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Abstract 

Background:  Trypanosomatids are among the most critical parasites for public health due to their impact on human, 
animal, and plant health. Diseases associated with these pathogens manifest mainly in poor and vulnerable popula‑
tions, where social, environmental, and biological factors modulate the case incidence and geographical distribution.

Methods:  We used Sanger and amplicon-based next-generation sequencing (NGS) in samples from different 
mammals to identify trypanosomatid infections in several departments in Colombia. A total of 174 DNA samples (18 
humans, 83 dogs, and 73 wild mammals) were analyzed by conventional PCR using a fragment of the heat shock 
protein 70 (Hsp70) gene and Sanger sequenced the positive samples. Twenty-seven samples were sent for amplicon-
based NGS using the same gene fragment. Data obtained were used to perform diversity analyses.

Results:  One hundred and thirteen samples were positive for PCR by Hsp70 fragment; these corresponded to 22.1% 
Leishmania spp., 18.6% L. amazonensis, 9.7% L. braziliensis, 14.2% L. infantum, 8% L. panamensis, and 27.4% Trypano-
soma cruzi. Comparison of the identified species by the two sequencing technologies used resulted in 97%  concord‑
ance. Alpha and beta diversity indices were significant, mainly for dogs; there was an interesting index of coinfection 
events in the analyzed samples: different Leishmania species and the simultaneous presence of T. cruzi and even T. 
rangeli in one of the samples analyzed. Moreover, a low presence of L. braziliensis was observed in samples from wild 
mammals. Interestingly, to our knowledge, this is the first report of Leishmania detection in Hydrochaeris hydrochaeris 
(capybara) in Colombia.

Conclusions:  The Hsp70 fragment used in this study is an optimal molecular marker for trypanosomatid identifi‑
cation in many hosts and allows the identification of different species in the same sample when amplicon-based 
sequencing is used. However, the use of this fragment for molecular diagnosis through conventional PCR should be 
carefully interpreted because of this same capacity to identify several parasites. This point is of pivotal importance in 
highly endemic countries across South America because of the co-circulation of different genera from the Trypanoso‑
matidae family. The findings show an interesting starting point for One Health approaches in which coevolution and 
vector-host interactions can be studied.
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Background
Kinetoplastid parasites have been a primary worldwide 
concern for centuries, where Leishmania and Trypa-
nosoma stand out as the most critical genera [1]. These 
have tremendous importance for public health because 
of their impact on human and animal diseases, reflected 
in economic losses associated with morbidity, mortality, 
cost overrun in health systems, and investment in pre-
vention programs, among others [2]. Furthermore, for 
plants, Phytomonas spp. is associated with damage to 
coffee, oil palm, and coconut plantations, with economic 
effects due to crop failures, pesticides use, loss of culti-
vable fields, and biodiversity, leading to ecological imbal-
ance [3–5].

Human and animal diseases associated with these 
pathogens have great significance for the World Health 
Organization (WHO), considering that they are included 
in the 2030 agenda for the elimination of neglected 
tropical diseases (NTDs) [6]. For both leishmaniasis and 
trypanosomiasis, poverty, vulnerability [7], environmen-
tal [8], social [9–13], and biological factors [1] modulate 
the geographic distribution of the pathogens, their vec-
tors, and consequently the incidence of human cases. In 
mammals, trypanosomatids are transmitted mainly by 
vectors; however, oral infections represent a vital infec-
tion route in the wild transmission cycle. For Leishma-
nia spp., transmission is by the bite of infected female 
phlebotomine sand flies [14], having three clinical mani-
festations in humans: cutaneous, mucocutaneous, and 
visceral leishmaniasis (VL) [15]. In the case of Trypano-
soma spp., the vectorial transmission is mediated by tri-
atomines for T. cruzi and T. rangeli and tsetse flies for T. 
brucei, causing asymptomatic infections or acute disease 
that can evolve to a chronic phase in humans [1]. The 
severity of these parasitic diseases has been related to the 
infecting species, infection route, patient’s immunologi-
cal response, comorbidities, and treatment opportunities 
[16, 17].

Sanger sequencing has helped the study of Leishmania 
spp., Trypanosoma spp., their vectors, and their feeding 
preferences [18–24]. Indeed, Asia and the Mediterranean 
basin have reported the presence of Trypanosoma spp. 
DNA in phlebotomines [25–27]. Also, Sanger technology 
has helped determine the causal agents of leishmaniasis 
and trypanosomiasis in urban and periurban transmis-
sion cycles [24, 28–32]. Likewise, the DNA of trypano-
somatids has also been identified in several mammals of 
the sylvatic cycle, such as rodents [33–35], didelphids 
[36, 37], marsupials [38], bats [39–43], and primates [44, 

45]. Such analyses in vectors and reservoirs are highly 
relevant for public health, considering they allow deter-
mining the incidence of parasitic species in the transmis-
sion hotspots and their geographical distribution as well 
as the study of the genetic diversity of Leishmania spp. 
[46–49] and Trypanosoma spp. [50–52] worldwide.

Easy access to next-generation sequencing (NGS) tech-
nologies and methodologies, such as amplicon-based 
NGS, has allowed generating and analyzing large and 
complete amounts of data on the parasites [53–57]. For 
leishmaniasis expressly, this methodology has provided 
numerous highlights, for instance, the identification 
of Leishmania species in new geographic regions [58], 
infection indices and feeding preferences in vectors [25, 
59], and identification of the most influential reservoirs 
in the transmission cycles [30, 40, 60, 61]. Regarding 
trypanosomiasis, NGS has facilitated the study of T. cruzi 
and T. rangeli genetic diversity [56], lineage associations 
in asymptomatic, acute, and chronic cases of Chagas 
disease [62], and identification of multiple feeding pref-
erences in triatomines [53], among others, and detected 
coinfection events by different parasitic species in a sin-
gle host [58, 63].

Although leishmaniasis and Chagas disease are impor-
tant because of their incidence and wide geographical 
distribution [18, 64], there are few investigations related 
to the study of these agents in mammals, especially in dif-
ferent transmission cycles in Colombian departments, 
with an active circulation of the parasites. Therefore, 
using NGS (amplicon-based) and Sanger, we aimed to 
study and improve the understanding of the transmission 
cycles of trypanosomatids in samples obtained from dif-
ferent wild and domestic mammals in many departments 
in Colombia. This study has the additional purpose of 
encouraging the use of this type of research on different 
players in the life cycle of parasites in endemic countries, 
hence generating updated data useful for government 
stakeholders for the promotion and prevention of these 
diseases using a One Health context.

Methods
Samples
A total of 174 samples were included by convenience 
in this study: 18 from humans with VL diagnosis from 
the departments of Bolívar, Córdoba, Huila, La Guajira, 
Norte de Santander, Santander, Sucre, and Tolima; 83 of 
domestic dogs (Canis lupus familiaris) from Antioquia, 
Santander, La Guajira, Cesar, Córdoba, Huila, Norte 
de Santander, Santander, Sucre, and Tolima; 73 of wild 
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mammals (Callicebus cupreus, Carollia brevicauda, Car-
ollia perspicillata, Chinchilla lanigera, Choloepus didac-
tylus, Coendou bicolor, Desmodus rotundus, Didelphis 
marsupialis, Glossophaga soricina, Hydrochaeris hydro-
chaeris, Myotis brandtii, Myotis martiniquensis, Odocoi-
leus virginianus, Pecari tajacu, Phyllostomus elongatus, 
Phyllostomus hastatus, Proechimys roberti, and Tapirus 
terrestris) from Antioquia and Casanare (Fig.  1; Addi-
tional file 1: Table S1). Most departments are endemic for 
leishmaniasis and Chagas disease. The geographic distri-
bution by department in Colombia is shown in the sup-
plementary information (Additional file 2: Fig. S1).

Human samples were obtained from two sources: 
serum via venipuncture and bone marrow aspirate smear 
slides. From canines, these were obtained by anticoagu-
lated total blood with EDTA (venipuncture) or serum in 
a dry tube. The samples were anticoagulated whole blood 
with EDTA or collected in FTA cards for wild mam-
mals. All animals were captured with the minimum dam-
age possible. The wild mammals were anesthetized with 
20  mg/kg body weight ketamine (Ketalar, Parke Davis, 
Morris Plains, NJ, USA), and blood was obtained via 

venipuncture. For bats, only 300 µl whole blood was col-
lected. All the plasma and serum samples were conserved 
at –80  °C until their processing; FTA cards and slides 
were stored at environmental temperature and humidity 
for optimal storage conditions.

DNA extraction
All the biological samples collected were processed using 
the High Pure PCR Template Preparation Kit (Roche Life 
Science, Mannheim, Germany) following the protocol 
described by the manufacturer. The slide samples were 
submerged in xylol to clean the immersion oil traces; 
next, 200 µl lysis buffer was added for 10  min, and the 
smear was carefully removed and put into a microtube to 
start the DNA extraction. DNA concentration was deter-
mined using NanoDrop ND-1000 spectrophotometer 
(Thermo Fisher Scientific Inc., Waltham, MA, USA), and 
the DNA quality and integrity were checked through gel 
electrophoresis in agarose 1%. Samples were conserved at 
-80 °C until processing.

SOURCE SAMPLE
Canis lupus familiaris
Carollia brevicauda
Callicebus cupreus
Carollia perspicillata
Chinchilla lanigera
Choloepus didactylus
Coendou bicolor 
Desmodus rotundus
Didelphis marsupialis
Glossophaga soricina
Homoo sapiens sapiens
Hydrochaeris hydrochaeris
Myotis brandtii
Myotis martiniquensis
Odocoileus virginianus
Pecari tajacu 
Phyllostomus elongatus
Phyllostomus hastatus
Proechimys roberti
Tapirus terrestris 

Fig. 1  Geographical and biological distribution of the different samples analyzed in this study. Plot size is proportional to the total number of 
samples per department, and each mammal species is represented by a single color
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Molecular test and Trypanosoma species identification 
by Sanger sequencing
As previously reported, a 337-bp region of the Hsp70 
gene for both Trypanosoma and Leishmania was ampli-
fied by conventional PCR [65, 66]. Amplicon products 
were analyzed by gel electrophoresis in 2% agarose. 
Those products with gel band presence (positive for 
Hsp70) were purified with EXOSAP (Affymetrix, Santa 
Clara, CA, USA) and sent for sequencing by the dideoxy-
terminal method in an automated capillary sequencer 
(AB3730; Applied Biosystem, Foster City, CA, USA). The 
sequences were submitted to BLASTn using the NCBI 
platform [65]. Subsequently, the DNA of all the samples 
identified with some species of Leishmania that met the 
quality requirements for Novogene were sent for ampli-
con-based sequencing by Illumina. Additionally, 60% of 
the samples were BLAST-identified as T. cruzi, and ten 
samples from canines with visceral leishmaniasis diag-
nosis were also sent for sequencing. In the first scenario 
to assess the co-infection, when Sanger sequencing iden-
tified T. cruzi as the main infecting parasite, the second 
validated the possibility that amplicon-based NGS had 
more power to detect target reads.

Amplicon‑based next‑generation sequencing
Genomic DNA (> 200 ng/μl) from humans, canines, and 
wild mammals was sent to amplicon-based sequenc-
ing by Illumina (Novogene, Beijing, China). The primers 
used were the same for the conventional PCR, forward 
(5’AGG​TGA​AGG​CGA​CGA​ACG​) and reverse (5’CGC​
TTG​TCC​ATC​TTT​GCG​TC), following the protocol, as 
reported before [58].

Bioinformatics analysis
The FASTA files from the Hsp70 raw sequences were fil-
tered using QIIME software [67], considering the param-
eters described before [53]. Then, barcode trimming and 
forward and reverse sequence merging were made. Then, 
another quality filter was made for the merged files. 
The reads that passed the quality filters were compared 
against an in-house database, which contains sequences 
for the Hsp70 337-bp fragment of kinetoplastids avail-
able in GenBank [58]. The database includes species of 
Leishmania, Trypanosoma, and Leptomonas. The local 
BLASTn was made with a threshold of 95% identity and 
an e-value of 10. Of those species that matched, only the 
ones with abundance of the total reads per sample of > 
3% significance were considered. Quantitative results 
were plotted using R software version 3.6.2 and the San-
key diagram package available at www.​online.​visu-​alpar​
adigm.​com.

Statistical analysis
The qualitative variables were clustered by frequency 
and proportions according to the parasite species and 
coinfection patterns depending on the data obtained 
from amplicon-based sequencing. Considering the nor-
mality of the data, a Chi-square test (χ²) was made to 
analyze the relation between mammal-parasite and ori-
gin (department)-parasites. The statistical analysis was 
executed in R software (RStudio Team 2019). Two-sided 
significance tests and P-value < 0.05 were established. 
Moreover, to analyze the correspondence among the par-
asites reported by hsp70 sequencing by Sanger and the 
amplicon-based sequencing, a kappa (κ) coefficient was 
calculated using STATA11 with 0.05 significance.

Results
Trypanosomatid identification by Sanger sequencing
Overall, 64.9% of the total samples used in the study 
(113/174) had amplification for Hsp70 by conventional 
PCR (Additional file 1: Table S1), of which 12.2% (14/18) 
were from humans, 40.4% (46/83) from canines, and 
47.4% (54/73) from wild mammals. Results obtained 
from BLASTn (Fig.  2; Additional file  3: Table  S2) show 
that Colombia has a wide variety of Leishmania spe-
cies, mainly in the departments with co-circulation of 
T. cruzi. For mammal species, L. infantum (71.4%) and 
L. amazonensis (21.4%) were the most frequent species 
in human samples with VL diagnosis; for canines, they 
were L. amazonensis (26.1%), L. braziliensis (17.4%), and 
Leishmania spp. (21.8%). For wild mammals, they were 
T. cruzi (47.2%) and Leishmania spp. (26.4%), L. ama-
zonensis (11.3%), and L. braziliensis (5.7%) (Fig.  2). Fur-
thermore, considering the origin of the samples, a high 
diversity of parasitic species was found for each animal, 
T. cruzi and Leishmania spp. being the most prevalent, 
with 27.4% and 22.1%, respectively (Fig.  2). The former 
was more frequent in Casanare, where the samples were 
collected mostly from bats.

Hsp70 sequencing by amplicon‑based NGS analysis
Only 118 samples met the requirement of the DNA con-
centration (≥ 200  ng/μl) for Illumina, of which 22.9% 
(27/118) were optimal for analysis. Subsequent sequenc-
ing of the 337-bp Hsp70 fragment by Illumina generated 
between 134,316 and 179,347 paired-end reads. The bio-
informatic analysis revealed that for 96.2% of the samples 
(26/27), > 85% of the reads had a minimum coverage > q20 
(initial quality filter). The exception was a canine from 
Sucre (R95), in which only 41% of the reads successfully 
passed the initial quality control. Furthermore, the taxo-
nomic assignment made with local BLASTn was per-
formed with high-quality reads per sample using > 38% of 
the reads generated at the beginning for almost all cases. 

http://www.online.visu-alparadigm.com
http://www.online.visu-alparadigm.com
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Unexpectedly, the taxonomic assignation for animal sam-
ples C334, C335, PUC07, and SAC382 (Fig. 3) resulted in 
individual matches for 35, 108, 608, and 234 reads with 
the species included in the database used.

Concordance between Sanger and amplicon‑based NGS 
results
It is known that the two sequencing methods used in this 
study have different methodological principles, scope, 
and output. However, we compared whether the species 
(unique) obtained with Sanger were included or not in 
the unique or multiple species obtained with amplicon-
based NGS. We showed a general concordance between 
the two sequencing techniques of 97% and a kappa coef-
ficient of 0.8–1.0 by comparing the identified species.

In amplicon‑based NGS analysis, coinfection events in VL 
patients’ samples and canines were frequent
The coinfection events were more frequent in human and 
canine samples compared to samples from wild mam-
mals. Coinfection was identified from the human sam-
ples (5/7); infection frequency by L. infantum was 85.8%, 

L. amazonensis 42.6%, L. braziliensis, L. panamensis, 
and L. naiffi 28.6%, with 14.3% for L. lindenbergi along 
with T. cruzi. Double infection events were detected: 
T. cruzi/L. infantum (1 sample) and L. amazonensis/L. 
infantum (2 samples) and multiple infection by L. 
infantum/L. braziliensis/L. panamensis/L. naiffi and L. 
amazonensis/L. braziliensis/L. panamensis/L.naiffi/L. 
lindenbergi in the same patient (Fig. 3A); a single infec-
tion by L. infantum in humans was present in 28.6% (2/7) 
of the samples, in concordance with Sanger reports. 
Canine samples presented a wide diversity of Leish-
mania species, with a single infection in around 50%, 
T. cruzi infection in three samples, L. infantum and L. 
mexicana in one sample each, and triple infection by T. 
cruzi/T. rangeli/L. infantum in a canine from Santander; 
the samples from Sucre showed multiple infections: L. 
braziliensis/L. panamensis/L. naiffi and two canines by 
T. cruzi/L. amazonensis/L. braziliensis and T. cruzi/L. 
infantum/L. braziliensis, respectively (Fig. 3B).

A                                                         B

L. amazonensis
L. braziliensis

L. infantum
L. panamensis

Parasite species

Leishmania spp.
T. cruzi

Venezuela

azil
Ecuador Ecuador

Peru Peru

                           

azil Brazil

Venezuela

Fig. 2  Results of the biological and geographical distribution of trypanosomatid species identified by Sanger sequencing. A Parasite species found 
for each animal analyzed per department (B). Plot size is proportional to the total number of samples analyzed per department. For each plot from 
panel (B), the size of the inner joining line among mammals (lower half ) and parasite species (upper half ) is proportional to sample number. Each 
parasite species is represented by a single color



Page 6 of 13Castillo‑Castañeda et al. Parasites & Vectors          (2022) 15:471 

Trypanosoma cruzi prevails in wild mammals
One hundred percent of wild mammals had reads for T. 
cruzi in the amplicon-based NGS. Double infection by T. 
cruzi with L. panamensis or L. braziliensis was present 
in three samples and triple infection by T. cruzi along 
with L. braziliensis/L. panamensis in one sample. Single 
infection by T. cruzi was present in 44.4% of the samples 
(Fig. 3C).

Statistical analysis
The statistical analysis did not reveal statistically sig-
nificant differences between the coinfection and single-
infection groups analyzed (Mann-Whitney-Wilcoxon 
test, P = 0.07, 0.87, and 0.566) or among species (Kruskal-
Wallis test, P = 0.31, 0.195 and 0.567).

Chi-squared tests and Fisher exact tests were per-
formed to evaluate a potential association between 
the categorical variables and for the relation between 
department and species (P = 0.038) and chi-squared test 
(P = 0.022) for parasite species vs. mammal.

Diversity analysis
Analyzing the alpha diversity of the samples by amplicon-
based NGS, statistically significant differences among the 
three groups were analyzed (Shannon index: P < 0.0001; 
Simpson index P = 0.0001). Humans and dogs presented 
the most diversity (Shannon index 1.14, 1.17 for humans 
and 1.04 for canines) and dominance (Simpson index  
0.64 and 0.62, respectively) compared with the wild 
mammals where the obtained values were close to zero 
(Additional file  4: Table  S3). This comparison revealed 
statistically significant differences in alpha diversity 
between humans and wild mammals and dogs and wild 
mammals.

Discussion
The diversity of Leishmania species found using Hsp70 
amplicons by Sanger sequencing agree with those 
expected for patients with VL diagnosis (Additional file 3: 
Table  S2), which historically have been L. infantum for 
the Americas [68–70]. We also found L. amazonensis in 
patient samples from La Guajira, Santander, and Bolí-
var (Fig.  2), an atypical event that has been previously 
reported in humans [71] and dogs [72, 73]. For humans, 
L. major and L. tropica have been the principal non-L. 
donovani complex species reported in the Old World, 
while in the Americas they have been L. braziliensis, L. 
mexicana, and L. amazonensis. In both geographical 
contexts, HIV is the main factor described for coinfec-
tion events in immunocompromised patients [74]. In La 
Guajira, the samples collected came from a new hotspot 
of VL in Hatonuevo municipality, in which L. amazonen-
sis was detected in both humans and canines (Additional 

file  3: Table  S2). This allowed us to consider the poten-
tial existence of a new VL hotspot solely associated with 
L. amazonensis, even though further investigations must 
include more comprehensive sampling, vectors, and par-
asite isolation to prove L. amazonensis’s capacity for vis-
ceral tropism.

We also found a high diversity of Leishmania species in 
dogs and wild mammals, besides the presence of T. cruzi 
in animals from the different departments of Colombia 
(Fig. 2). The latter has high prevalence in regions highly 
endemic for Chagas disease [75, 76] such as Casanare. 
These findings showed that, regarding the NTD elimi-
nation programs focused on vector control and diag-
nosis/treatment in humans, the pathogen transmission 
remains enzootic [77]. The above is alarming consider-
ing the increasing sylvatic niche fragmentation, which 
also increases the risk of outbreaks, sylvatic parasite spe-
cies circulation in urban transmission cycles, and the 
adaptation of the pathogens according to the availabil-
ity of vectors and hosts [78, 79]. This problem has been 
acknowledged and studied in endemic regions in the Bra-
zilian Amazon, keeping in mind their local context and 
associated variables to strengthen One Health interven-
tion programs [80].

Furthermore, the presence of different Leishmania spe-
cies is related to Colombia’s high biodiversity [81], where 
the vectors’ diversity and ecological niches [44, 82] allow 
the maintenance of L. panamensis, L. amazonensis, and 
L. braziliensis in sylvatic, urban, and periurban transmis-
sion cycles. Additionally, differently than expected for L. 
braziliensis and L. panamensis (the most prevalent spe-
cies of cutaneous leishmaniasis in active military popula-
tions) [58, 83], we found a low number of wild mammals 
infected with these species in Antioquia. On the other 
hand, L. amazonensis predominates, and L. infantum 
was identified in Pecari tajacu (collared peccary) and 
Choloepus didactylus (Linnaeus’s two-toed sloth). In all 
Hydrochaeris hydrochaeris (Capybara) samples, L. ama-
zonensis, L. panamensis, and Leishmania spp. were iden-
tified, as previously reported in other countries [84, 85]. 
This represents the first report in Colombia highlighting 
the need to conduct studies on this species, which repre-
sents an exotic source of consumable meat in the region.

For Casanare, T. cruzi was the main trypanosomatid 
detected. Leishmania was identified in four animals (3 L. 
braziliensis and 1 L. amazonensis) (Fig. 2A). These find-
ings suggest that the vector species distribution could 
determine the patterns according to specific environ-
mental conditions, their feeding preferences, and the 
availability of specific reservoirs [86–89]. Therefore, by 
analyzing the data for Antioquia (Fig. 2; Additional file 3: 
Table  S2), the possibility can be suggested that the lack 
of identification of L. braziliensis was determined by the 
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MTC2

MTC7

SAC401

SAC398

R95

SAC382

SC334

R333

PC01

SC335

R94

PC01

L. amazonensis
L. braziliensis
L. infantum
L. panamensis
L. lindenbergi
L. naiffi
L. mexicana
T. cruzi
T. rangeli

Parasite species

MT53

MT56

MT63

PUC02

PUC03

MT83

MT43

MT59

PUC07

H02

H79

H85

H83

H59

H78

H86

Sanger                           Sample                 Amplicon-based NGS

A

B

C

Fig. 3  Leishmania and Trypanosoma species correspondence reported by Sanger sequencing and reads obtained by amplicon-based NGS from 
human samples (A), dogs (B), and wild mammals (C). The size of the inner joining line among samples and parasites is proportional to the reads 
percentage found in the analyzed sample. Each parasite species is represented by a single color
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mammal species sampled in this study, while for Casan-
are, the hypothesis could explain how, despite finding 
bats infected with L. braziliensis and L. amazonensis 
(Figs. 2, 3C) and the presence of the circulation of Lutzo-
myia gomezi in the department [90], no autochthonous 
cases of leishmaniasis have been reported according to 
official data from the Colombian Disease Surveillance 
System (SIVIGILA). It can be assumed that the phle-
botomines play an essential role in disease modeling in 
humans and the maintenance of the parasite’s enzootic 
cycle, as has been demonstrated in endemic regions for 
cutaneous and visceral leishmaniasis in Brazil, Spain, and 
Iran [91–93]. However, a broader sampling and inclusion 
of more mammals, as well as the parallel study of phle-
botomine circulation, distribution, and feeding prefer-
ences, are needed.

Additionally, two human and canine samples from 
Sucre presented the highest diversity index (Additional 
file  4: Table  S3), where we identified coinfection events 
with L. naiffi and L. lindenbergi (Fig. 3A, B), as recently 
reported [58, 63]. The high species richness of Leishma-
nia in a single individual could be associated with the 
proximity of dwellings to forests, with a circulation of dif-
ferent vector species such as Lu. longipalpis, Lu. evansi, 
and Lu. gomezi [90, 94], human and canine mobilization 
to the forests to search for natural resources, and military 
and illegal groups in this country zone [9, 63, 65, 83]. All 
these factors make the vector-human-reservoir-pathogen 
interaction more accessible, maintaining the zoonotic 
and enzootic transmission cycles of Leishmania spp. 
Some authors have concluded, for instance, that the cir-
culating phlebotomine sand fly species are critical for the 
vectorial transmission of Leishmania spp. [95]; likewise, 
the mammals’ role in parasite transmission concerns the 
vector, their meal preferences, and feeding behavior [96, 
97].

Considering the identified parasite species versus those 
expected in wild mammals and coinfection events, a new 
scenario is opening showing the need for research on the 
following topics: (i) the role of domestic/wild mammals 
and vectors in the maintenance of transmission cycles, 
which has been studied and proposed in mathematical 
models for different vector-borne diseases [98–100]; (ii) 
the domiciliation transition of vectors in specific areas, 
phenomena highly relevant for American trypanosomia-
sis and VL in recent years [101–103]; (iii) the possibility 
of the genetic recombination of the different actors impli-
cated in the parasites’ life cycle, not just for the vector 
context [104–106]. The latter must transcend the world 
view of human diseases and recognize their importance 
and the veterinary diseases that must be equally pri-
oritized in the public health systems [107]. Therefore, 
considering our results, we highlight the relevance and 

usefulness of transmission scenarios in Casanare, Antio-
quia, and Sucre to understand these phenomena’s ecolog-
ical dynamics better.

On the other hand, we found coinfection by L. infan-
tum, T. rangeli, and T. cruzi in a canine in Santander 
(Fig.  3B), a department with a high incidence of Cha-
gas disease. It is known that T. cruzi and T. rangeli 
share mammal hosts, and their geographical distribu-
tion overlaps with the finding of infected mammals 
and triatomines [108, 109]. This triple coinfection was 
previously reported in Tamandua tetradactyla, a wild 
mammal [110]. In humans, even though T. cruzi-T. 
rangeli coinfection affects Chagas disease diagnosis, the 
cases are underestimated as T. rangeli has been detected 
in primates, bats, rodents, marsupials, and dogs in Brazil, 
Colombia, and Venezuela [110, 113–118].

It is relevant to discuss the benefits and limitations of 
amplicon-based sequencing and the specificity of the 
Hsp70 gene fragment used. In the first place, NGS tech-
nologies and the inclusion of new methodologies, such as 
amplicon-based ones, offer benefits in cost reduction and 
obtain quick and sensitive high-throughput data [117, 
118], allowing the use of different target genes simulta-
neously [119, 120]. The time between sample process-
ing and data collection is less than for conventional PCR 
and Sanger sequencing [121]. One of the critical points 
in sequencing success is the pre-analytics phase; there-
fore, the samples used in this study (serum, total blood, 
and bone marrow aspirate smear) determined the DNA 
integrity and concentration, which directly influence the 
success of NGS sequencing [122, 123]. Moreover, the bio-
logical influence of parasitic load in mammals and the 
copy number of the Hsp70 gene should be considered. 
This explains the sample percentage that could be evalu-
ated by amplicon-based sequencing (Fig.  3; Additional 
file 3: Table S2). Second, the Hsp70 gene allows the iden-
tification of Leishmania and Trypanosoma [124], which is 
an advantage for studying samples from endemic regions 
for both parasites.

Nevertheless, the Hsp70 gene sensitivity is not optimal 
for use as a diagnostic marker. One of our limitations was 
not being able to include more sensitive markers, such 
as satellite DNA for T. cruzi [125] or 18S for Leishma-
nia [126], to determine whether those 60 samples were 
indeed negative. However, we want to emphasize that 
the main objective was to depict the infective species, so 
we chose the Hsp70 marker. Finally, considering the ris-
ing availability of data from outstanding databases such 
as NCBI, searching for a more sensitive genetic marker 
to discriminate among these trypanosomatid species 
through Illumina sequencing or even Oxford Nanopore 
should be prioritized.
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Conclusions
The present study describes the infection by trypanoso-
matids in samples from humans, dogs, and wild mam-
mals, using Sanger and amplicon-based sequencing of a 
coding fragment of the Hsp70 gene. We confirmed the 
vast diversity of Leishmania species found in the different 
samples obtained in many departments of Colombia, the 
presence of T. cruzi in bats and dogs, and the occurrence 
of coinfections.
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