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Abstract 

Background  The histological diagnosis of alveolar echinococcosis can be challenging. Decision support models 
based on deep learning (DL) are increasingly used to aid pathologists, but data on the histology of tissue-invasive 
parasitic infections are missing. The aim of this study was to implement DL methods to classify Echinococcus multi-
locularis liver lesions and normal liver tissue and assess which regions and structures play the most important role in 
classification decisions.

Methods  We extracted 15,756 echinococcus tiles from 28 patients using 59 whole slide images (WSI); 11,602 tiles of 
normal liver parenchyma from 18 patients using 33 WSI served as a control group. Different pretrained model archi-
tectures were used with a 60–20–20% random splitting. We visualized the predictions using probability-thresholded 
heat maps of WSI. The area-under-the-curve (AUC) value and other performance metrics were calculated. The Grad-
CAM method was used to calculate and visualize important spatial features.

Results  The models achieved a high validation and test set accuracy. The calculated AUC values were 1.0 in all mod-
els. Pericystic fibrosis and necrotic areas, as well as germinative and laminated layers of the metacestodes played an 
important role in decision tasks according to the superimposed GradCAM heatmaps.

Conclusion  Deep learning models achieved a high predictive performance in classifying E. multilocularis liver lesions. 
A possible next step could be to validate the model using other datasets and test it against other pathologic entities 
as well, such as, for example, Echinococcus granulosus infection.

Keywords  Echinococcus, Deep learning, Histology

Background
Echinococcus multilocularis is a cyclophyllid cestode 
causing life-threatening human infections. According 
to recent estimations, 18,235 (95% confidence interval: 

11,900–28,200) new cases of alveolar echinococco-
sis (AE) occur annually, 91% of which occur in China, 
accounting for 666,434 disability-adjusted life years per 
annum [1]. Human infections may occur by accidental 
ingestion of eggs. The metacestode larvae reside usually 
in the liver, infiltrating the liver parenchyma. The pattern 
of tissue invasion with exogenous budding of the germi-
native layer and the alveolar appearance are very similar 
to a neoplastic process [2]. The infection may also spread 
to the lungs and brain [3]. Treatment is usually diffi-
cult, and the mainstay of therapy is surgery [4, 5]. Thus, 
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histological examination plays an important role not only 
in the diagnosis, but also in defining surgical margins and 
the extent of lesions. However, the histological diagnosis, 
especially on the species level, can be very challenging. 
Since patients are often treated in specialized centers, 
histologic expertise can be problematic outside of these 
reference centers. Thus, a histologic decision-support 
system would be desirable.

Deep learning (DL) is composed of multiple process-
ing layers to learn data representation [6]. These mod-
els have drastically improved speech recognition, visual 
object recognition and object detection among other 
fields [6]. The application of histologic DL methods are 
increasingly being studied in the field of oncology [7–10], 
but to our knowledge they are not yet applied to tissue-
invasive parasitic diseases. The aim of this study was to 
test DL neural network models to classify E. multilocula-
ris liver lesions from normal liver tissue. This represents a 
first step towards implementing existing DL histological 
frameworks used primarily in the field of oncology [11] 
to the histology of a parasitic disease and evaluate the 
model performances and address possible issues arising 
from the different morphology.

Methods
Patients and data
Histological tissue sections from a cohort of 28 patients 
with liver AE diagnosed between 2004 and 2021 were 
retrieved from the archive of the Institute of Pathology, 
University Hospital Tübingen. Normal liver tissue from 
10 transplant donors from 2014 to 2021 were used as 
healthy controls. Non-infected adjacent liver tissues from 
eight of the echinococcosis patients were used as addi-
tional controls. In total, 59 echinococcus-infected and 33 
normal/echinococcus-free liver tissue sections were used 
in this study. The study was approved by the local Eth-
ics Committee of the University Hospital Tübingen (No. 
017/2022B02).

Analysis
Image processing, tiles, augmentation and normalization
Tissue sections were scanned in brightfield using a Nano-
Zoomer 2.0HT_X scanner (Hamamatsu Photonics K.K., 
Shizuoka, Japan) at 20× magnification, and WSIs were 
stored as TIFF files. Areas containing the echinococcus 
laminar layer, germinative layer and fibrous capsule, as 
well as surrounding granulomatous inflammation were 
used for annotations. WSIs were manually annotated 
using QuPath [12]. A Conda environment was created 
as detailed by Berman et al. [11]. WSI images were ran-
domized in a 60–20–20 ratio to training-validation-test 
sets and then broken down to 500-pixel tiles. The tis-
sue detector function of PathML, a Python library for 

performing pre- and post-processing of WSIs, was run 
to detect tissue and separate it from the background and 
from various artifacts. The results were plotted and visu-
ally checked and compared to Otsu and triangle methods 
[11].

Suitable tiles were extracted as described by Berman 
et  al. [11]. A strong data augmentation was performed 
with hue and saturation changes. Means and stand-
ard deviations were calculated (to normalize the tiles 
later). Cumulative tile numbers were displayed to decide 
whether the process was balanced or not. Suitable tiles 
were then normalized and re-sized accordingly.

Modeling
We applied three different model DL architectures, 
namely the VGG19 convolutional neural network 
(CNN) model with batch normalization, Squeezenet and 
ResNet18, all of which were pretrained on the ImageNet 
dataset [13, 14]. We set the output features to 2 accord-
ing to our classes (echinococcus and normal liver). Our 
model was trained with a batch size of 48 with 15 epochs. 
We used cross entropy loss as a criterion and SGD (sto-
chastic gradient descent) optimizer. Models were evalu-
ated with entropy loss, accuracy, weighted accuracy, 
weighted precision, weighted recall and weighted f1 
value. The best models (based on best epoch accuracy on 
the validation dataset) were saved and used for further 
analysis. Learning curves were plotted displaying entropy 
loss and weighted accuracy.

To identify the best tile-level probability cut-off (to 
decide whether a tile should be classified as echinococcus 
or normal when reaching the maximum tile-level accu-
racy), we inferred our trained model on the validation 
data set, and then applied the cut-off to make predictions 
on the test set.

Tile-level probabilities were visualized for the valida-
tion dataset to visually check the results of model train-
ing (to decide whether the model learned the important 
features or not).

Then, to generalize the tile-level predictions to whole 
slides (to simulate a real-life situation without annota-
tions), we counted the tiles above our identified probabil-
ity threshold to have a tile count above the boundary to 
calculate and plot area-under-the-curve (AUC) values.

Additionally, we used the gradient-weighted class acti-
vation mapping (GradCAM) method [15] to understand 
which regions/structures play an important role in the 
classification task. Superimposed attention-based heat 
maps were generated on the tile-level and inspected 
visually.

All computations were performed in Python 3.7.12 
using the PathML framework [11] in Pytorch 1.4.0. 
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All training was performed on a cloud server, using an 
Nvidia Tesla T4 GPU and an Intel® Xeon 14-core central 
processing unit (CPU) with 64 GB RAM (Intel Corpora-
tion, Santa Clara, CA, USA).

Results
For the training dataset, 15,756 echinococcus tiles and 
11,602 normal liver tissue tiles were extracted. The tis-
sue detector successfully identified artifacts on the slides 
and liver tissue, but it tended to identify amorph fibrous 
material surrounding the laminated layer as an artefact, 
also reducing the number of echinococcus tiles. How-
ever, it was still the best-performing method when com-
pared visually with the Otsu and triangle methods.

A sample batch is depicted in Fig.  1 showing the 
augmented extracted tiles of a 48-batch size used for 
training.

Training the VGG19_bn model resulted in the best 
measures at the fifth epoch, namely an entropy loss 
of 0.054, accuracy of 0.98, weighted accuracy of 0.98, 

weighted precision of 0.98, weighted recall of 0.98 and 
weighted f1 of 0.98 on the validation dataset (model per-
formances and other characteristics are shown in Table 1).  

Fig. 1  A sample training batch with 48 randomly selected augmented tiles from the training set, including hue and saturation changes

Table 1  Comparison of model performance

AUC​ Area under the curve, bn batch normalization, DL deep learning

Model performance parameters DL neural models

VGG19_bn Squeezenet ResNet-18

Validation entropy loss 0.054 0.057 0.079

Validation accuracy 0.98 0.98 0.97

Validation weighted accuracy 0.98 0.98 0.97

Validation weighted precision 0.98 0.98 0.97

Validation weighted recall 0.98 0.98 0.97

Validation weighted f1 0.98 0.98 0.97

Median test set accuracy 0.94 0.92 0.9

Slide level test set AUC​ 1 1 1

Training time (in min) (15 epochs) 217 120 151
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The learning curve is depicted in Fig.  2. The best prob-
ability threshold for achieving the optimal tile-level 
accuracy was identified as 0.97. The best median test set 

accuracy at the applied echinococcus probability thresh-
old was 0.94, (min–max: 0.3749–0.9998) (Table  2). On 
the slide level, the number of echinococcus tiles were 

Fig. 2  Learning curve of the ResNet-18 model
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tabularized (Table  3). Applying the cumulative echino-
coccus tile count per slide threshold (> 0.97 probability 
threshold), we obtained an AUC of 1.0 on the slide level. 
The Squeezenet [13]) and ResNet-18 models provided 
very similar performances (Table  1). Test set slide-level 
depiction of echinococcus probability is shown in Fig. 3.

As CNN classifiers are often criticized by the lack of 
human-interpretable transparency, several methods were 
developed to make the decision process more human-
interpretable [16]. For example, the “attention-based” 
methods can identify regions that are relevant to the clas-
sification task. Thus, we applied one of them, the Grad-
CAM method, to identify relevant regions/structures 
of interest [15]. The activation heatmaps in our study 
showed somewhat inconclusive results. In some tiles, the 
fibrous capsule played a more important role in the clas-
sification process than the parasitic structures, while in 
other tiles the opposite was true (Fig. 4).

Discussion
The models we implemented showed a high accuracy 
in identifying E. multilocularis infection both at the tile 
level and on the slide level. The slide-level classification 
reached an AUC of 1.0 in the test dataset. The number of 
tiles classified as echinococcus positive varied greatly in 

Table 2  Slide-level accuracy of the test set of the different 
models

a 0: normal; 1: echinococcus

Slide_ID Ground trutha DL neural models

VGG19_bn Squeezenet Resnet18

0 0 0.974 0.991 1.000

1 0 1.000 1.000 1.000

2 1 0.818 0.819 0.839

3 1 0.956 0.932 0.946

4 1 0.937 0.919 0.901

5 1 0.798 0.683 0.792

6 1 0.806 0.799 0.823

7 0 0.998 0.997 0.997

8 1 0.487 0.505 0.475

9 1 0.817 0.808 0.850

10 1 0.822 0.818 0.833

11 0 0.997 0.999 1.000

12 0 0.999 0.999 1.000

13 1 0.948 0.934 0.943

14 1 0.593 0.581 0.578

15 0 0.995 0.995 0.998

16 1 0.375 0.392 0.371

17 1 0.717 0.718 0.703

18 0 1.000 0.999 1.000

Table 3  Cumulative number of  echinococcus tiles classified above the threshold per slide in the test data set with the different 
models

a 0: normal; 1 echinococcus

Slide_ID Ground trutha Tile count above threshold 
VGG19_bn

Tile count above threshold 
Squeezenet

Tile count 
above threshold 
Resnet18

0 0 3 1 0

1 0 2 0 0

2 1 1420 1410 1381

3 1 318 298 286

4 1 3230 3146 3052

5 1 488 686 494

6 1 1119 1158 1009

7 0 10 13 11

8 1 1997 1924 2027

9 1 2186 2100 2015

10 1 1161 1120 1135

11 0 6 2 0

12 0 3 2 0

13 1 259 288 256

14 1 1266 1326 1551

15 0 23 21 8

16 1 731 711 736

17 1 2560 2543 2533

18 0 1 3 0
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the test set slides with some outliers with lower accuracy. 
Inspecting the predictions for the slides with lower accu-
racy did not reveal any reasons for the performance. The 
control slides with normal liver had a much lower num-
ber of echinococcus tiles if we applied the high tile-level 
probability threshold (mainly < 10 per WSI, in contrast 
to the several hundreds or thousands of echinococcus 
tiles of the echinococcus WSIs). Although we made no 
attempt to identify any cut-off value, the high level of dif-
ference between the echinococcus tiles is a promising 
finding.

The applied models were classifiers and not segmenta-
tion models. However, the generated slide-level heatmaps 
can also be applied to segment echinococcus lesions, 
as shown with the heatmaps of the validation and test 
datasets. Implementation to describe safety margins and 
resection status would be a promising avenue for future 
research. Nevertheless, the model learned to classify 
not just the laminated and germinative layers but also 
the surrounding fibrous capsule and the granulomatous 
tissue reaction. Thus, a low-level probability was also 
assigned sometimes to non-echinococcus structures, 
such as somewhat fibrotic portal fields and non-specific 
inflammatory alterations (Fig. 4).

Among the models, training the Squeezenet [13] model 
was the most time efficient (Table  1). Since no relevant 
differences were observed regarding model performance 
on the test set, we would favor the Squeezenet archi-
tecture over other models. This could be also efficiently 
trained using CPU-only machines that are probably more 
widely available than graphics processing units (GPUs). 
This could be an important point, since parasitic dis-
eases are generally more frequent in developing countries 
where such resources are probably scarcer.

An important difference to neoplastic diseases is that 
echinococcus structures usually are much bigger than 
human cells, so using a lower resolution and bigger tile 
size is reasonable. This could decrease the amount of data 
to store and pre-process, which in turn reduces the train-
ing time. We believe that the configurations of different 
major parasitic structures and the extent of inflammatory 
response are probably more important than the chro-
matin morphology of the individual cells. This could be 
also confirmed to some degree by the GradCAM method 
[15].

To our knowledge, this is the first study to evaluate 
DL methods for the histological identification of a tis-
sue-invasive parasitic disease. Applying DL methods to 

Fig. 3  Tile-level prediction heat maps of the VGG19_bn model for the selected test set of echinococcus and normal whole-slide images. The yellow 
areas indicate a higher probability of echinococcus infection. Upper two rows of each image: echinococcus slides; the lower row of each image: 
control slides



Page 7 of 9Sulyok et al. Parasites & Vectors           (2023) 16:29 	

parasite detection and classification has an extensive lit-
erature, but mainly for apicomplexan organisms. Success-
ful recognition of Plasmodium species in red blood cells 
(even smartphone-based) was recently reported [17–20]. 
A fuzzy cycle generative adversarial network was also 
successfully implemented to recognize Toxoplasma gon-
dii parasites [17]. Regarding metazoa, DL image recogni-
tion is mainly applied to parasite-egg identification from 
stool samples [21, 22].

The only study we are aware of to apply DL for echi-
nococcus recognition was conducted by Wu et al. using 
ultrasound images [23]. The authors used similar archi-
tectures (VGG19, ResNet18 and Inception-v3) as we did 
in the present study, and achieved a relatively high accu-
racy of 68.2–96% in classifying different types of ultra-
sound appearance of cystic echinococcosis. These values 
are quite similar to our results and offer a promising ave-
nue for further investigation.

DL methods have a wide range of applications in his-
tology, ranging from classification to object detection and 
segmentation. The leading field for such studies is oncol-
ogy, most notably the frequent cancer types, including 

prostate [7], breast [8] and colon carcinoma. [9]. A popu-
lar direction of such studies is metastasis detection, such 
as the recognition of metastasis in (sentinel) lymph nodes 
[8, 10, 24], which is a time-consuming task in patho-
logical routine diagnostics. While these tools are mostly 
used only as a decision support system to aid diagnosis, 
they can achieve a high accuracy comparable to that of a 
trained pathologist. It seems intuitive that similar meth-
ods could be exploited to other diseases as well, like AE 
which also exhibits an infiltrative growth pattern and 
metastatic capacity. As our results showed, DL methods 
can achieve a high predictive performance similar to that 
of models trained for oncologic tasks. Given the relative 
rarity of this disease, pathologists are not confronted 
with AE on a daily basis and the lack of experience may 
result in delays in diagnosis or other diagnostic errors. A 
well-trained model in case of high pre-test probability, 
such as radiological and clinical suspicion of AE, could 
probably aid the diagnosis in such a setting.

The main strength of our study was the successful 
implementation of a DL pipeline from Berman et  al. 
[11], including data pre-processing to a tissue-invasive 

Fig. 4  GradCAM heatmaps of some selected slides highlighting areas that play a more important role in the decision task than others. Red color 
indicates the areas with most importance. The upper 2 pictures in the right column show control liver tissue with portal tracts
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parasitic disease with the addition of GradCAM to iden-
tify decision relevant regions/structures. This also rep-
resents a limitation, since other processes with excessive 
fibrosis could cause false positivity, and did apparently 
also gain attention for the classification task. Further-
more, it could cause problems when defining resection 
margins since it does not necessarily indicate vital para-
sitic structures.

Given the relatively low number of patients, we used 
multiple slides per patient to provide a reasonably 
high data volume to train data-savvy architectures like 
VGG19. The slides from individual patients may exhibit a 
greater histological similarity to each other than to slides 
from other patients. This could lead to some bias towards 
an overestimation of model performance.

Our results should be further validated, if possible, with 
external data. A promising avenue for further research 
would be to involve E. granulosus cases as well and train 
the classification to separate it from cases of E. multilocu-
laris. This can be a very difficult histological task some-
times, with no single reliable morphologic parameter in 
light microscopy slides. A previous multivariate analysis 
identified several factors, such as thickness and striation 
of the laminated layer and number and size of cysts [25]. 
Attention maps like GradCAM or other kinds of mor-
phological marker identification can add a valuable input 
here. Immunohistochemistry can also separate the two 
species; however, these antibodies are only available in 
highly specialized laboratories. Thus, a simple classifica-
tion for hematoxylin/eosin-stained slides would be desir-
able. Furthermore, training the applied models to classify 
other tissue-invasive parasitic diseases can be also listed 
as a future direction.

Conclusions
Deep learning models achieved a high predictive perfor-
mance in classifying E. multilocularis liver lesions. A pos-
sible next step could be to validate the model using other 
datasets and test it against other pathologic entities as 
well, such as E. granulosus infection.

Abbreviations
AE	� Alveolar echinococcosis
AUC​	� Area under the curve
DE	� Deep learning
GradCAM	� Gradient-weighted class activation mapping
WSI	� Whole slide images
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