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Abstract 

In recent years, global health security has been threatened by the geographical expansion of vector‑borne infectious 
diseases such as malaria, dengue, yellow fever, Zika and chikungunya. For a range of these vector‑borne diseases, an 
increase in residual (exophagic) transmission together with ecological heterogeneity in everything from weather to 
local human migration and housing to mosquito species’ behaviours presents many challenges to effective mos‑
quito control. The novel use of drones (or uncrewed aerial vehicles) may play a major role in the success of mosquito 
surveillance and control programmes in the coming decades since the global landscape of mosquito‑borne diseases 
and disease dynamics fluctuates frequently and there could be serious public health consequences if the issues 
of insecticide resistance and outdoor transmission are not adequately addressed. For controlling both aquatic and 
adult stages, for several years now remote sensing data have been used together with predictive modelling for risk, 
incidence and detection of transmission hot spots and landscape profiles in relation to mosquito‑borne pathogens. 
The field of drone‑based remote sensing is under continuous change due to new technology development, opera‑
tion regulations and innovative applications. In this review we outline the opportunities and challenges for integrat‑
ing drones into vector surveillance (i.e. identification of breeding sites or mapping micro‑environmental composition) 
and control strategies (i.e. applying larval source management activities or deploying genetically modified agents) 
across the mosquito life‑cycle. We present a five‑step systematic environmental mapping strategy that we recom‑
mend be undertaken in locations where a drone is expected to be used, outline the key considerations for incorporat‑
ing drone or other Earth Observation data into vector surveillance and provide two case studies of the advantages 
of using drones equipped with multispectral cameras. In conclusion, recent developments mean that drones can be 
effective for accurately conducting surveillance, assessing habitat suitability for larval and/or adult mosquitoes and 
implementing interventions. In addition, we briefly discuss the need to consider permissions, costs, safety/privacy 
perceptions and community acceptance for deploying drone activities.
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Background
New tools for mosquito control and rationale
A main driver of the need for new, more effective mos-
quito surveillance and control methods is increased 

insecticide resistance across multiple vector species of 
Aedes, Anopheles and Culex [1]. Resistance has led to 
the re-examination of interventions specific to differ-
ent mosquito life stages, such as larval source manage-
ment, that might be considered to be a component of 
integrated vector control. Other drivers include the 
need to tailor interventions for diverse local landscapes 
and to engage human communities more directly. For 
malaria, an increase in residual (exophagic) transmission 
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together with ecological heterogeneity in everything 
from weather to local human migration and housing to 
mosquito species’ behaviours presents many challenges 
[2]. Ironically, higher insecticide resistance [1] is partly a 
result of the intensive roll-out of long-lasting insecticidal 
nets (LLINs), sometimes combined with indoor residual 
spraying (IRS), which reduced malaria cases successfully 
from 2000 to 2015 in many malaria-endemic countries [3, 
4].

In recent years, global health security has been threat-
ened by the geographical expansion of arboviruses such 
as dengue and yellow fever and emergent viruses such as 
Zika and chikungunya [5]. The increased range of com-
petent Aedes mosquitoes worldwide has been linked 
to global travel, urbanization modifications and envi-
ronmental changes [3, 6, 7]. Resistance to insecticides 
employed both for larvae and adult control is prevalent in 
Aedes [8, 9] and Culex, compromising effective control of 
dengue and other arboviruses [10] and of lymphatic fila-
riasis [11, 12]. The global landscape of mosquito-borne 
diseases and disease dynamics fluctuates frequently, and 
there are likely to be serious public health consequences 
for the success of mosquito surveillance and control pro-
grammes if issues of insecticide resistance and outdoor 
transmission are not adequately addressed.

A major complication of residual transmission in 
malaria endemic regions is locating the species and pop-
ulations of questing and resting vectors that are outside 
houses [13]. Those that feed and/or rest in the perido-
mestic area, including in and around animal enclosures, 
may be vulnerable to interventions such as insecticide-
treated barrier screens (with the obvious caveat of local 
insecticide resistance), spatial repellents or endectocide 
treatment of domestic animals [14]. Depending on local/
regional ecology and human behaviour, it may be effec-
tive to detect and target aquatic stages. For controlling 
both aquatic and adult stages, remote sensing data have 
been used together with predictive modelling for risk, 
incidence and the detection of transmission hot spots 
and landscape profiles in relation to mosquito-borne 
pathogens for several years [15, 16]. Treatment of trans-
mission hot spots can be effective in reducing—possibly 
in eliminating—arthropod-borne pathogens, but in low 
transmission settings, targeting the household level (the 
smallest unit), or even the community, may not translate 
to nearby non-targeted areas [17].

Here we outline the opportunities and challenges for 
integrating drones into vector surveillance and inter-
vention strategies across the mosquito life-cycle (Fig. 1). 
We present a five-step systematic environmental map-
ping strategy that we recommend be undertaken in 
locations where a drone is expected to be used, out-
line the key considerations for incorporating drone or 

other Earth Observation data into vector surveillance 
and provide two case studies of the advantages of using 
drones equipped with multispectral cameras: (i) to locate 
anopheline vector breeding sites in Amazonian Peru; 
and (ii) to map fine-scale deforestation or other environ-
mental modification that affect wildlife movements. We 
describe in some detail a series of pre-flight considera-
tions that include local and regional drone regulations, 
privacy, safety, community engagement and feasibility. 
To illustrate the range of practical applications, we dis-
cuss examples of mapping breeding containers of juvenile 
aedine mosquitoes, and preliminary ongoing intervention 
studies to enable the use of drones to disperse biological 
control agents, chemical larvicides, Wolbachia-carrying 
mosquitoes or sterile males. Included in the Additional 
file  1: Text 1 is a glossary. We encourage serious con-
sideration of high-resolution drone imagery data using 
specific sensors that can be incorporated into predictive 
distribution models and environmental suitability analy-
sis to assess the risk of establishment and current and 
future spread of mosquito-borne pathogens.

Water bodies and breeding site detection
Aquatic stages of mosquitoes are amenable to the use of 
drones (also known as umanned aerial vehicles [UAVs]) 
for identification, surveillance and treatment. Gener-
ally, container breeders, such as Aedes aegypti and Aedes 
albopictus, oviposit in many kinds of water-filled recep-
tacles [18, 19], whereas non-container breeders, such as 
Culex species, are associated with stagnant water rich in 
organic matter [12], and Anopheles species choose natu-
ral (ponds, puddles, river edges, swamps) or anthropo-
genic water bodies such as fish-ponds, irrigated rice fields 
and mining ponds. Preferred aquatic site profiles have 
been established for many individual vector species (e.g. 
Anopheles dirus, Culex quinquefasciatus, Ae. albopictus) 
that are essential for both ground truthing and training 
remote sensing tools to enable detection of specific types 
of breeding sites.

Commercial drones have been used for surveying 
potential breeding sites in contrasting environments (rice 
fields, ponds and urban and peri-urban areas in Zanzibar, 
Tanzania), as demonstrated for malaria vectors by Hardy 
et al. [20]. In a tidal marsh in California (USA), Haas-Sta-
pleton et al. [21] used a drone fitted with a multispectral 
camera to map accumulated surface water with the objec-
tive of prioritizing sites for larval stage mosquito inspec-
tion and to improve drainage ditches to reduce mosquito 
oviposition. This study also tested the capacity of a drone 
with a high-magnification camera to visualize immature 
mosquito stages of Culex pipiens from varying heights 
and colour-contrasted containers, ultimately demonstrat-
ing its potential to estimate mosquito abundance that 
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would reduce work effort in mosquito habitat ground 
surveys. In Amazonian Peru, water bodies positive for the 
presence of mosquito larvae of the malaria vector Nysso-
rhynchus darlingi were identified with an overall classifi-
cation accuracy > 85% by drones fitted with multispectral 
cameras ([22]; see section Case study 1). In a challenging 
intertidal coastal saltmarsh landscape in South Australia, 
researchers were able to map areas of shallow inundation 
among hummocks of low vegetation, establishing a useful 
reflectance threshold with an overall classification accu-
racy of 80% to detect putative breeding sites with a mini-
mum depth of 10 cm, of local Aedes vectors of the Ross 
River virus [23]. A brief description of the workflow for 
drone survey is presented in Fig. 2.

Spatial distribution of adult stages and abundance
Mosquitoes, like many organisms, are aggregated by 
available resources (e.g. resting and oviposition sites, 
hosts, sugar sources) within the landscape of their geo-
graphical range [24, 25]. Reisen [26] recognized specific 
habitat characteristics of importance in predicting mos-
quito abundance and species composition. Vegetation 

indices, land use, canopy cover, elevation and hydrology 
can have significant effects on the availability of aquatic 
habitats suitable for immature stages or resting areas for 
adult mosquitoes. Heterogeneous micro-environmental 
factors associated with host availability around houses 
can also have a significant influence on the spatial dis-
tribution of adult malaria vectors [27]. For example, the 
number of people sleeping in the dwelling, an individual’s 
relative attractiveness to mosquitoes, house construc-
tion materials, availability of aquatic habitats and dis-
tance to aquatic environments can all shape anopheline 
distribution. In other mosquito species, such as Culex 
territans and Culex peccator, the distribution of host ani-
mals within the landscape is of paramount importance to 
explain mosquito spatial distribution [28].

Characterization of land cover/use with remote sens-
ing data proved to be practical to estimate the diversity 
and abundance of adult Anopheles for the study of mos-
quito habitats at a local scale and subsequently to design 
appropriate sampling strategies that represent the het-
erogeneous environment in French Guiana [29]. More 
sophisticated analysis using light detection and ranging 

Fig. 1 To understand the different stages at which drones can be used in surveillance and control of vector‑borne pathogens it is important to 
follow the vector life‑cycle and relate it to the environment wherein mosquitoes develop. Juvenile stages develop in aquatic habitats; in contrast, 
adult mosquitoes are broadly dispersed in the landscape. Drones are being used to produce high‑resolution maps of these landscapes and to assist 
surveillance and control activities in the field
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Fig. 2 To successfully map the environment where mosquitoes develop it is important to do it in a systematic way, to guarantee repetition on 
subsequent sampling campaigns and to achieve the proposed goals of the survey. Steps 1–5 show an example of the workflow that is used to map 
the aquatic habitats of anopheline mosquitoes. AOI, Area of interest; GCP, Ground Control Points; GPS, Global Positioning System
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(LiDAR) technology has been able to detect and classify 
fine-scale and temporal distribution of malaria vectors 
by the difference in their wingbeat frequencies compared 
with those of other insects, and between male and female 
mosquitoes [30].

Pre‑flight considerations
Despite the utility of drones for vector surveillance and 
control, programmes need to consider several relevant 
aspects, including local or regional regulations, safety, 
privacy and ethics, community acceptance and, as a final 
reality check, feasibility.

Drone regulations
Prior to flying a drone, the first step is to review and 
understand local regulations for the surveillance location 
proposed. Authorizations for equipment, pilot and the 
activities to be conducted with the drone, as well as type 
and characteristics of the drone (i.e. weight or number of 
rotors) vary between countries [31]. Generally, countries 
have been slow to establish national drone regulations, 
thereby hindering widespread utilization of this technol-
ogy [31]. Although a comprehensive analysis of drone 
regulations has been published [31], both the technology 
and its regulation continue to change rapidly.

Safety
As the popularity and volume of operations with drones 
increase, concerns have been raised about drone safety 
and security. In contrast with other aerial vehicles, the 
only subjects at potential risk of a crash accident are peo-
ple on the ground. Hence, new frameworks and strate-
gies have been developed and are continuously being 
updated. Overall, the field is changing from crash-free 
to safe-to-crash operations addressed by software- and 
hardware-based solutions [32]. This is of particular 
importance for drones operating above populated areas. 
As will be discussed further in this review, drones could 
be used to monitor water bodies as potential sites for 
mosquito oviposition (an example of an un-populated 
scenario), as well as risk mapping of dwellings located 
along an environmental gradient (populated scenario). 
In this context, detect-and-avoid systems have received 
particular attention [33]. Pham et al. [34] and Shakhatreh 
et  al. [33] reviewed major categories of collision avoid-
ance methods that can be summarized as geometric, 
path planning, potential field approaches and vision-
based approaches. Future scenarios that involve the 
simultaneous use of multiple drones require additional 
detect-and-avoid strategies called swarm intelligence 
algorithms [35] that are able to combine data from 
diverse sources, including location and weather sensors, 

accelerometers, gyroscopes, radio detection and ranging 
systems (RADARs) and LiDAR technology [33].

Privacy and ethical issues
Valid privacy concerns have emerged from the use of 
drones, particularly by the unprecedented spatial and 
temporal resolution at which data collection can be con-
ducted. Recent sensors mounted on drones can photo-
graph at sub-centimeter resolution in comparison to the 
5- to 10-cm resolution from private or military satellites, 
or 5- to 10-m resolution from freely available satellite 
images [36]. In many countries there are legal require-
ments for data collection from private property using 
drones; however, in rural areas or marginalized popu-
lations (where most tropical diseases are transmitted), 
clear distinctions of private property are often lacking 
[37]. Drones can (intentionally or unintentionally) col-
lect private information directly, such as data on location, 
behaviour, body characteristics and/or use of space, or 
indirectly, such as on income, habits or family composi-
tion, raising ethical concerns about restriction of freedom 
and privacy violation [37, 38]. Despite the increasing use 
of drones in biomedical and, particularly, in infectious 
diseases research, institutional guidelines and relevant 
permits are still scarce or in their infancy. Ethical and 
best practices described by Hodgson and Koh [39] could 
be adapted for these scenarios. These practices include: 
(i) adopt the precautionary principle in lieu of evidence; 
(ii) utilize the institutional ethics process to provide 
oversight to drone research; (iii) adhere to relevant civil 
aviation rules and adopt equipment maintenance and 
operator training schedules; (iv) select appropriate drone 
and sensor equipment to minimize disturbance to the 
population  of interest; and (v) exercise minimum dis-
turbance flight practices and stop operations if they are 
excessively disruptive.

Community acceptance
In rural settings, in addition to authorization to fly 
drones, an important aspect to consider is the commu-
nity acceptance of such activities. A difference with other 
remote sensing instruments (such as satellites) is that 
drones fly in the aeronautic space (thus national aeronau-
tic authorization is required) and are perceivable by the 
population in the study area [40]. Even though the area of 
interest (AOI) of the flight plan cannot include dwellings, 
drone operations may be perceived as a violation of pri-
vacy, a concern that must be recognized by the research 
team [41]. Prior to data collection, community meetings 
should be held to engage the local population and inform 
people about study objectives, benefits and the best prac-
tices that will be conducted (i.e. blurring personal infor-
mation, such as license plates and faces; displacement; 
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jittering; micro-spatial aggregation) to preserve privacy 
[36, 42]. In urban areas, other aspects may include noise, 
design or patterns of movement of the device [43, 44].

Feasibility and equipment
Considering the large variety of drone models [45] and 
specifications, it is important to consider the feasibility 
of the intended applications (i.e. mapping, surveillance, 
control). The two main drone types are multi-rotor and 
fixed-wing. Multi-rotor drones are suitable for captur-
ing stable images because of their precision control over 
position and tilt; however, the energy consumption of 
their rotors impacts the flight time and speed and limits 
their use for long-distance inspection and monitoring 
over extended periods. On the other hand, the aerody-
namic design (similar to airplanes) of fixed-wing drones 
provides efficient use of energy for longer flight times 
and greater speed. The main limitation of fixed-wing 
drones is the requirement of large, clear areas for take-
off and landing (in contrast to multi-rotor drones, which 
are able to take off and land vertically). In settings with 
dense forest cover, such as in the Amazon or Southeast 
Asia [22, 46], multi-rotor drones might be suitable, and 
in areas of, for example, open savanna, fixed-wing drones 
might be the most appropriate. Alongside the selection of 
drones is the cost of the equipment and sensors. Com-
mercial multi-rotor drones range in cost from US$1000 
to US$10,000, and fixed-wing drones from US$5000 to 
US$20,000, all commonly equipped with RGB (red, green 
and blue) cameras. It is important to consider the addi-
tional cost of supplementary sensors, such as multispec-
tral, thermal or LiDAR sensors, which range in cost from 
US$5000 to US$20,000. Additional costs include spare 
parts for field surveys, such as controllers, extra batter-
ies, propellers, landing paths, data storage, charging sup-
plements, repair kits, mounting kits and packaging, as 
well as costs for personnel, field survey costs and analysis 
and computing requirements. While costs for drones and 
sensors are becoming increasingly affordable, drone sur-
vey plans should include a budget that covers other asso-
ciated costs.

Integrating drones into vector surveillance
Surveillance is defined as “the continuous and systematic 
collection, analysis and interpretation of disease-specific 
data and the use of those data in the planning, implemen-
tation and evaluation of public health practice” and has 
been recognized by the WHO as a core intervention for 
vector-borne disease control [47].

Surveillance
A key surveillance priority is monitoring the distribu-
tion and abundance of local vector species to evaluate 

potential impacts on disease transmission. This requires 
keeping track of vector habitats and assessing changes 
which may increase or decrease vectorial capacity 
directly (e.g. landscape change that creates a suitable 
habitat) or indirectly (e.g. increasing availability of blood 
meals, resting sites or predation) or leads to ecological 
shifts in biting behaviour or the predominant vector spe-
cies [48]. Entomological surveillance is essential for mon-
itoring and evaluating interventions, identifying priority 
areas for further surveillance and assessing vector-borne 
transmission potential, and for determining whether 
migration of infected people or vectors into an area or 
the replacement of one vector species by another is likely 
to lead to disease outbreaks. Generating accurate maps of 
mosquito breeding sites might also provide an opportu-
nity to use them as information, education and commu-
nication materials to display specific risk conditions for a 
given locality [47].

Earth observation
Earth observation (EO) is the collection of information 
on the physical characteristics of Earth’s surfaces using 
remote sensing technology, such as satellites, manned 
aircraft or drones. Raster data from EO are used fre-
quently to characterize vector habitats and to moni-
tor changing risks [49]. EO uses sensors that measure 
reflectance or emitted radiation from a distance, with 
wavelength interval size and number of wavelengths 
measured on the electromagnetic spectrum defining the 
spectral resolution of the sensor [50]. These sensors are 
also characterized by radiometric resolution, i.e. the sen-
sitivity of the sensor to measure differences in reflected 
or emitted energy. While RGB sensors measure only the 
visible range of the electromagnetic spectrum (similar to 
standard cameras), sensors with higher spectral resolu-
tion increase the capacity to detect specific habitat types 
and allow transformations, such as for vegetation indices. 
Additionally, EO data are characterized by spatial resolu-
tion, which is the size of a pixel within the image, and by 
temporal resolution, which is the frequency at which the 
data are collected. While satellite data often have much 
higher spectral resolution than data collected by drones, 
spatial resolution of satellite data is typically more con-
strained because freely available data are limited to a 
resolution of ≥ 20  m/pixel; higher resolution data are 
often prohibitively expensive. In contrast, typical aerial 
imagery collected by drones has a resolution of < 10 cm/
pixel (Fig.  3). Additionally, drones offer distinct advan-
tages for temporal resolution as the user is able to define 
flight timing, whereas satellite data are only available 
when a satellite is passing over a specific location and may 
be further limited by cloud cover obscuring the target 
site [46]. Despite these advantages, drones cover much 
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smaller geographical areas than satellite imagery and 
satellite data are more appropriate when large regions 
are targeted. For example, typical applications of low-
cost drones result in < 1   km2 of area being mapped per 
30-min flight due to different reasons, such as battery life 
and legal permission from Aviation Authorities (weight, 
visual line of sight [VLO], speed and maximum altitude) 
[46]. While the area covered will depend on local condi-
tions, types of drones used and the flight height, com-
mercially available drones are only able to cover limited 
geographical areas. Due to this limitation, drones are fre-
quently best used to complement existing sources of EO 
data (Fig. 3). This may include drone use to conduct tar-
geted mapping of high priority areas identified by satel-
lite-based EO data or, conversely, using drones to collect 
training data to classify satellite EO data.

Data sources and analysis methods to be used should 
be determined by the features to be identified and the 
resolution required for surveillance; for example, direct 
observation of larval breeding sites at set time intervals 
for targeted larval source management. In other cases, 
the objective may be monitoring landscape changes or 

estimating numbers of people at risk or potential disease 
hosts. Based on these features and the technical capac-
ity available, a specific approach to analyse drone data 
should be determined. This approach can include the fol-
lowing steps:

• Manual digitization: the simplest approach that relies 
on visual identification of key features; this has been 
shown to be effective for pinpointing malaria vector 
breeding sites in Tanzania [20].

• Region-growing/technology-assisted digitizing: this 
approach builds on manual digitization by using 
automated approaches to classify similar neighbour-
ing pixels [51].

• Unsupervised classification: these methods group 
features within an image into different categories 
without the use of training data to define classes of 
interest. Such methods are used less frequently alone 
as they require the user to determine subsequently 
what the categories represent.

• Supervised classification: methods that use train-
ing data to fit a model classifying the imagery into 

Fig. 3 Frequently used remote sensing definitions
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pre-defined categories of interest. Training data 
may include specific categories or use ground-based 
data for imagery analysis. An example of pixel-based 
supervised classification is found in section Mapping 
juvenile aquatic habitats (Case study 1).

• Object detection: these methods aim to detect spe-
cific objects, such as plants and wildlife, rather than 
to classify an entire image [52, 53].

While a wide range of different models can be used 
for all approaches, machine learning methods are being 
utilized increasingly for image analysis. These can be 
implemented in a range of open source and commercially 
available software, with additional cloud-based com-
puting power available through online platforms such 
as Google Earth Engine and Amazon Earth. Additional 
considerations should include the technical skills of the 
data analyst; while manual digitization and region-grow-
ing approaches can be used by non-experts, significant 

technical expertise is required to implement machine 
learning approaches.

The features to be identified and the analytical 
approach should determine selection of the drone sen-
sor. Commercially available drone sensors include RGB, 
multispectral and thermal cameras and, increasingly, a 
range of active sensors, such as three-dimensional (3D) 
laser scanning (i.e. LiDAR) (Fig.  4). To collect data, the 
drone and sensor are flown over the AOI, typically in a 
grid-like configuration to allow collection of overlap-
ping images. Using commercially available (e.g. Agisoft 
Metashape Professional; Agisoft LLC, St. Petersburg, 
Russia) or open-source (e.g. Open Drone Map) software, 
these images can then be processed to generate spatially 
referenced orthomosaics, which are images that have 
been stitched together and orthorectified. Additionally, 
photogrammetric methods (or Structure-from-Motion) 
can generate digital surface models and 3D representa-
tions of landscapes. These data can then be used as inputs 

Fig. 4 Drones are advantageous in their ability to detect small‑sized features, as they produce high‑resolution imagery at the sub‑meter level. This 
is particularly important in vector‑borne studies because water bodies/containers suitable for mosquito breeding are frequently small. The top row 
shows a comparison of the pixel size produced by a drone in contrast to two commonly used freely available satellite imageries. The middle row 
demonstrates changes in the landscape composition across a 2‑month window, as captured by drones, which otherwise might be overlooked by 
satellite images. The bottom row shows imageries with common bands that are available in the sensor often used in drones: RBG cameras (left), 
multispectral cameras that have NIR and red edge band (middle) and an NDVI composite using red and NIR bands (right). MS, Mass spectrometry; 
NDVI, normalized difference vegetation index; NIR, near infrared; RBG, red, green and blue color model
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into image analysis pathways or input directly into a Geo-
graphic Information System (GIS) software for viewing.

Mapping juvenile aquatic habitats
Aquatic habitats used by malaria vectors have a spatially 
heterogeneous distribution that is controlled mostly 
by hydrological and geomorphological processes [54], 
together with regulated land use/land cover (LU/LC) [55, 
56], resulting in a patchy distribution of water bodies, 
which are often spatially organized in clusters [57]. The 
distribution of aquatic habitats is also strongly correlated 
with rainfall, which can dictate the temporal dynamics of 
anopheline larval habitats and adult abundance [58–60]. 
Mapping the spatial distribution of aquatic habitats pre-
ferred by mosquitoes is crucial to the successful deploy-
ment of different control and surveillance practices. Also, 
targeting the most productive habitats could increase the 
cost-effectiveness of mosquito larval control programmes 
[61, 62].

Remote sensing and geospatial mapping are realistic 
approaches to identify larval habitats that cover large 
areas, overcoming some operational challenges of con-
ventional ground-based surveys [59, 63–65]. The iden-
tification of larval habitats using high spatial resolution 
satellite imagery may be challenging during the classifi-
cation process, particularly when water bodies are small 
and turbidity is high [66, 67]. Another example of the 
use of remote sensing technology are malaria risk assess-
ments through the study of anopheline larvae [68, 69]. 
Recently, object-oriented machine learning classification 
has been explored to overcome backscatter similarities 
of radar data when mapping open water or slightly veg-
etated areas between stretches of open water [70]. Proof-
of-concept studies have proven the feasibility of using 
drones to map aquatic larval habitats of African [20, 71] 
and South American malaria vectors [22] (Table 1). The 
high-resolution imagery at relatively low cost compared 
with satellite images, the temporal flexibility to capture 
images by the drone user and the clear-sky conditions 
required for optical satellite imagery make this technol-
ogy an effective operational tool for the identification of 
potential habitats [46] (Case study 2; Fig. 5). 

The proliferation of larval habitats of anopheline 
malaria vectors has been also associated with human 
activities, such as agriculture, settlement, mining or other 
landscape alterations that incorporate deforestation and 
vegetation clearance [72–75]. More frequent surveil-
lance via drones will allow for the detection and subse-
quent development of quick responses to rapid changes 
and environmental alterations, such as urbanization, or 
changes in the use of rural/agricultural areas that might 
lead to new aquatic habitats favoured by certain mos-
quito species.

Aedes-borne disease surveillance programmes, such 
as those for dengue, chikungunya or Zika, commonly 
use periodic household inspections for detecting water-
holding containers positive for Aedes larvae [76, 77]. Esti-
mation of infestation indices, used to define and inform 
control actions, are labour-intensive in terms of vector 
intervention and public health staff and can be inaccurate 
due to variation in searching efforts, householder avail-
ability and/or mosquito egg-laying behaviour; they may 
also be intrusive for residents.

The centimetre-scale of the preferred oviposition habi-
tats of Ae. aegypti and Ae. albopictus precludes the pos-
sibility of using high-resolution satellite imagery typically 
used for monitoring large water bodies for malaria vec-
tors [20]. Approaches that leverage the high-pixel resolu-
tion of drone imagery have been explored to identify and 
map potential breeding sites characteristic of Aedes, such 
as cisterns, pots, tyres or flower pots. Ultimately, these 
approaches might support specific vector strategies, such 
as targeted application of larvicides against Ae. aegypti in, 
for example, rural areas of Central America [78] or guide 
preventative actions and prioritize programs that focus 
on controlling this species (e.g. in the city of Cuiabá, Bra-
zil [79]).

In urban areas, drone imagery has also been used to 
locate preferred oviposition sites of Ae. albopictus [36]. 
In a study combining aerial imagery and entomologi-
cal surveys in New York State (USA), up to 64% of the 
containers with water identified in ground surveys were 
detected with high-pixel resolution images and 14% were 
partially visible from the air (Table  1). In this suburban 
setting, detection of containers depended on the location 
within the property, with difficulty viewing those located 
on porches, trees, underneath awnings or near walls. 
Visibility was also affected by common features, such as 
tree cover and location of the drone when taking pictures 
[36].

Case study 1: Carrasco‑Escobar et al. 2019 [22]
Carrasco-Escobar et  al. [22] used drones mounted with 
regular RGB and multispectral cameras to collect high-
resolution images to determine the spectral signature 
(characteristics of the light reflected from the land/
water surface) of the most productive breeding sites of 
the malaria vector Ny. darlingi nearest to human habita-
tion in Amazonian Peru. These researchers conducted a 
supervised classification approach (overall pixel-based 
accuracy: 86.73–96.98%) to identify water bodies and Ny. 
darlingi-positive and -negative areas within the water 
bodies identified, respectively, using machine learn-
ing techniques. They used a two-step process involving 
first the classification of several land type coverages and 
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second the masking and classifying of only water bodies. 
The methodology and analysis were a proof-of-concept 
for testing whether improved larval source management 
can be combined successfully with LLINs and IRS to con-
tribute to the elimination of transmission in malaria hot-
spots in the Amazon.

Case study 2: Stark et al. 2019 [80], Jumail et al. 2021 [81]
In addition to collecting data on mosquito habitats, 
drones are valuable for monitoring wider environmen-
tal factors influencing disease dynamics. Vector-borne 
diseases such as Plasmodium knowlesi and yellow fever 
are maintained by wild non-human primate reservoirs. 
Drones enable the mapping of fine-scale deforestation 
and other habitat modifications that influence move-
ment patterns of wildlife populations [80]. Specifically, 
Jumail et al. [81] explored the use of thermal imagery 
to capture heat signatures of wild animals and esti-
mate, in real-time, wild primate populations within 
changing landscapes in the Lower Kinabatangan Wild-
life Sanctuary in Malaysian Borneo [81, 82]. These 
methods were validated initially by ground-based sur-
veys prior to deploying aerial thermal surveys, with 
the objective of developing non-invasive techniques to 
assess wildlife populations and study disease dynamics.

Vector control
As discussed in the previous section, drone applica-
tion in mosquito vector control has been related mainly 
to larval source management (LSM). This strategy seeks 
to reduce the immature stages of malaria vectors using 
habitat modification or manipulation, larviciding or bio-
logical control [83]. When implemented well and incor-
porated into ongoing vector intervention programmes, 
LSM can reduce the densities of indoor and outdoor 
biting mosquitoes and help decrease the dependence on 
insecticides, and therefore help prevent the emergence of 
insecticide-resistant mosquitoes. However, WHO recom-
mends larviciding only for special cases “when breeding 
sites are few, fixed and findable, and where the sites are 
easy to identify, map and treat” [62]. Such landscapes are 
uncommon not only in Africa but also in other malaria 
endemic regions like Southeast Asia and South America.

The use of drones in vector control can be divided into 
two main applications. The first is the use of the imagery 
to retrieve data that can serve as: (i) a source of visual 
inspection carried out before and after interventions; 
and (ii) as a communication tool, to detect water bodies 
and positive breeding sites and to create detailed maps of 
the mosquito breeding habitats and landscape. The sec-
ond application is that drones can be used to disperse 
the intervention; for example, the dispersal of larvicide 

in liquid or granular form [84] and, more recently, as a 
potential means of deploying genetically modified mos-
quitoes [85]. For these activities, both the limited UAV 
flight time, which is largely dependent on battery capac-
ity, and payload can be limiting factors [86, 87]. For 
instance, UAVs are especially effective in spraying when 
they are over water (e.g. rice paddies), on irregular or 
sloping ground, small areas and in places where it is 
hard to reach with other kinds of equipment. However, 
in units > 50 Ha, conventional ground and aerial sprayers 
proved to be more efficient [88]. Regarding flight time, 
the duration is even further shortened when the drones 
are fully loaded. Using a network of communicating 
drones, or swarms, could be one approach to overcome 
this operational challenge [89].

Some attempts have been made to use drones to deploy 
larvicides by leveraging the development of drones to 
apply pesticides for agriculture use [90]. For example, the 
dispersal of a biological control product to reduce juve-
nile malaria vectors in irrigated rice fields in East Africa 
[91] or as implemented in some mosquito control pro-
grammes for treating remote pools of standing water in 
brackish salt marsh with larvicides (Florida Keys Mos-
quito Control District). Using drones as deployment 
devices may overcome the challenges of treating and 
accessing large areas on foot and make aerial distribution 
affordable. Also, multispectral imagery collected with 
commercial drones has helped to predict the operational 
efficacy of some larvicide formulations against Aedes 
vigilax in complex environments with irregular canopy 
cover, such as mangroves [84].

In drone spraying operations, flight parameters might 
influence the effectiveness of droplet deposition when 
using liquid products and might need adjustments 
according to the larval habitat characteristics [92]. Flight 
height and velocity have a remarkable influence on the 
deposition amount [93]; high-speed rotation of the 
rotor—and of the air—rotor wind field [94]—and the 
downwash airflow may also affect intervention efficiency. 
Importantly, the use of drones in targeted areas could 
reduce harm to the environment by limiting wildlife dis-
turbance in sensitive habitats [95, 96].

The use of drones in vector interventions represents a 
unique opportunity for the democratization of technol-
ogy. One such organization, GLOBHE (https:// globh de. 
com/ about- us), uses crowddroning (sending local drone 
operators to capture ultra-high-resolution earth obser-
vation data) to determine appropriate interventions for 
vector-borne diseases and monitor local climate change, 
among other portfolios. A second example, WeRobotics, 
a not-for-profit (https:// werob otics. org), empowers local 
experts in drone, data, artificial intelligence and robotics, 
creating knowledge hubs (of people) who then propose 

https://globhde.com/about-us
https://globhde.com/about-us
https://werobotics.org
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and activate local solutions for a wide range of health and 
environmental issues.

Release of adult mosquitoes
Vector control approaches built on sterile insect tech-
niques and Wolbachia-based strategies rely on mass-
rearing and the dispersal of thousands of mosquitoes 
at a specific frequency depending on the nature of the 
strategy [97, 98]. Critical operational aspects need to be 
addressed before the deployment and scale-up of these 
interventions in the areas to be treated, such as aerial 
coverage, operational costs associated with the number 
of release sites and mosquito transportation [85, 99]. 

Operational programmes can benefit from using drones 
during the implementation of these interventions and 
to optimize some of the key technical aspects, including 
remote preparation of the material and then expanding 
release and dispersion areas.

The World Mosquito Program (WMP) has employed 
drones to optimize the release of Wolbachia-carrying 
mosquitoes for control of dengue virus on the island of 
Fiji, South Pacific. There, the development of an aerial 
release mechanism that can store up to 160,000 mosqui-
toes and release 200 every 50 m has proved to be much 
faster and more homogeneous than ground releases 
and also provided better coverage [100]. In another 

Fig. 5 a Deforestation disrupts wildlife habitats and can bring human, mosquito and macaque populations in closer proximity, thereby increasing 
the potential for disease transmission. Monitoring wildlife populations is essential for understanding disease dynamics in these changing 
landscapes. b Inspection with thermal cameras
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epidemiological scenario, in the fight against dengue and 
Zika in Brazil, Bouyer et  al. [85] designed a mechani-
cal compartment for dispersing sterile males by using 
drones. This study demonstrated minimum damage to 
mosquitoes and similar competitiveness between those 
released on the ground and by drone. Moreover, this 
drone-based dispersion modality was estimated to pro-
vide a 20-fold reduction in the estimated costs of imple-
menting the sterile insect technique (SIT).

Challenges and technological developments
The drone industry is expanding and gaining increas-
ing interest from a wide range of stakeholders for use in 
civil applications [101]. As discussed above, important 
developments in the industry have been focussing on 
safety improvements. In this section, we detail additional 
challenges to drone operation, as well as recent techno-
logical developments for control and surveillance of vec-
tor-borne diseases.

Capacity building Most countries require operator 
training for authorization of drone operations. How-
ever, there is still no consensus on the minimum levels of 
training ensuring safe flight and ground operations [102]. 
Despite algorithms that have been developed recently to 
automate common human tasks related to drone opera-
tions, overtrust and automation bias in autonomous sys-
tems could be extremely dangerous in safety–critical set-
tings [103]. Recently, Kucherov et al. [104] proposed and 
evaluated a training process for specialists in the mainte-
nance and operation of UAVs; however, this field is still 
under development.

Availability of training data Accuracy of supervised 
image classification to detect breeding sites is largely 
dependent on the availability of training data, i.e. iden-
tified data of the features of interest used to fit predic-
tive models [105, 106]. Recent initiatives have focussed 
on developing large training datasets of such features, 
including roads, housing or agricultural land types [107, 
108]. These datasets are typically labelled using standard-
ized methodologies, such as the Spatiotemporal Asset 
Catalog [109], enabling utilization by different platforms 
for various purposes. However, there is no standard 
image repository to share mosquito habitat training data, 
and most projects need to collect their own.

Energy management One important challenge of drone 
missions is the current trade-off between battery weight 
and flight duration, as increased weight limits the flight 
duration. To cover large areas, multiple returns to the 

charging station are needed, a potential problem for 
drone operations in rural areas. Current developments 
on wireless charging [110, 111] and lightweight solar-
powered battery components [112] may improve drone 
operations.

Evaluation of performance There is a critical need to 
evaluate the impact of drones on the control or surveil-
lance of vector-borne diseases using metrics appropri-
ate for the intended end use. While model validation is 
an important step of image analysis, new approaches are 
needed to assess impacts on disease transmission and 
efficacy of control programmes. This may involve identi-
fying target levels of sensitivity and specificity for detect-
ing or treating specific features, similar to practices used 
to evaluate diagnostic methods.

Conclusions
In areas with endemic and residual transmission of vec-
tor-borne diseases, effective vector control measures 
must be considered for moving towards elimination or, at 
the very least, dramatic reduction of pathogen transmis-
sion. A major consideration in this context, for malaria 
control, is targeting outdoor transmission through the 
identification, surveillance and treatment of aquatic 
habitats favourable for juvenile vector mosquito stages. 
Recent developments in drones (or UAVs) can be effec-
tive for accurately conducting surveillance, assessing 
habitat suitability for larval and/or adult mosquitoes and 
implementing interventions. Examples that leverage this 
technology include high-resolution mapping of water 
bodies in the endemic areas in Latin America, Southeast 
Asia and Africa. The implementation of this technol-
ogy for current control activities requires specific con-
siderations in terms of local regulations, safety, privacy 
and community acceptance. In this rapidly evolving field, 
emerging technological developments are addressing 
these concerns. However, despite the rapidly increasing 
availability of this technology, drones remain best used in 
conjunction with other existing approaches, such as field 
surveys, analysis of satellite-based EO data and deploy-
ment of control measures. Drones have the potential to 
improve and target these existing activities, adding to a 
growing suite of tools for vector control.
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