10]. In 
Europe, Babesia microti [12, 13] and dog-related species 
such as Babesia canis [14, 15], Babesia vogeli [15, 16], and 
Babesia vulpes (formerly known as Theileria annae) [14, 
17] have been detected in domestic cats. Nevertheless, 
the European cases were rarely associated with clinical 
manifestations. Recently, Babesia pisicii was described in 
European wild cats, Felis silvestris in Romania [18], but 
its presence in domestic cats has not been documented 
yet.

Hepatozoon spp. are haemogregarines with a life-cycle 
shared between a wide range of vertebrates as interme-
diate hosts and various haematophagous arthropods 
as definitive hosts [19]. The main transmission pathway 
is represented by the ingestion of the arthropod defini-
tive host containing mature sporozoites by the inter-
mediate host [20]. In domestic cats, Hepatozoon spp. 
were reported for the first time in India [21]. Since then, 
Hepatozoon infections have been found in domestic cats 
and various wild felids worldwide [22]. In Europe, Hepa-
tozoon felis is recognized as the main agent infecting 
domestic and wild felines [15, 16, 23–36]. Hepatozoon 
canis has also been reported in domestic cats in Europe 
[28, 29, 37–39]. Recently, a novel species, Hepatozoon 
silvestris, was described in European wild cats from Bos-
nia and Herzegovina [30] and was further reported in 
domestic [29, 35, 40] and wild felids [31] in Europe. Feline 
hepatozoonosis is mostly subclinical, with no significant 
inflammatory response in association with the presence 
of meronts in muscle tissue [26, 31].

Feline cytauxzoonosis, first described in the 1970s 
[41], is a tick-borne disease affecting both domestic 
and wild felids [42]. Five Cytauxzoon species have been 
described so far in felids Cytauxzoon felis, Cytauxzoon 
manul, Cytauxzoon europaeus, Cytauxzoon banethi, and 
Cytauxzoon otrantorum. Cytauxzoon felis is considered 
endemic to North America, causing a highly fatal disease 
in domestic cats, in both natural and experimental infec-
tions [43]. Bobcats (Lynx rufus) are the natural reservoirs 
[3]. In 2005, C. manul was described from Pallas’ cats 
(Otocolobus manul) imported from Mongolia to the USA 
[44, 45]. In Europe, unnamed isolates of Cytauxzoon have 
been documented in the past decade in domestic cats 
[28, 35, 39, 46–53], Iberian lynx (Lynx pardinus) [54–59], 
Eurasian Lynx (Lynx lynx) [60], and European wild cats 
[31, 60–62]. In a breeding centre in Russia, Cytauxzoon 

spp. were identified in a serval, a bobcat, seven Amur 
wild cats, and two domestic cats [63]. Recently, three 
Cytauxzoon species were described in European wild 
cats: C. europaeus, which was identified in several cen-
tral, eastern, and southern European countries [64–67], 
and C. banethi and C. otrantorum, which to date had 
been identified only in Romania [64]. Additionally, C. 
europaeus was identified in domestic and stray cats in 
Switzerland [65]. However, no data are available on the 
clinical significance of these species for domestic cats.

No previous studies are available on apicomplexan   
haemoparasites  in domestic cats in Romania, and data 
from Eastern Europe is generally very limited. Therefore, 
the aim of this study was to investigate the occurrence of 
Babesia spp., Cytauxzoon spp., and Hepatozoon spp. in 
domestic cats in Romania using highly specific polymer-
ase chain reaction (PCR) protocols and to identify the 
potential risk factors associated with these infections.

Methods
Sample and data collection
Blood samples from 371 domestic cats were collected 
between October 2017 and May 2019. The animals 
included in the study were client-owned (referred to 
urban private veterinary clinics or from rural areas), stray 
(from animal shelters), or feral (living in cat colonies). 
Whole blood samples were collected into sterile tubes 
containing anticoagulant (ethylenediaminetetraacetic 
acid [EDTA] or citrate) after obtaining informed consent 
for patient enrolment from the owners. The samples were 
stored at −20 °C until further analysis.

Outdoor access and age (cats older than 4  months) 
were considered as inclusion criteria. When available, 
epidemiological data (sex, age, breed, lifestyle, habitat, 
and ecoregion) were noted for each animal.

Molecular and phylogenetic analyses
Genomic DNA was isolated using the Isolate II Genomic 
DNA Kit (Meridian Bioscience, London, UK) from 200 µl 
of whole blood, following the manufacturer’s instruc-
tions. Each DNA sample was stored at −20 °C until fur-
ther use.

A highly sensitive nested PCR protocol targeting a 
561–613-base pair (bp) fragment of 18S ribosomal DNA 
(18S  rDNA) of piroplasmids (Cytauxzoon spp., Babesia 
spp., Theileria spp., and Hepatozoon spp.) was used for 
initial screening. Due to the high number of weak bands 
and the low quality of the sequences obtained, all posi-
tive or dubious samples were subsequently screened by 
specific nested PCR assays targeting the 18S rDNA of 
Babesia spp., Cytauxzoon spp., and Hepatozoon spp. 
Moreover, nested PCR assays targeting the  cytochrome 
b (Cytb) and cytochrome coxidase subunit I (COI) genes 
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of Babesia spp. were used for screening of all Babesia 
spp.-positive samples. Primers and PCR conditions are 
detailed in Table 1.

First-round reactions were carried out in a total volume 
of 15  μl containing 7.5  μl of 2× PCRBIO Taq Mix Red 
(PCR Biosystems, London, UK), 400 nM of each primer, 
and 1  μl of template DNA, except for the amplification 
of the partial 18S rDNA of piroplasmids that was per-
formed using 2 μl of DNA. Amplification of the second 
round was carried out in a 25  μl reaction mixture con-
sisting of 12.5 μl of 2× PCRBIO Taq Mix Red (PCR Bio-
systems, London, UK), 400 nM of each primer, and 1 μl 
of the first PCR round as the template. One positive con-
trol, consisting of DNA from carnivores previously con-
firmed as positive for the targeted pathogens [18, 64, 68], 
and a negative control represented by sterile water were 
included in each reaction set. Amplicons were visualized 
on 1.5% agarose gels stained with ECO Safe Nucleic Acid 
Staining Solution (PacificImage Electronics, New Taipei 
City, Taiwan).

Products of expected size were cut from gels and puri-
fied using the Gel/PCR DNA Fragments Extraction Kit 
(Geneaid Biotech Ltd., New Taipei City, Taiwan). PCR 

products were sequenced with Sanger sequencing tech-
nology in both directions (performed at Macrogen 
Europe, Amsterdam, the Netherlands) using the ampli-
fication primers. Chromatograms were assembled and 
edited using Geneious 4.8.5 software [69], and consen-
sus sequences were compared to homologous sequences 
available in the GenBank® database using the NCBI Basic 
Local Alignment Search Tool (BLASTn) analysis. Protein 
coding gene sequences were translated to correspond-
ing amino acids, based on the protozoan mitochondrial 
genetic code, to guide nucleotide alignment.

To investigate the relations among Babesia spp., phylo-
genetic analysis of the 18S rDNA and Cytb genes was per-
formed using MEGA X software [70] based on all unique 
sequences obtained in the present study and available 
sequences of Babesia sensu stricto clade VI, according 
to Schnittger et  al. [2], longer than 300  bp. In the case 
of Cytb, B. pisicii was also included in the analysis. Two 
18S rDNA sequences of H. felis and two Cytb sequences 
of Theileria parva were used as outgroups. In the case 
of both datasets, the sequences were aligned using the 
ClustalW algorithm, resulting in a final alignment of 47 
sequences for the 18S rDNA and 25 for the Cytb gene, 

Table 1  Primer pairs and PCR conditions used for PCR amplification

Target and genetic marker Primer name and sequence (5′–3′) Annealing temperature/amplicon 
length

Reference

Piroplasmida 18S rDNA BTH_F: CCTGMGAR​ACG​GCT​ACC​ACA​TCT​ 60 °C/686–747 bp [91]

BTH_R: TTG​CGA​CCA​TAC​TCC​CCC​CA

GF2: GTC​TTG​TAA​TTG​GAA​TGA​TGG​ 50 °C/561–613 bp [92, 93]

GR2: CCA​AAG​ACT​TTG​ATT​TCT​CTC​

Babesia spp. 18S rDNA Bc_F1: CGT​AGT​TGT​ATT​TTT​GCG​T 50 °C/≈ 430 bp [94]

GR2: CCA​AAG​ACT​TTG​ATT​TCT​CTC​

Bc_F2: CAT​TTG​GTT​GGT​TAT​TTC​GTTTT​ 53 °C/376 bp

Bc_R1: GTT​CCT​GAA​GGG​GTC​AAA​AA

Babesia spp. Cytb Bc_cytb_F1: TGG​TCW​TGG​TAT​TCW​GGA​ATG​ 50 °C/≈ 700 bp [95]

Bc_cytb_R1: AAGMYAR​TCT​YCC​TAA​ACA​TCC​

Bc_cytb_F2: RATKAGY​TAY​TGG​GGA​GC 48 °C/≈ 580 bp

Bc_cytb_R2: GCT​GGW​ATC​ATW​GGT​ATA​C

Babesia spp. COI Bab_For1: ATW​GGA​TTY​TAT​ATG​AGT​AT 45 °C/1250 bp [95]

Bab_Rev1: ATA​ATC​WGG​WAT​YCT​CCT​TGG​

Bab_For2: TCT​CTW​CAT​GGW​TTA​ATT​ATG​ATA​T 49 °C/980 bp

Bab_Rev2: TAG​CTC​CAA​TTG​AHARW​ACA​AAGTG​

Cytauxzoon spp. 18S rDNA 7549F: GTC​AGG​ATC​CTG​GGT​TGA​TCC​TGC​CAG​ 60 °C/1726 bp [64]

7548R: GAC​TGA​ATT​CGA​CTT​CTC​CTT​CCT​TTAAG​

Cyt-SSU-F2: CAT​GGA​TAA​CCG​TGC​TAA​TTG​ 53 °C/1335 bp

Cyt-SSU-R4: AGG​ATG​AAC​TCG​ATG​AAT​GCA​

Hepatozoon spp. 18S rDNA HAM1F: GCC​AGT​AGT​CAT​ATG​CTT​GTC​ 52 °C/≈ 1700 bp [95]

HPF2R: GAC​TTC​TCC​TTC​GTC​TAA​G

EF-M: AAA​ACT​GCA​AAT​GG CTC​ATT​ 55 °C/≈ 1600 bp

Hep1615R: AAA​GGG​CAG​GGA​CGT​AAT​C
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respectively. The phylogenetic trees were inferred by the 
maximum likelihood method. The best-fit substitution 
models, with the lowest Bayesian information criterion 
(BIC) scores, as calculated by the software, were used: 
Kimura 2-parameter, using a discrete gamma distribu-
tion (K2+G) for the 18S rDNA, and  Tamura 3-parame-
ter, using a discrete gamma distribution (T92+G) for the 
Cytb gene, respectively. Branch support was estimated 
using 1000 bootstrap replicates. The resulting tree topol-
ogies were visualized and edited in FigTree v1.4.4 and 
Inkscape 0.94.

Statistical analyses
Statistical analyses were performed using R software v. 
4.0.5 (R Foundation for Statistical Computing, Vienna, 
Austria). The prevalence and its 95% confidence interval 
(CI), overall and differentiated by different epidemiologi-
cal data, were calculated, and the existence of a statistical 
association between PCR positivity rates and explanatory 
variables (sex, age, breed, lifestyle, habitat, and ecore-
gion) was evaluated by Fisher’s exact test. P-values less 
than 0.05 were considered statistically significant.

Results
From the total number of sampled cats, 72 (19.4%, 95% 
CI 15.4–23.4) showed a visible band in the PCR target-
ing the 18S rDNA of piroplasmida. From these, 56 sam-
ples (15.1%, 95% CI 11.5–18.7) yielded an amplicon in 
the assay targeting the 18S rDNA of Babesia spp. The 
sequences represented five unique haplotypes. The most 
common haplotype (BHF014) was detected in 52 sam-
ples. The remaining four haplotypes were represented by 
one sample each, differing from the main haplotype by 
three single-nucleotide polymorphism (SNP) sites and 
one indel (1.12%; 4/356 nucleotides [nt]), in the case of 
the sample represented by ARF008, and one SNP site in 
the case of the other three haplotypes, respectively. The 
BLASTn analysis of the obtained haplotypes showed 
98.9–100% nucleotide sequence identity with B. canis 
from dogs from Lithuania (GenBank accession numbers: 
MN078319-MN078323), Iran (MN173223), or Bosnia 
and Herzegovina (MK107800-MK107806). All sequences 
represented by unique haplotypes were deposited in 
GenBank (accession numbers OL342311-OL342315).

The amplification of the Cytb gene of Babesia spp. was 
successful in six samples, while no positivity was noticed 
in the assay targeting the Babesia spp. COI gene. Two 
haplotypes with 99.8% identity were detected in the six 
samples (1 SNP/477 nt). The sequences displayed a 99.6–
99.8% identity to B. canis from the USA (KC207822) or 
B. canis reported in a dog from Poland (MK024727) and 
99.4–99.6% identity to B. canis detected in European wild 
cats in Romania (MW938761). The two sequences were 

deposited in the GenBank database under the accession 
numbers OL355016 and OL355017.

From the 72 samples positive in the initial screen-
ing, two yielded an amplicon in the assays targeting the 
1600-bp fragment of the 18S rDNA of Hepatozoon spp., 
resulting in an overall prevalence of 0.5% (95% CI 0.0–
1.3). However, direct sequencing resulted in four short 
sequences (two forward and two reverse), that showed 
an overall identity of 99–100% to Hepatozoon sp. iden-
tified in ocelots from Brazil (KX776299, KX776303) or 
reptiles from Spain (MG787243), or H. felis reported in 
lions from India (KX01729, ON075470) or wild cats from 
Hungary (OM422756). The two samples were also posi-
tive for Babesia sp. The remaining 16 samples tested neg-
ative in all specific protocols. All sampled domestic cats 
were PCR negative for Cytauxzoon spp.

Statistical analyses showed that the Babesia spp. infec-
tion rate was statistically higher in cats from the    Pan-
nonian ecoregion    than in the rest of the country, at a 
P-value of 0.03. No associations were found between the 
presence of the pathogens and other categorical variables 
(Table 2).

Phylogenetic analyses of both 18S rDNA (Fig.  1) and 
Cytb (Fig.  2) sequences confirmed the affiliation of our 
sequences to the B. canis clade, clustering together with 
other B. canis sequences from dogs, European wild cats 
or ticks, in a sister clade to B. vogeli, in the case of 18S 
rDNA, and to B. pisicii and Babesia rossi (bootstrap 
value: 98), in the case of Cytb.

Discussion
The results of the current study confirmed for the first 
time that B. canis and Hepatozoon spp. are circulating in 
domestic cats in Romania. The 18S rDNA, a highly con-
served region, is the primary PCR target used in studies 
addressing the diagnosis of piroplasmids [71, 72]. How-
ever, several studies have questioned its ability to dif-
ferentiate between closely related species [2, 18, 64, 73, 
74]. In the present study, BLAST analyses of the 18S 
rDNA sequences showed 99–100% identity with differ-
ent sequences of B. canis, although the presence of this 
species was confirmed in only six samples by Cytb gene 
amplification and analyses. Babesia canis was previously 
reported in domestic cats in Europe, the data being sup-
ported exclusively by relatively short 18S rDNA frag-
ments [14, 15]. Therefore, as previously highlighted [18], 
our recommendation remains to avoid using protocols 
targeting the 18S rDNA for piroplasmid species differen-
tiation, and samples amplified by these protocols should 
be considered as Babesia sp. PCR protocols based on 
mitochondrial gene detection can be successfully used 
for species confirmation, but have shown lower sensitiv-
ity than 18S rDNA amplification protocols (100 to 1000 
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Table 2  Prevalence of B. canis and Hepatozoon spp. in association with epidemiological data

a The percentages were computed from the total number of animals included in the study (n = 371)
b Statistically significant relationship (P = 0.03)

Total (%a) Positive samples (%, 95% CI)

B. canis Hepatozoon spp.

Sex

 Males 191 (51.4) 28 (14.7, 95% CI 9.6–19.7) 2 (1.0, 95% CI 0.0–2.5)

 Females 172 (46.4) 28 (16.3, 95% CI 10.8–21.8) 0

 Not available 8 (2.2) 0 0

Age

 < 3 years old 178 (48.0) 28 (15.7, 95% CI 10.4–21.1) 0

 ≥ 3 years old 171 (46.1) 24 (14.0, 95% CI 8.8–19.2) 2 (1.2, 95% CI 0.0–2.8)

Not available 22 (5.9) 4 (18.2, 95% CI 2.0–34.3) 0

Breed

 European shorthair 338 (91.1) 50 (14.8, 95% CI 11.0–18.6) 2 (0.6, 95% CI 0.0–1.4)

 Other breeds 33 (8.9) 6 (18.2, 95% CI 5.0–31.3) 0

Lifestyle

 Client-owned 314 (84.6) 49 (15.6, 95% CI 11.6–19.6) 2 (0.6, 95% CI 0.0–1.5)

 Stray 30 (8.1) 2 (6.7, 95% CI 0.0–15.6) 0

 Feral 27 (7.3) 5 (18.5, 95% CI 3.9–33.2) 0

Habitat

 Urban 272 (73.3) 43 (15.8, 95% CI 11.5–20.1) 1 (0.4, 95% CI 0.0–1.1)

 Rural 99 (26.7) 13 (13.1, 95% CI 6.5–19.8) 1 (1.0, 95% CI 0.0–3.0)

Ecoregion

 Continental 218 (58.8) 25 (11.5, 95% CI 7.2–15.7) 2 (0.9, 95% CI 0.0–2.2)

 Steppe 10 (2.7) 0 0

 Alpine 36 (9.7) 8 (22.2, 95% CI 8.6–35.8) 0

 Pannonian 107 (28.8) 23 (21.5, 95% CI 13.7–29.3)b 0

Fig. 1  Maximum likelihood tree based on partial 18S rDNA sequences obtained in the current study (in bold) and sequences of Babesia sensu 
stricto species (clade VI sensu Schnittger et al. [2]). Only bootstrap values above 75% are displayed. The scale bar indicates the number of nucleotide 
substitutions per site. The GenBank accession number, assigned name, host, and country of origin are indicated for each sequence, if available
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times lower sensitivity than the protocol targeting the 
376-bp fragment of B. canis 18S rDNA) [18, 74].

Several Babesia species have been documented in 
domestic cats worldwide: B. felis [10], B. leo [75], B. len-
gau [76], and Babesia sp. cat Western Cape [75] in Africa; 
B. hongkongensis [77], B. canis presentii [78], B. panickeri 
[79], and B. vogeli [80, 81] in Asia; and B. vogeli and B. 
gibsoni in the Americas [82]. In Europe, epidemiological 
data on Babesia infection in domestic cats are limited to 
a few molecular studies targeting the 18S rDNA, with B. 
canis reported in Spain and Portugal [14, 15], B. vogeli in 
Portugal [15, 16], and B. microti in Italy [12, 13]. Babesia 
canis was also recently reported in wild cats from Roma-
nia [18].

Traditionally, the naming of Babesia spp. has been 
based on their assumed host specificity and morphologi-
cal characters [2]. However, as already discussed by oth-
ers [18, 83], the presence of B. canis DNA was detected 
in several other non-canid hosts, such as bats [84] and 
horses [85]. Furthermore, B. canis was molecularly 
detected in mice experimentally fed Dermacentor reticu-
latus-positive ticks, raising the possibility of oral trans-
mission through vectors [83]. This hypothesis was also 
put forward by Hornok et  al. [86] when B. canis DNA 
was identified in insectivorous bat faeces. Cats can ingest 
ticks, either with their prey (immature D. reticulatus feed 
on micromammals such as mice and voles [87]) or due to 
their grooming behaviour.

In wild cats in Romania, a recent study noted a preva-
lence of Babesia spp. infection of 39.2% [18]. However, 
in this previous study on wild cats [18], B. canis was 

confirmed in only  one sample by mitochondrial marker 
assay, while in three samples, a novel species, B. pisicii, 
was described. The presence of this species was not con-
firmed in domestic cats.

The geographical distribution of Hepatozoon spp. in 
domestic cats is apparently wide in Europe, with reports 
originating mainly from Mediterranean countries, such 
as Spain [23, 24, 28, 37], Portugal [15, 16], Italy [29, 32, 
35], Cyprus [27], Greece [36], and France [39], but also 
from Central Europe: Austria [33] and Switzerland [40]. 
In our study, the exact identity of the species involved 
could not be established due to the low quality of the 
obtained sequences. The low parasitaemia level observed 
in domestic cats during other studies [25, 35], as well as 
the predominance of subclinical manifestations in Hepa-
tozoon spp. infection [26, 35], most likely contributed to 
these impediments. Cloning procedures presumably have 
the ability to improve the molecular results.

In recent decades, Hepatozoon infection in felids has 
been increasingly reported worldwide, usually with low 
infection rates, but ranging up to 37.9% in Cyprus [27]. 
The overall prevalence of Hepatozoon spp. in the present 
study was 0.5%, similar to that found in Spain [37] or Italy 
[32].

 Piroplasms of the genus Cytauxzoon have gained 
increased interest in recent years in Europe, due to the 
high prevalence observed in wild felids [54–67] and 
occasional clinical reports [48–51, 53, 65]. Despite the 
diversity and common occurrence of Cytauxzoon infec-
tion in European wild cats [64], no positive domestic 
cat was found in this study. Similar results have been 

Fig. 2  Maximum likelihood tree based on Cytb sequences obtained in the current study (highlighted in bold) and sequences of Babesia sensu 
stricto species (clade VI sensu Schnittger et al. [2]). Only bootstrap values above 75% are displayed. The scale bar indicates the number of nucleotide 
substitutions per site. The GenBank accession number, assigned name, host, and country of origin are indicated for each sequence, if available
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obtained in other large-scale surveys conducted on out-
door, stray, or feral cats in Italy [13, 88, 89] and Greece 
[90]. The reports of Cytauxzoon sp. in domestic cats 
from Europe either are clinical case reports [48–51, 53] 
or represent findings in asymptomatic cats from Medi-
terranean regions: Spain [28, 46], France [39], or Italy 
[35, 47, 52]. At the moment, no report of Cytauxzoon 
is available from healthy cats in other parts of Europe.

Conclusions
To the authors’ knowledge, this is the first report 
of Babesia and Hepatozoon spp. in domestic cats in 
Romania. Moreover, the study shows high infection 
rates with Babesia spp. in domestic cat populations, 
confirms the presence of B. canis by using a specific 
genetic marker, and highlights the importance of using 
mitochondrial genes as targets for PCR analyses that 
are aimed at piroplasmid species differentiation. Nev-
ertheless, no Cytauxzoon spp.-positive samples were 
identified. Further studies are required to develop 
highly sensitive PCR assays targeting the Cytb or COI 
gene of Babesia spp., and to clarify the clinical implica-
tion of this pathogen in domestic cats.
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